
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 2, No. 4, pp. 405-426, December 1998

ON THE OPTIMALITY OF SOME FAC AND AFAC METHODS
FOR ELLIPTIC FINITE ELEMENT PROBLEMS

Hsuanjen Cheng

Abstract. We consider some solution methods for large sparse linear
systems of equations which arise from second-order elliptic finite element
problems defined on composite meshes. Historically these methods were
called FAC and AFAC methods. Optimal bounds of the condition num-
ber for certain AFAC iterative operator are established by proving a
strengthened Cauchy-Schwarz inequality using an interpolation theorem
for Hilbert scales. This work completes earlier work by Dryja and Wid-
lund. We also apply an extension theorem for finite element functions
to get a weaker bound under some more general assumptions. The op-
timality of the FAC methods, with exact solvers or spectrally equivalent
inexact solvers being used, is also proved by using similar techniques and
some ideas from multigrid theory.

1. Introduction

In this paper, we consider some solution methods of second-order elliptic
boundary value problems which come from finite element discretizations on
composite meshes.

When we solve some second-order elliptic boundary value problems by
finite element methods, we sometimes need to refine the elements in some
subregions in order to get more accuracy of the solution in these subregions
because the coefficients of the differential equation or the boundary of the
whole domain are not smooth enough. This results in finite element models
on composite meshes. We usually use conforming finite element space in order
to be able to employ a number of well-developed technical tools; cf. Ciarlet

0Received February 18, 1997.
Communicated by S.-B. Hsu.
1991 Mathematics Subject Classification: 65F10, 65N30.
Key words and phrases: Schwarz methods, interpolation theorem, extension theorem, elliptic
regularity, mesh refinement, finite elements.

405



406 Hsuanjen Cheng

[8]. This refinement process can be continued for many times. However, if we
solve the corresponding linear system, there should be radical changes of our
original data structure and old program for each individual case. It is because
we cannot know in advance the number of such refinement process and these
selected subregions which need further mesh refinement. It motivates us to
develop some methods to solve the original finite element problem by only
using some finite element solvers on uniform mesh. FAC and AFAC are some
methods of such kind, whose convergence rate is independent of the number of
refinement levels and mesh size parameters of all elements unlike the standard
multigrid methods. In short, we will transform the original linear system into
another equivalent linear system, which will be solved by a linear iteration
with the identity iterator chosen or by a conjugate gradient method w.r.t. an
appropriate inner product. In each iteration step, we will only solve so-called
standard subproblems with uniform mesh sizes, which correspond to the finite
element problem on the entire region and those on its selected subregions
which need further mesh refinement.

Thomas and McCormick began the systematic study of the Fast Adaptive
Composite (FAC) method for the variational case; cf. [20] and [21]. In order to
implement FAC on parallel computers, Hart and McCormick [13] introduced
the Asynchronous FAC (AFAC) methods a few years later. Bramble, Ewing,
Pasciak, and Schatz [3] considered the so-called BEPS preconditioner for el-
liptic problems with refinement, which is actually a symmetrized version of
basic two-level FAC algorithm. In Mandel and McCormick [15], a theory for
two-level FAC and AFAC of general elliptic finite element problems was given.
In their another paper [16], they proved the optimality of a multi-level AFAC
algorithm for a model problem coming from the finite element discretization.
Then Ewing, Lazarov and Vassilevski [10] developed two algebraic multilevel
BEPS preconditioners and estimated their convergence bounds with some re-
striction on the mesh sizes. Bjørstad, Moe and Skogen [2], and Moe [22] have
also carried out experiments that illustrate the convergence behavior and have
described parallel implementations on both shared memory computers and on
local memory systems. In [28], Widlund formulated the multilevel FAC and
AFAC methods for elliptic finite element problems under the framework of
multiplicative and additive Schwarz methods and established the optimality
of FAC method only using the extension theorem for finite element functions.
However, his proof about the optimal upper bound of certain AFAC methods
was not complete. Then Dryja and Widlund in [9] proved that there is an
optimal lower bound for certain AFAC methods by using the same extension
theorem. The use of FAC and AFAC methods for mixed finite element prob-
lems has been studied by Mathew in [17] [18]. Recently, McCormick and Rüde
established a convergence theory of a two-level FAC for elliptic finite volume
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problems in [23]. The results of this paper generalize and clarify the work by
Dryja and Widlund, and provide a complete proof of one of the results given
in [28].

In Section 2, we introduce the finite element problems on composite meshes,
certain projections and describe basic FAC and AFAC algorithms.

In Section 3, we give a complete proof of the AFAC optimality which
is not complete in Widlund [28] by proving a strengthened Cauchy-Schwarz
inequality using an interpolation theorem for Hilbert scales. We also apply an
extension theorem for finite element functions to get a weaker bound under
more general assumptions. As a minor, we also close a gap about the proof of
the extension theorem for finite element functions described in [28]. We remark
that all convergence estimates developed in this section are independent of all
mesh-sizes unlike the standard multigrid method.

In Section 4, we consider the FAC algorithm with inexact solvers and
prove its optimality by using theoretical results developed in Section 3 and
some ideas from multigrid methods. We note that we must have the same
restriction on mesh-sizes in the general case as that in multigrid methods.
However, we can apply some trick such that we don’t need any restriction of
mesh-sizes in this special case of exact solvers being used. This part of our
work generalizes the result in Widlund [28].

2. Composite Finite Element Problems and Basic Iterative

Refinement Methods

We consider the following second-order elliptic boundary value problem
with homogeneous Dirichlet boundary data on a bounded Lipschitz polyhedral
region Ω in Rn.

