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A CHARACTERIZATION OF HOLOMORPHIC GENERATORS
ON THE CARTESIAN PRODUCT OF HILBERT BALLS

Simeon Reich and David Shoikhet

Abstract. We present a necessary and sufficient condition for a holo-
morphic mapping to be a generator of a flow on any finite Cartesian
product of Hilbert balls. A related null point theorem is also established.

Let X be a Banach space and let X∗ be its dual. For a point x ∈ X and
a functional x∗ ∈ X we use the pairing 〈x, x∗〉 to denote x∗(x). The duality
mapping J : X → 2X

∗
is defined by

J(x) :=
{
x∗ ∈ X∗ : Re〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
for each x ∈ X.

In particular, if X = H is a Hilbert space, then 〈·, ·〉 is the inner product in
H and J : H → H is the identity mapping. Let now D be the open unit ball
in X, and let C(D̄,X) denote the class of continuous mappings from D̄ into
X. Suppose that f belongs to C(D̄,X) and satisfies the following boundary
condition:

inf
x∗∈J(x)

Re〈f(x), x∗〉 ≥ 0,(∗)

for each x ∈ ∂D.
Following [10] we call this condition a “one-sided estimate”. We recall that

such estimates have been systematically used in many areas of analysis, e.g.,
boundary value problems ([9], [5], [16]), nonlinear integral equations [6], and
monotone operator theory [4]. For an extension of condition (∗) to topological
vector spaces, with applications, we refer the reader to a paper by Fan [7].
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If D = B is the open unit ball in a Hilbert space H, and f : B → H
is a completely continuous vector field on B̄ (i.e. f ∈ C(B̄,X) and I − f
is compact), then by Krasnoselskii’s theorem [9] condition (∗) implies the
existence of a null point of f in B̄. As a matter of fact, this also follows from
the Leray-Schauder Theorem because the mapping I − f is compact.

A similar assertion was proved by Shinbrot [16] under the assumptions that
f is weakly continuous and H is separable. This result was applied by him
to a class of quasi-linear partial differential equations and to Navier-Stokes
equations.

Suppose now that H is complex and that f : B → H is a holomorphic
mapping in B. As we proved in [2], the compactness condition in this case
can be replaced by the condition of uniform continuity of f on B̄. However,
examples show (see [2]) that such an assertion is no longer true for every
Banach space. Nevertheless, we will show in the sequel that Theorem 2 in [2]
can be generalized to the case when X is the Cartesian product of complex
Hilbert spaces with the maximum norm. The key to the solution of such a
problem is the following observation related to another issue, namely evolution
equations and a characterization of infinitesimal holomorphic generators.

First we note that if D is a ball in a Banach space X and f ∈ C(D̄,X),
then condition (∗) is equivalent to the following “flow invariance condition”:

lim
h→0+

dist(x− hf(x), D̄)
h

= 0(FIC)

(see [12]).
If we now suppose that f satisfies the condition:
For some δ > 0 there exists a continuous family Ft : [0, δ) → C(D̄,X),

Ft(D̄) ⊂ D̄, t ∈ [0, δ), such that for each x ∈ D,

f(x) = lim
t→0+

x− Ft(x)
t

,

then it is clear that f satisfies (FIC) and hence the one-sided estimate (∗).
This happens, in particular, if f is a strong generator of a one-parameter
semigroup.

The converse assertion, generally speaking, is not clear. Usually, its validity
can be ensured by additional conditions, such as accretivity (see, for example,
[11]).

If X is complex and f is holomorphic in D and uniformly continuous on
D̄, then condition (∗) is equivalent to the assumption that f is an infinitesimal
generator inside D (see [2]).

Thus the existence of an interior null point of f under the condition (∗)
or (FIC) is equivalent in this case to the existence of a stationary point of the
flow {Ft}, t > 0, defined by the Cauchy problem:
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dFt(x)
dt

+ f(Ft(x)) = 0, t > 0,

lim
t→0+

Ft(x) = x
(CP)

(see [13]).
The following question now arises: Are there interior characterizations of

f to be a generator on the open unit ball D such that if f has a continuous ex-
tension to D̄ one can derive condition (∗) (or (FIC))? For the one-dimensional
case an implicit characterization of f to be an infinitesimal generator of a one-
parameter semigroup of holomorphic self-mappings in D = ∆ (the unit disk
in C) was obtained by E. Berkson and H. Porta [3]. They proved the following
assertion.

Let f : ∆ → C be a holomorphic mapping in ∆. Then the Cauchy prob-
lem (CP) has a global solution on R+ = (0,∞) if and only if f admits the
representation:

f(x) = (y − x)(ȳx− 1)g(x)(BPC)

for some y ∈ ∆̄ and for some holomorphic mapping g : ∆ → C with Re
g(x) ≥ 0 for all x ∈ ∆.