−
n∑

i,j=1

∂

∂xi
aij(x)

∂u

∂xj
= f in Ω, u = 0 on ∂Ω.(1)

We use continuous, Lagrange finite element of type p, p being fixed, to approx-
imate the solution of (1). The variational formulation of (1) and its discrete
counterpart have the form

a(u, v) = f(v), ∀v ∈ V ≡ H1
0 (Ω),(2)

and

a(uh, vh) = f(vh), ∀vh ∈ V h,(3)
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respectively. The space V h which is a finite element subspace of V will be
defined later. Here

a(u, v) =
∫

Ω

n∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
dx and f(v) =

∫
Ω
fvdx.

We assume that the coefficient matrix {aij(x)} in (1) varies moderately in
Ω and is symmetric with its eigenvalues bounded from below by a positive
constant uniformly for almost all x in Ω. We also assume that each aij(x) is
in W 1,∞(Ω). Therefore the norm (a(u, u))1/2 is equivalent to the seminorm
|u|H1(Ω) in H1(Ω).

We remark that all of our results can be generalized immediately to the
case of mixed type boundary conditions. The space V h is defined on a com-
posite triangulation, which is based on a series of refinements on some selected
elements. The triangulation of Ω is described as follows.

We first start with a coarse triangulation of Ω, also denoted by Ω1. We
assume that the elements in Ω1, which are called level-1 elements, have quasi-
uniform mesh size h1 and denote the corresponding finite element space by V h1 .
Then we choose a subregion Ω2 of Ω1 where we need to improve the accuracy
of the solution of (2) due to the solution singularity. Because we hope that
a triangulation of Ω1 is also a triangulation of Ω2 when it is restricted to Ω2,
we assume ∂Ω2 aligns with boundaries of level-1 elements. We then subdivide
those level-1 elements in Ω2 to get the level-2 elements in Ω2. Let us assume
that those level-2 elements in Ω2 have quasi-uniform mesh size h2 and denote
the corresponding finite element space by V h2 . In order to assure the composite
finite element space V h1 + V h2 is a subspace of V = H1

0 (Ω), the functions of
V h2 must be zero on ∂Ω2. Such a process can be repeated for arbitrarily
many times. In general, if we are given subregion Ωl−1 and the finite element
space V hl−1 corresponding to these level-(l − 1) elements in Ωl−1, we choose
Ωl ⊂ Ωl−1 such that ∂Ωl aligns with boundaries of level-(l − 1) elements and
refine those level-(l− 1) elements in Ωl to get the level-l elements, which have
quasi-uniform mesh size hl. Therefore we have a corresponding finite element
space V hl which satisfies V hl−1 ∩ H1

0 (Ωl) ⊂ V hl ⊂ H1
0 (Ωl), l = 2, · · · , k. The

composite finite element space V h in (3) is then defined by

V h = V h1 + V h2 + · · ·+ V hk .

It is obvious that irregular nodes on the boundary of the refined region are not
unknowns. We choose the basis functions in the following way. We just cut off
the supports of the coarse grid basis functions by redefining them using fine
grid basis functions. Then they would extend just one element into the fine
grid space. We remark that our theoretical bounds developed in this paper



Optimality of FAC and AFAC Methods 409

depend not only on the shape regularity of elements, but also on the shapes
of the subregions Ωl.

In order to get the stiffness matrix corresponding to (3), we can compute
the bilinear form a(·, ·) for two chosen composite finite element functions in
V h by using a process of subassembly. We can decompose the whole domain Ω
into some disjoint subregions such that those elements in each subregion have
almost the same mesh size. Then we can apply the old codes for calculating the
bilinear form of uniform mesh size finite element functions to get the bilinear
form corresponding to each disjoint subregion. Finally we only need to add
up those contributions of bilinear form from each disjoint subregion.

We now can describe FAC as follows.

Algorithm 1 (FAC). Let unh ∈ V h be the nth approximation to the solu-
tion of (3). Then an iteration step of computing un+1

h consists of k fractional
steps: compute wi ∈ V hi from

a(un+(i−1)/k
h + wi, vi) = f(vi), ∀vi ∈ V hi ,(4)

and set
u
n+i/k
h = u

n+(i−1)/k
h + wi for i = 1, 2, · · · , k.

We remark that the above wi also can be regarded as the solution of an
inhomogeneous Dirichlet boundary value problem in Ωi with the boundary
data un+(i−1)/k

h on ∂Ωi.
Let us define P i

j , i ≤ j, as the projections onto the spaces V hi ∩H1
0 (Ωj).

We note that if j > i, then we solve a problem on Ωj with a coarser mesh
than the mesh hj of the space V hj . The function P i

jvh, i ≤ j, is the unique
element in V hi ∩H1

0 (Ωj), which satisfies

a(P i
jvh, φh) = a(vh, φh), ∀ φh ∈ V hi ∩H1

0 (Ωj).(5)

If uh ∈ V h is the solution of the discrete problem (3), then we can show
that the error enh = unh − uh propagates as

en+1
h = (I − P k

k )(I − P k−1
k−1 ) · · · (I − P 1

1 )enh.

Therefore we can regard FAC as a multiplicative Schwarz method based on
the subspaces V hi for i = 1, 2, · · · , k.

The FAC multiplicative operator is a nonsymmetric operator that cannot
be accelerated by standard conjugate gradient methods. However, GMRES
could be used; cf. [25]. In order to get a symmetric operator, we have to use
additional steps such that the symmetrized FAC has the error propagating as

en+1
h = (I − P 1

1 ) · · · (I − P k−1
k−1 )(I − P k

k )(I − P k
k )(I − P k−1

k−1 ) · · · (I − P 1
1 )enh.
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In order to adapt the FAC method to multiprocessor systems, several dif-
ferent asynchronous FAC algorithms have been introduced; cf. [13] and [28].
These variants of FAC belong to the additive Schwarz methods, which are
more easily decomposed into independent processes, at the cost of somewhat
slower convergence.

Algorithm 2 (AFAC1). Apply an iterative method, e.g., the conjugate
gradient method, to the symmetric and positive definite system

P (1)
a uh ≡ (P 1

1 + P 2
2 + · · ·+ P k

k )uh = gh

for an appropriate gh such that the solution uh is the same as that of (3).

It is well-known that the number of steps required to decrease an appro-
priate norm of the error of a conjugate gradient iteration by a fixed factor
is proportional to

√
κ, where κ is the condition number of the corresponding

operator; cf. Golub and Van Loan [11]. We therefore need establish that the
corresponding FAC or AFAC operator is not only invertible but that satisfac-
tory upper and lower bounds on its eigenvalues can be obtained.

The condition number of the AFAC1 operator grows linearly with k as
shown by Widlund in [28]. The eigenvalues of P (1)

a are always bounded from
above by k. This bound is attained if V h1 ∩ H1

0 (Ωk) is not empty, i.e., the
coarsest mesh size h1 is fine enough.

Improvements of the basic AFAC method were described by Mandel and
McCormick in [15], [16] and by Widlund [28]. However, the original idea was
known even earlier. In terms of orthogonal projections, the operator can be
represented as

P (2)
a = P 1

1 + (P 2
2 − P 1

2 ) + · · ·+ (P k
k − P k−1

k ).

All of individual terms, except the first, represent the difference between two
solutions on the same subregion, using two different mesh sizes.

Algorithm 3 (AFAC2). Apply an iterative method, e.g., the conjugate
gradient method, to the symmetric and positive definite system

P (2)
a uh ≡ (P 1

1 + (P 2
2 − P 1

2 ) + · · ·+ (P k
k − P k−1

k ))uh = gh

for an appropriate gh such that the solution uh is the same as that of (3).

We end this section by discussing several variants of these algorithms. We
can use other energy-symmetric operators T ii to replace the projections P i

i .
Practically we should choose the T ii such that the T ii uh are much easier to
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compute than the P i
i uh and T ii is spectrally equivalent to P i

i . The correspond-
ing operator for the symmetrized FAC with k subspaces involves 2k fractional
steps and has the form

I − E∗kEk, where Ek = (I − T kk )(I − T k−1
k−1 ) · · · (I − T 1

1 ).(6)

We note that the error propagation operators for the basic FAC algorithm is
Ek. However, if we apply standard conjugate gradient method to accelerate
the symmetrized FAC algorithm, the convergence rate can be bounded in
terms of the condition number of I − E∗kEk.

3. Optimal Convergence Rate Estimates for AFAC

In this section, we will prove that there is an optimal bound for AFAC by
using an extension theorem for finite element functions and an interpolation
theorem of Hilbert scales. We have already known an estimate of the condition
number for AFAC1 from last section. Therefore it is sufficient to analyze the
convergence rate for AFAC2.

Our first tool is an extension theorem for finite element functions. We need
to make the following assumptions; cf. Fig. 1.

Assumption 1. For each j, there exists a bounded Lipschitz polyhedral
region Ω̃j such that Ωj ⊂ Ω̃j, (Ω̃j \ Ωj) ∩ Ω = ∅, ∂Ω̃j ∩ ∂Ωj+1 = ∅ and the
Lipschitz constants of Ω̃j \ Ωj+1 are uniformly bounded.

We remark that in the above assumption Ω̃j is not necessarily a subset
of Ω; cf. Fig. 1. Assumption 1 is quite general. In the case of Ωj ⊂⊂ Ω,
the only choice of Ω̃j is Ωj and therefore we can only select Ωj+1 such that
Ωj+1 ⊂⊂ Ωj. The significance of Assumption 1 is that we can then get an
extension theorem for finite element functions with the extra constraint due
to the homogeneous Dirichlet boundary condition w.r.t. the norm induced by
a(·, ·), which is stated but not proved in Widlund [28]; cf. Lemma 1.

As in [28], we need to define the operators Hj
j+1, 1 ≤ j ≤ k − 1, by

Hj
j+1uh(x) ∈ V h1 + V h2 + · · ·+ V hj ,

Hj
j+1uh(x) = uh(x), ∀x ∈ Ω \ Ωj+1,

a(Hj
j+1uh, vh) = 0, ∀vh ∈ V hj ∩H1

0 (Ωj+1).

We can call Hj
j+1uh the hj-harmonic extension of uh from Ω\Ωj+1 to Ωj+1

because it is the solution in V hj of a discrete Dirichlet problem with zero right
hand side and with boundary data on ∂Ωj+1 given by uh.
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Ω

Ωj

Ωj+1

Ω̃j

(-1,1) (0,1)

(-1,-1)

(0,0) (1,0)

(1,-1)

Figure 1: One choice of Ω̃j in Assumption 1 for L-shaped subdomains

The following lemma is stated in Widlund [28] and he used it to show that
the basic FAC algorithm has a uniformly bounded convergence rate, but he
didn’t give the proof. However, it is not a direct consequence of the standard
extension theorem for finite element functions because we now deal with the
norm induced by a(·, ·) inner product but not the standard Sobolev norm
‖·‖H1(Ω) and because we need to impose the extra constraint values due to the
Dirichlet boundary condition on the extended finite element functions. This
is the reason why we need Assumption 1. For completeness of this work, we
also include the proof.