This characterization was used in [3] to study semi-groups of composition
operators on Hardy spaces of the unit disk. Recently M. Abate [1] established
a different characterization of holomorphic generators on the open unit ball
B of Cn with the Euclidean norm (i.e., a finite-dimensional Hilbert space) by
using the differentiability (in this case) of the Kobayashi metric. In our setting
his characterization of f : B → Cn to be a generator has the form

2[‖ g(x) ‖2 −|〈g(x), x〉|2]Re〈g(x), x〉

+(1− ‖x‖2)2Re〈f ′(x)f(x), g(x)〉 ≥ 0,
(AC)

where g(x) = (1− ‖x‖2)f(x) + 〈f(x), x〉x.
In particular, if n = 1, (AC) becomes

Ref(x)x̄ ≥ −1
2

Ref ′(x)(1− |x|2), x ∈ ∆.(AC)′)

It was also shown in [1] how to deduce (BPC) from (AC)′ and conversely.
However, a deficiency of these conditions is that it is not clear how to derive
the condition

Re〈f(x), x〉 ≥ 0, x ∈ ∂D(∗)′)

385



386 Simeon Reich and David Shoikhet

when f has a continuous extension to D̄. The difficulty is, of course, the
presence of the derivative in (AC) (or (AC)′), which generally speaking may
be unbounded (consider, for example, f(x) = x− 1 +

√
1− x). Observe that

when n = 1, condition (∗)′ can be written in the form

Re
(
F (x)− F (0)

x

)
≤ 1− Re(F (0)x), x ∈ ∂∆,

where F (x) := x− f(x), x ∈ ∆̄. Since both the left and the right hand sides
of the last inequality are harmonic functions, it continues to hold throughout
∆̄. Multiplying now by |x|2 and returning to f = I − F , we obtain

Re(f(x)x̄) ≥ Re(f(0)x̄)(1− |x|2), x ∈ ∆̄.(∗∗)

As a matter of fact, as we will see below, this condition (with x ∈ ∆) char-
acterizes holomorphic generators on ∆ even when f is not assumed to have a
continuous extension to ∆̄.

In another direction, a careful study of the notion of monotonicity in the
hyperbolic sense has led us [14] to conclude that a bounded holomorphic map-
ping f on the open unit ball B of a complex Hilbert space H is a generator if
and only if

Re〈x, f(x)〉
1− ‖x‖2

+
Re〈y, f(y)〉

1− ‖y‖2
≥ Re

〈f(x), y〉+ 〈x, f(y)〉
1− 〈x, y〉

for all x and y in B.
Setting y = 0 we obtain the condition

Re〈f(x), x〉 ≥ Re〈f(0), x〉(1− ‖x‖2), x ∈ B,(∗∗)′)

which reduces to (∗∗) in the one-dimensional case. Actually, it turns out that
(∗∗)′ is also sufficient for f to be a generator. However, once again a crucial
point of the arguments in [14] is the smoothness of the hyperbolic metric on
B.

In the present paper we present an entirely different, but simple enough,
approach to derive an analogous condition to (∗∗)′ as a necessary and sufficient
condition for f to be a generator on any finite Cartesian product of Hilbert
balls.

Let X = Hn be the Cartesian product of n copies of a complex Hilbert
space H, and let D be the open unit ball in X with the maximum norm, i.e.,
D = Bn, where B is the open unit ball in H. By Hol(D, D̃) we denote the
family of holomorphic mappings from D into a subset D̃ of X.
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We will say that f ∈ Hol(D,X) is a generator of a flow on D if for some
δ > 0 there is a continuous one-parameter semigroup Ft : [0, δ) → Hol(D,D)
such that the strong limit

lim
t→0+

x− Ft(x)
t

= f(x)(1)

exists for all x ∈ D.

Theorem 1. Let f ∈ Hol(D,X), where D = Bn and X = Hn.

1. If f is the generator of a flow on D, then it satisfies the following con-
dition for all x ∈ D and x∗ ∈ J(x) :

Re〈f(x), x∗〉 ≥ Re〈f(0), x∗〉(1− ‖x‖2).(2)

2. Conversely, if f is bounded on each subset strictly inside D, and for each
x ∈ D there is x∗ ∈ J(x) such that

Re〈f(x), x∗〉 ≥ Re〈f(0), x∗〉(1− ‖x‖2),(2)′)

then f is a generator of a flow on D.