Lemma 1. There exists a constant C(Ω̃j\Ωj+1), which only depends on
the Lipschitz constant of Ω̃j\Ωj+1, where Ω̃j is given in Assumption 1, such
that

aΩj+1(Hj
j+1uh,H

j
j+1uh) ≤ C(Ω̃j\Ωj+1)aΩj\Ωj+1(uh, uh), ∀uh ∈ V h.

Here aΩj+1(·, ·) is the bilinear form obtained from replacing the integration
domain Ω by its subdomain Ωj+1 in the definition of a(·, ·).

Before proving this lemma, we need to state and use the following two
technical lemmas.
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Lemma 2. Let Ω be an open, bounded, and Lipschitz polyhedral region in
Rn, n ≥ 2. A triangulation on Ω with a quasi-uniform mesh size h is given
and Rn \ Ω is also triangulated in an equally benign way as Ω. There exists
a constant C(Ω), which depends only on the Lipschitz constant of ∂Ω and the
shape regularity of the triangulation, such that for all uh ∈ V h(Ω) we can
extend uh to ũh ∈ V h(Rn) and ũh satisfies

‖ũh‖H1(Rn) ≤ C(Ω)‖uh‖H1(Ω).

The result is also true if we only extend uh to some domain Ω̃ which contains
Ω and we do not impose any extra constraint on the extended function ũh.

Lemma 3. Let

{u}Ω =
1
|Ω|

∫
Ω
u.

Then there exists a constant C(Ω), which only depends upon the Lipschitz
constant of ∂Ω, such that

‖u− {u}Ω‖L2(Ω) ≤ C(Ω)HΩ|u|H1(Ω), ∀u ∈ H1(Ω).

Here HΩ is the diameter of Ω.

The first lemma is the standard extension theorem for finite element func-
tions given in Widlund [27]. The second lemma is called Poincaré inequality;
cf. [24].

Proof of Lemma 1. Without loss of generality, we may assume that the
differential operator is the Laplacian. To prove this lemma, we need to use
Lemmas 2 and 3. Using the condition (Ω̃j\Ωj) ∩ Ω = ∅, we can make a
constant extension of any function in V h, which has a constant value on ∂Ω,
to the larger region Ω ∪ Ω̃j. This extended function is still a composite finite
element function. We now apply Lemma 2 to the region Ω̃j\Ωj+1. Given any
function uh ∈ V h, we define c = {uh}Ω̃j\Ωj+1

as in Lemma 3. Obviously uh− c
is in V hj (Ω̃j\Ωj+1) when it is restricted to this smaller subdomain. Let ũhj be
the finite element function extension of uh−c from Ω̃j\Ωj+1 to Ω̃j, as in Lemma
2, such that ũhj is in V hj (Ω̃j). It is possible. We actually don’t impose any
boundary value constraint on the extended finite element function ũhj because
∂Ω̃j ∩ ∂Ωj+1 = ∅. Now Hj

j+1(uh − c) and ũhj have the same boundary values
on ∂Ωj+1. However Hj

j+1(uh − c) is the minimal energy extension of uh − c
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from Ω̃j\Ωj+1 to Ω̃j. Therefore by Lemmas 2 and 3,

aΩj+1(Hj
j+1uh,H

j
j+1uh) =aΩj+1(Hj

j+1(uh − c),Hj
j+1(uh − c)) ≤ aΩj+1(ũhj , ũhj )

≤‖ũhj‖2Ωj+1
≤ C2

1 (Ω̃j\Ωj+1)‖uh − c‖2H1(Ω̃j\Ωj+1)

≤C2
1 (Ω̃j\Ωj+1)(1 + C2

2 (Ω̃j\Ωj+1)H2
Ω̃j\Ωj+1

)aΩ̃j\Ωj+1
(uh, uh)

=C2
1 (Ω̃j\Ωj+1)(1 + C2

2 (Ω̃j\Ωj+1)H2
Ω̃j\Ωj+1

)aΩj\Ωj+1(uh, uh).

Here C1 and C2 are the constants which appear in Lemmas 2 and 3. Note that
we have regarded uh as defined on Ω ∪ Ω̃j by zero extension.

Finally we can use a simple dilation argument to remove the dependence
of the constant upon HΩ̃j\Ωj+1

.

Note that no additional assumptions on the mesh sizes hi are needed in
the above lemma.

We now state a result about a uniform lower bound for AFAC2 operator
which was described in [9].

Theorem 1. Under Assumption 1, the eigenvalues of P (2)
a are bounded

from below by a constant which is independent of k and the mesh sizes hi,
1 ≤ i ≤ k.

Actually, the above theorem holds under a more general assumption than
Assumption 1; we can allow Ωj = Ωj+1 in Assumption 1. This is so, because in
this case we can form a new AFAC2 operator P (2)

a,n, which satisfies Assumption
1 and can be shown to be equal to the original operator P (2)

a , by using the
basic property of projections to cancel some projection operators.

We will next prove the following theorem by using Lemma 1. Therefore
the only tool is the standard extension theorem for finite element functions.

Theorem 2. Under Assumption 1, the operator P (2)
a has a condition

number which is bounded by const ·
√
k, but is independent of the mesh sizes

hi, 1 ≤ i ≤ k.

Proof . Let ui = (P i
i − P i−1

i )uh for i = 1, 2, · · ·, k. Then P (2)uh = u1 +
u2 + · · · + uk. Also note that if j > i, then a(uj, ui) = a(uj, ui + v) for all
v ∈ V hj−1 ∩H1

0 (Ωj). Therefore we can choose v such that

a(uj, ui + v) = a(uj,H
j−1
j ui) = a(uj, ui).
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Hence if we use this equation, Lemma 1 and Cauchy-Schwarz inequality,
we get

a(P (2)uh, P
(2)uh) =

k∑
i=1

a(ui, ui) + 2
∑
j>i

a(ui, uj) =
k∑
i=1

a(ui, ui) + 2
∑
j>i

a(uj ,H
j−1
j ui)

≤
k∑
i=1

a(ui, ui) + 2
k∑
i=1

k∑
j=i+1

a(uj , uj)1/2 · aΩj (H
j−1
j ui,H

j−1
j ui)1/2

≤
k∑
i=1

a(ui, ui) + C
k∑
i=1

k∑
j=i+1

a(uj , uj)1/2 · aΩj−1\Ωj (ui, ui)
1/2

≤
k∑
i=1

a(ui, ui) + C

k∑
i=1

 k∑
j=i+1

a(uj , uj)

1/2

·

 k∑
j=i+1

aΩj−1\Ωj (ui, ui)

1/2

=
k∑
i=1

a(ui, ui) + C

k∑
i=1

 k∑
j=i+1

a(uj , uj)

1/2

· a(ui, ui)1/2

≤
k∑
i=1

a(ui, ui) + C

 k∑
i=1

k∑
j=i+1

a(uj , uj)

1/2

·

[
k∑
i=1

a(ui, ui)

]1/2

≤
k∑
i=1

a(ui, ui)(1 + C
√
k) ≤ C ′

√
ka(P (2)uh, uh).

From this result and Theorem 1, Theorem 2 easily follows.

We remark that the above theorem holds under more general assumption
by modifying the corresponding result of Lemma 1. For example, we can make
the following assumption.

Assumption 2. For each j, there exists a bounded Lipschitz polyhedral
region Ω̃N(j), with 1 ≤ N(j) ≤ j and j −N(j) uniformly bounded with respect
to j, such that ΩN(j) ⊂ Ω̃N(j), (Ω̃N(j) \ΩN(j))∩Ω = ∅, ∂Ω̃N(j)∩∂Ωj+1 = ∅ and
the Lipschitz constants of Ω̃N(j) \ Ωj+1 are uniformly bounded.

Under Assumption 2, we can prove the counterpart of Lemma 1 by apply-
ing Lemma 2 to the region Ω̃N(j) \ Ωj+1. Next we will prove that P (2)

a has a
uniformly bounded condition number under the following additional assump-
tion. Later we will apply some trick to remove this assumption.

Assumption 3. The mesh sizes hi are bounded from above and below by
const · qi uniformly for all i. Here q is some constant less than 1.

Before giving the proof, we need to describe some theoretical results which
we will apply later on. One is an interpolation theorem of Hilbert scales.
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Another one is related to the elliptic regularity assumption. We first review
an interpolation theorem of Hilbert scales and modify this theorem for finite
element spaces.

Let X and Y be two separable Hilbert spaces with X ⊂ Y and let X be
dense in Y with a continuous injection. For example, we may take X = H1(Ω)
and Y = L2(Ω). A functional K(t, u) is defined by

K(t, u) = inf
u=u0+u1

(‖u1‖2X + t2‖u0‖2Y )1/2.

Here we write general functions u in Y as u = u0 + u1 where u1 ∈ X and
u0 ∈ Y . Then we define the Hilbert space [X,Y ]s to be the space of all
functions u in Y for which the norm

(‖u‖2Y +
∫ ∞

0
t−(3−2s)(K(t, u))2dt)1/2, 0 ≤ s ≤ 1,

is finite. When s = 0, the space is Y . When s = 1, the space is X. The
above procedure is called the interpolation of Hilbert scales. The following
interpolation theorem can be found in Lions and Magenes [14], or Triebel [26].

Theorem 3. Let A be a continuous linear functional over R on X and Y .
Then there exists a constant C(s), depending only on s, 0 ≤ s ≤ 1, such that

‖A‖[X,Y ]s→R ≤ C(s) · ‖A‖sX→R · ‖A‖1−sY→R.

Let Hs(Ω) denote the fractional Sobolev space of order s for 0 ≤ s ≤ 1.
It can be shown that [H1(Ω), L2(Ω)]s = Hs(Ω) and that the norms in these
spaces are equivalent with the equivalence constants only depending on Ω and
s. The proof can be found in Lions and Magenes [14]. We will use the K-
method to establish an interpolation theorem for finite-dimensional subspaces
of finite element functions.

Let Ω be a bounded Lipschitz polyhedral domain in Rn. We introduce
a triangulation on Ω such that the triangulation has a quasi-uniform mesh
size h. For the triangulation, the finite element space V h is defined as the
Lagrange finite element space of type p, p being fixed. Then we have the
following lemma which is a variant of the above theorem.