Proof. Recall that for each b ∈ B we can define the Möbius transformation
Mb : B → B by

Mb(z) = (
√

1− ‖ b ‖2Qb + Pb)mb(z),

where

mb(z) =
z + b

1 + 〈z, b〉
, Pb(z) =

〈z, b〉b
‖b‖2

, and Qb = I − Pb.

(See, for example, [15] and [8].)
Let f be the generator of a flow Ft = (F 1

t , F
2
t , . . . , F

n
t ). For each t ≥ 0

we now consider the holomorphic mapping Gt = (G1
t , G

2
t , . . . , G

n
t ) : D → D,

D = Bn, defined by

Gk
t (x) := M−Fkt (0)(F k

t (x)), x ∈ D, 1 ≤ k ≤ n.

Note that since Gt(0) = 0, we have

‖Gt(x)‖ ≤ ‖x‖ , x ∈ D,(3)

by the Schwarz lemma.
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To differentiate Gt at the origin we calculate

lim
t→0+

1
t

(
xk −Gk

t (x)
)

= lim
t→0+

xk − 〈F k
t (x), F k

t (0)〉xk + F k
t (0)−

√
1− ‖F k

t (0)‖2F k
t (x)

t(1− 〈F k
t (x), F k

t (0)〉)

− lim
t→0+

(1−
√

1− ‖F k
t (0)‖2)〈F k

t (x), F k
t (0)〉F k

t (0)

t(1− 〈F k
t (x), F k

t (0)〉)‖F k
t (0)‖2

.

(4)

Since F k
t (0) → 0 and

(
1−
√

1−‖Fkt (0)‖2
)

‖Fkt (0)‖2 → 1
2 as t → 0+, the second limit in (4)

is zero, and

xk −
√

1− ‖F k
t (0)‖2 F k

t (x)

t
→ fk(x),

as t→ 0+.
Hence

gk(x) := lim
t→0+

1
t

(
xk −Gk

t (x)
)

= fk(x) + 〈xk, fk(0)〉xk − fk(0).(5)

By (3) we have, for any z ∈ J(x),

Re〈g(x), z〉 ≥ 0, x ∈ D,(6)

where g = (g1, g2, . . . , gn).
We observe now that for each x = (x1, x2, . . . , xn) ∈ Hn, z = (z1, z2, . . . , zn) ∈

J(x), and 1 ≤ k ≤ n,

zk = αkx
k, where 0 ≤ αk ≤ 1 and

n∑
k=1

αk = 1.

Moreover, if ‖xk‖ < ‖x‖ = max{‖xj‖ : 1 ≤ j ≤ n}, then αk = 0.
Therefore for each x ∈ D and z ∈ J(x),

0≤ Re〈g(x), z〉 = Re

(
n∑
k=1

〈gk(x), zk〉
)

= Re〈f(x), z〉+ Re

(
n∑
k=1

〈xk, fk(0)〉〈xk, zk〉
)
− Re

(
n∑
k=1

〈fk(0), zk〉
)

= Re〈f(x), z〉+
n∑
k=1

αkRe〈fk(0), xk〉(‖xk‖2 − 1)

= Re〈f(x), z〉+ (‖x‖2 − 1)Re〈f(0), z〉.
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This yields (2) and the first assertion of the theorem is proven.
Conversely, by Theorem 1.2 in [14] it is sufficient to prove that under

the assumptions of assertion 2, f ∈ Hol(D,X) satisfies the following range
condition:
For each r > 0 and for each y ∈ D, the equation

x+ rf(x) = y(7)

has a unique solution x ∈ D.
Indeed, fix r > 0 and y ∈ D, and consider the mapping G ∈ Hol(D,X)

defined by the formula

G(x) = y − rf(x).(8)

For each t ∈ (0, 1), ‖y‖ < s < 1, and x ∈ D with ‖x‖ = s, there exists by (2)′

a functional x∗ ∈ J(x) such that

Re〈x− tG(x), x∗〉= ‖x‖2 − tRe〈y, x∗〉+ trRe〈f(x), x∗〉

≥ s2 − ts‖y‖ − trs‖f(0)‖(1− s2)

= s2
[
1− t

(‖y‖
s

+
r‖f(0)‖(1− s2)

s

)]
.

If we choose now s close enough to 1, we obtain

‖x− tG(x)‖ ‖x‖ ≥ Re〈x− tG(x), x∗〉 ≥ ‖x‖2(1− tK),

with K =
‖ y ‖
s

+
r ‖ f(0) ‖ (1− s2)

s
< 1.

Hence it follows by Lemma 1 in [2] that G : D → X has a unique fixed point
x ∈ D.

This fixed point is the solution of the equation (7). This concludes the
proof of the theorem.