Lemma 4. Let A be a continuous linear functional over R on V h both in
H1(Ω) and L2(Ω). Then there exists a constant C(Ω, s), 0 ≤ s ≤ 1, which is
independent of h, such that

‖A‖V h⊂Hs(Ω)→R ≤ C(Ω, s) · ‖A‖sV h⊂H1(Ω)→R · ‖A‖1−sV h⊂L2(Ω)→R.
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Proof. Let us do the interpolation procedure between the Hilbert spaces
V h ⊂ H1(Ω) and V h ⊂ L2(Ω) and apply the above interpolation theorem. To
prove this lemma, it is sufficient to prove that the norm induced by the inter-
polation procedure between the space V h ⊂ H1(Ω) and the space V h ⊂ L2(Ω)
is equivalent to the norm induced by the interpolation procedure between the
space H1(Ω) and the space L2(Ω) for each s. Let us define

Kh(t, uh) = inf
uh=u0h+u1h

(‖u1h‖2H1(Ω) + t2‖u0h‖2L2(Ω))
1/2,

where u1h, u0h, and uh are in V h. In fact, it suffices to prove that there exist
constants C1 and C2, which are independent of h, such that

C1K(t, uh) ≤ Kh(t, uh) ≤ C2K(t, uh), ∀uh ∈ V h.

Here K(t, u) is the K-functional corresponding to X = H1(Ω) and Y = L2(Ω).
It is obvious from the definitions that

K(t, uh) ≤ Kh(t, uh), ∀uh ∈ V h.

Let Qh denote the standard L2-projection or quasi-interpolant; cf. Bramble
and Xu [5] or Cheng [7]. Then there exists a constant C, which is independent
of h, such that

‖Qhu‖H1(Ω) ≤ C‖u‖H1(Ω), ∀u ∈ H1(Ω).

Now given any uh in V h, we write uh as u0 + u1 where u0 ∈ L2(Ω) and
u1 ∈ H1(Ω). Then

uh = Qhuh = Qhu0 +Qhu1.

Therefore

Kh(t, uh) ≤ infuh=u0+u1(‖Qhu1‖2H1(Ω) + t2‖Qhu0‖2L2(Ω))
1/2

≤ C · infuh=u0+u1(‖u1‖2H1(Ω) + t2‖u0‖2L2(Ω))
1/2 = C ·K(t, uh).

Then the lemma easily follows.

Next we use the elliptic regularity assumption to set up some technical
lemmas. We consider the Dirichlet boundary value problem

−
∑
i

∑
j

∂

∂xi
aij(x)

∂U

∂xj
= F in Ω, U = 0 on ∂Ω,

in a weak sense, i.e., U ∈ H1
0 (Ω) is the solution of

a(U, χ) = (F, χ)L2(Ω), ∀χ ∈ H1
0 (Ω).
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We make the following elliptic regularity assumption: There exists a constant
s ∈ (0, 1] such that

‖U‖H1+s(Ω) ≤ C‖F‖Hs−1(Ω)(7)

for the solution U , where C is a constant depending only on the domain Ω.
In Grisvard [12], it is established that the above assumption holds for some
s ∈ (1/2, 1] if Ω is a Lipschitz polyhedral bounded domain in two- or three-
dimensional space and the coefficients {aij(x)} are in W 1,∞(Ω).

For such a Lipschitz polyhedral domain Ω0 ⊂ Rn, we introduce a sequence
of triangulations Tl of Ω0. The triangulation Tl has a quasi-uniform mesh size
hl. For these triangulations, the finite element spaces Ṽ hl are defined as the
Lagrange finite element space of type p. We assume that

Ṽ h1 ⊂ Ṽ h2 ⊂ Ṽ h3 ⊂ · · · ⊂ Ṽ hl ⊂ · · · ,

and define the Galerkin projection Pl : H1
0 (Ω0)→ Ṽ hl ∩H1

0 (Ω0) by

a(Plu, v) = a(u, v), ∀v ∈ Ṽ hl ∩H1
0 (Ω0).

The following well-known lemma can be proved by using the regularity as-
sumption (7) and the standard finite element approximation theory; cf. Xu
[29].

Lemma 5. There exists an s ∈ (1/2, 1] and a constant C such that

‖(I − Pl)u‖H1−s(Ω0) ≤ Chsl ‖(I − Pl)u‖H1(Ω0), ∀u ∈ H1
0 (Ω0).

The following lemma is proved for the special case of linear element and the
differential operator being Laplacian in Yserentant [30] or Xu [29]. However,
it is possible to prove the general case of Lagrange elements with higher degree
and general self-adjoint differential operator. To simplify the presentation, we
omit the proof.

Lemma 6. Assume that the coefficient matrix {aij(x)} is in W 1,∞(Ω0)
and that Assumption 3 holds. Then

a(u, v) ≤ C ′q(j−i)/2h−1
j |u|H1(Ω0)‖v‖L2(Ω0), ∀u ∈ Ṽ hi , v ∈ Ṽ hj

if i ≤ j. Here C ′ depends only upon the shape regularity and the bound of
{aij(x)} in W 1,∞(Ω0).

We can also replace the L2-norm in the above lemma by the Hs-norm by
using Lemma 4.
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Lemma 7. Assume that the coefficient matrix {aij(x)} is in W 1,∞(Ω0).
Then

a(u, v) ≤ C ′(Ω0, s)(q(j−i)/2h−1
j )s|u|H1(Ω0)‖v‖H1−s(Ω0), ∀u ∈ Ṽ hi , ∀v ∈ Ṽ hj .

Here C ′(Ω0, s) is a generic constant which only depends upon the domain Ω0,
s, the shape regularity and the bound of {aij(x)} in W 1,∞(Ω0).

Proof. For each fixed u ∈ Ṽ hi , there is a bounded linear functional Au :
Ṽ hj → R such that

Au(v) = a(u, v).

We observe that
|Au(v)| ≤ C|u|H1(Ω0)‖v‖H1(Ω0).

Therefore
‖Au‖Ṽ hj⊂H1(Ω0)→R ≤ C|u|H1(Ω0).

By Lemma 6, we also have

‖Au‖Ṽ hj⊂L2(Ω0)→R ≤ C
′q(j−i)/2h−1

j |u|H1(Ω0).

We now can apply Lemma 4 to get a good bound for ‖Au‖Ṽ hj⊂H1−s(Ω0)→R. We
have

‖Au‖Ṽ hj⊂H1−s(Ω0)→R ≤ C(Ω0, s)‖Au‖1−sṼ hj⊂H1(Ω0)→R · ‖Au‖
s
Ṽ hj⊂L2(Ω0)→R

≤ C ′(Ω0, s)(q(j−i)/2h−1
j )s · |u|H1(Ω0).

From this result, the lemma easily follows.

We can now return to our original problem on composite meshes. Using
the following lemma, we can prove that the additive Schwarz operator P (2)

a

has an optimal condition number under Assumptions 1 and 3.

Lemma 8. Assume that the coefficient matrix {aij(x)} is in W 1,∞(Ω) and
that Assumption 3 holds. Then

a(u, v) ≤ C(Ωj, s)q(j−i−2)s/2a(u, u)1/2 · a(v, v)1/2,

∀u ∈ Range (P i
i ), ∀v ∈ Range (P j

j − P
j−1
j ).

Here C(Ωj, s) is a constant which only depends upon the subdomain Ωj, s, the
shape regularity and the bound of {aij(x)} in W 1,∞(Ω).
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Proof. If we apply the results of Lemmas 5 and 7 for each subdomain Ωj

which will need the elliptic regularity assumption (7) for each Ωj and observe
that P j

j − P
j−1
j = (I − P j−1

j )P j
j , we obtain

a(u, v) = aΩj (u, v) ≤ C ′(Ωj, s)(q(j−i)/2h−1
j )s · |u|H1(Ωj) · ‖v‖H1−s(Ωj)

≤ C ′(Ωj, s)(q(j−i)/2h−1
j )s · |u|H1(Ωj) · C · hsj−1 · ‖v‖H1(Ωj)

≤ C(Ωj, s)(q(j−i)/2h−1
j )s|u|H1(Ωj) · C · hsj−1|v|H1(Ωj)

≤ C(Ωj, s) · q(j−i−2)s/2 · |u|H1(Ωj) · |v|H1(Ωj)

≤ C(Ωj, s) · q(j−i−2)s/2 · a(u, u)1/2 · a(v, v)1/2.

We can now prove the main theorem in this section.

Theorem 4. Under Assumptions 1 and 3, the operator P (2)
a has a condi-

tion number which is independent of k and the number of degrees of freedom.

To prove that P (2)
a are uniformly bounded from above by a constant, we

can use Lemma 8 and apply the trick in Widlund [28]. By combining this
result with Theorem 1, we now complete the proof of Theorem 4.

However, we can replace Assumption 3 by a much weaker assumption such
that Theorem 4 still holds.

Assumption 4. The mesh sizes hi are uniformly bounded from above and
below by const · qN(i). Here N(i) is a strictly increasing sequence of positive
integers and q is some constant less than 1.

Theorem 5. Under Assumptions 1 and 4, the operator P (2)
a has a condi-

tion number which is independent of k and the number of degrees of freedom.

Proof. It is sufficient to prove that P (2)
a has a uniform upper bound. It

is obvious from the special form of P (2)
a that we can introduce intermediate

subdomains, mesh sizes and the corresponding projections such that the re-
sulting new AFAC2 operator P (2)

a,n is the same as the original operator P (2)
a and

satisfies Assumption 3. It follows that P (2)
a,n has a uniformly bounded upper

bound. Therefore P (2)
a has a uniformly bounded upper bound.
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4. A Convergence Rate Estimate for FAC with Inexact Solvers

We consider T ii which are spectrally equivalent to P i
i for i = 1, 2, . . . , k, in

the sense that there exist constants ω1 and ω2 with 0 < ω1 < ω2 < 2 such that
ω1P

i
i ≤ T ii ≤ ω2P

i
i , for all i = 1, 2, . . . , k. In this section, we will establish

the optimality for FAC based on such T ii . We make the same assumptions
about the domains Ω1, · · · ,Ωk as in the last section. We remark that our
idea comes from the multigrid theory in Xu [29] and Zhang [31]. However,
their proof cannot be applied to our case. It is the reason why we need to
establish our proof which is related to the operator P (2)

a , but not T 1
1 + · · ·+T kk

which is the additive Schwarz operator corresponding to FAC algorithm with
inexact solvers. The main difference of ingredients is that it is necessary to
consider other operators P i

i −P i−1
i which is not directly related to the original

operators T ii in our specific problem. We may also refer to [4] for the analysis
of multiplicative Schwarz algorithms in general cases.

Theorem 6. Under Assumptions 1 and 3, the energy norm of the basic
FAC operator based on the T ii , 1 ≤ i ≤ k, is bounded by a constant less than one
with the constant independent of k and the number of degrees of freedom, but
depending upon ω1, ω2 and the shape regularity. Therefore the corresponding
symmetrized FAC algorithm has a condition number which depends only upon
ω1, ω2 and the shape regularity.

Proof. Let Ei = (I − T ii ) · · · (I − T 1
1 ). Then Ei−1 − Ei = T iiEi−1, for

i = 1, 2, · · · , k, and we obtain

‖Ei−1u‖2a − ‖Eiu‖2a = ‖T iiEi−1u‖2a + 2a(T iiEi−1u,Eiu)

= a(T ii (2I − T ii )Ei−1u,Ei−1u) ≥ (2− ω2)a(T iiEi−1u,Ei−1u).

Summing these terms for i = 1, 2, · · · , k, we get

‖u‖2a − ‖Eku‖2a ≥ (2− ω2)
k∑
i=1

a(T iiEi−1u,Ei−1u).

We can write u as
u= T 1

1 u+ (I − T 1
1 )u = T 1

1 u+ E1u = T 1
1E0u+ T 2

2E1u+ (I − T 2
2 )E1u

= T 1
1E0u+ T 2

2E1u+E2u = · · · =
i−1∑
j=1

T jj Ej−1u+ Ei−1u.

If we define θij by

θij =


1/
√
ω1 if i = j

maxv,w∈V h
a((P ii−P

i−1
i

)v,T j
j
w)

a((P i
i
−P i−1

i
)v,v)

1
2 ·a(T j

j
w,w)

1
2

if i > j

θji if i < j,
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we obtain

a((P ii − P
i−1
i )u, u) = a((P ii − P

i−1
i )u,Ei−1u) +

i−1∑
j=1

a((P ii − P i−1
i )u, T jj Ej−1u)

≤ a((P ii − P
i−1
i )u, u)

1
2 · a((P ii − P

i−1
i )Ei−1u,Ei−1u)

1
2

+
i−1∑
j=1

θija((P ii − P i−1
i )u, u)

1
2 · a(T jj Ej−1u,Ej−1u)

1
2

≤ a((P ii − P
i−1
i )u, u)

1
2 · a(P iiEi−1u,Ei−1u)

1
2

+
i−1∑
j=1

θija((P ii − P i−1
i )u, u)

1
2 · a(T jj Ej−1u,Ej−1u)

1
2

≤ 1
√
ω1
a((P ii − P i−1

i )u, u)
1
2 · a(T iiEi−1u,Ei−1u)

1
2

+
i−1∑
j=1

θija((P ii − P i−1
i )u, u)

1
2 · a(T jj Ej−1u,Ej−1u)

1
2

= a((P ii − P
i−1
i )u, u)

1
2 ·

 i∑
j=1

θija(T jj Ej−1u,Ej−1u)
1
2

 .

Thus, for 1 ≤ i ≤ k, we get

a((P i
i − P i−1

i )u, u) ≤

 k∑
j=1

θija(T jjEj−1u,Ej−1u)
1
2

2

.

Finally we conclude that

a(P (2)
a u, u) ≤ ‖θ‖22

k∑
i=1

a(T iiEi−1u,Ei−1u),

where P (2)
a is the AFAC2 operator and ‖θ‖2 is the l2-norm of the matrix θ.

We now need to estimate the θij. Observe that Null (T jj ) = Null (P j
j ).

We also have Range (T jj ) = Null (T jj )⊥ and Range (P j
j ) = Null (P j

j )⊥ because
T jj and P j

j are energy-symmetric. We can then conclude that Range (T jj ) =



Optimality of FAC and AFAC Methods 423

Range (P j
j ). It is also easy to see that Range ((T jj ) 1

2 ) = Range (T jj ). For i > j,

θij = maxv,w∈V h
a((P i

i − P i−1
i )v, T jj w)

a((P i
i − P i−1

i )v, v) 1
2 · a(P j

j (T jj ) 1
2w, (T jj ) 1

2w) 1
2

≤ √
ω2 maxv,w∈V h

a((P i
i − P i−1

i )v, T jj w)
a((P i

i − P i−1
i )v, v) 1

2 · a(T jj (T jj ) 1
2w, (T jj ) 1

2w) 1
2

=
√
ω2 maxv,w∈V h

a((P ii−P
i−1
i

)v,T j
j
w)

a((P i
i
−P i−1

i
)v,(P i

i
−P i−1

i
)v)

1
2 ·a(T j

j
w,T j

j
w)

1
2

≤ √
ω2 maxu1∈Range(P i

i
−P i−1

i
),u2∈Range(P j

j
)

a(u1, u2)
a(u1, u1) 1

2 · a(u2, u2) 1
2

≤ √
ω2Cq

(i−j−2)s/2.

The last step follows from Lemma 8 and thus we have ‖θ‖22 ≤ ‖θ‖21 ≤ C ′.
Therefore

a(P (2)
a u, u) ≤ C ′

∑k
i=1 a(T iiEi−1u,Ei−1u) ≤ C′

2−ω2
(‖u‖2a − ‖Eku‖2a)

≡ C0(‖u‖2a − ‖Eku‖2a),

where C0 is a constant which only depends on ω1, ω2, q, the subdomains and
the shape regularity. By Theorem 1, we have P (2)

a ≥ cI, where c > 0 is a
constant which is independent of k and the number of degrees of freedom, so
we can conclude that ‖Eku‖2a ≤ (C0 − c)/C0 · ‖u‖2a.

When T ii = P i
i for all i, we can prove this theorem under Assumptions 1

and 4 by using the same trick as in Theorem 5 and tracing the proof of above
theorem. Consequently, we have obtained another proof about the optimality
of basic FAC algorithm given in Widlund [28], which is stated below.

Theorem 7. Under Assumptions 1 and 4, the energy norm of the basic
FAC operator based on the P i

i , 1 ≤ i ≤ k, is bounded by a constant less than
one with the constant independent of k and the number of degrees of freedom.
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