Combining this theorem with our results in [13] and [14] we deduce the
following results.

Corollary 1. Let D = Bn, and let f ∈ Hol(D,X) be bounded on each ball
strictly inside D. Then the following are equivalent:

(i) For each x ∈ D there exist x∗ ∈ J(x) and m ∈ R such that

Re〈f(x), x∗〉 ≥ m(1− ‖x‖2);
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(ii) For each x ∈ D and all x∗ ∈ J(x),

Re〈f(x), x∗〉 ≥ Re〈f(0), x∗〉(1− ‖x‖2);

(iii) For some δ > 0 there exists a continuous family Ft : [0, δ)→ Hol(D,D)
such that

lim
t→0+

1
t
(x− Ft(x)) = f(x)

for each x ∈ D;

(iv) The Cauchy problem (CP) has a unique solution on R+ for each x ∈ D;

(v) For each r > 0 the mapping Jr = (I + rf)−1 is well-defined on D and
belongs to Hol (D,D).

Corollary 2. Let D and f be as above and assume that f has a uniformly
continuous extension to D̄. Then the following assertions are equivalent:

(i) For each x ∈ ∂D there exists x∗ ∈ J(x) such that

Re〈f(x), x∗〉 ≥ 0;

(ii) For each x ∈ ∂D
inf

x∗∈J(x)
Re〈f(x), x∗〉 ≥ 0;

(iii) For each x ∈ ∂D, f satisfies the flow invariance condition (FIC):

lim
h→0+

1
h

dist(x− hf(x), D̄) = 0;

(iv) The mapping f generates a flow (one-parameter semigroup)
{Ft}t>0 ⊂ Hol (D,D).

Corollary 3. If D = Bn and f ∈ Hol(D,X) is a generator of a flow on
D, then the linear operator A = f ′(0) is accretive.

Proof. Let us represent f in the form

f(x) = f(0) +Ax+ h(x),

where lim
‖x‖→0

1
‖ x ‖

h(x) = 0. Then it follows by Theorem 1 that for x ∈ D,

Re〈f(x), x∗〉= Re〈f(0), x∗〉+ Re〈Ax, x∗〉+ Re〈h(x), x∗〉

≥ Re〈f(0), x∗〉(1− ‖x‖2)
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for all x∗ ∈ J(x). This yields the inequality

Re〈Ax, x∗〉 ≥ −Re
(
〈h(x), x∗〉+ ‖x‖2〈f(0), x∗〉

)
.

Let now y ∈ ∂D be arbitrary and set x = ty, 0 < t < 1. The last inequality
implies

t2Re〈Ay, y∗〉 ≥ −Re
(
〈h(ty), ty∗〉+ t3〈f(0), y∗〉

)
.

Hence for 0 < t < 1,

Re〈Ay, y∗〉 ≥ −Re
(
〈1
t
h(ty), y∗〉+ t〈f(0), y∗〉

)
.

But the right hand side of this inequality converges to zero as t→ 0+.
It follows that for each y with ‖ y ‖= 1 and each y∗ ∈ J(y),

Re〈Ay, y∗〉 ≥ 0.

In other words, A is an accretive linear operator.

Returning now to the existence of null points, we consider for simplicity
only the case n = 2.

Theorem 2. Let B be the open unit ball in a complex Hilbert space H,
and let D = B2. Suppose that a bounded f ∈ Hol(D,H2) has a uniformly
continuous extension to D̄. If for each x ∈ ∂D there exists x∗ ∈ J(x) such
that

Re〈f(x), x∗〉 ≥ 0,(9)

then f has a null point in D̄.

For the proof we need the following lemmata.

Lemma 1. Let B be the open unit ball in a complex Hilbert space H,
and let Ω be a domain in a complex reflexive Banach space X. Suppose that
g : B × Ω → H is a bounded holomorphic mapping such that for each λ ∈ Ω
the mapping g(·, λ) has a uniformly continuous extension to B̄ and satisfies
the condition

Re〈g(x, λ), x〉 ≥ 0, x ∈ ∂B.(10)

Then
1) The equation
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g(x, λ) = 0(11)

has a holomorphic solution x : Ω→ B̄;
2) If for some λ0 ∈ Ω the equation

g(x, λ0) = 0

has no solution on ∂B, then for each λ ∈ Ω, equation (11) has a unique
solution x = x(λ) in B.

This lemma can be obtained by combining Theorem 8.1 of [13] with The-
orem 2 of [2]. For information on the hyperbolic metric, see, for example, [8,
p. 98].

Lemma 2. Let ρ(·, ·) be the hyperbolic metric on the open unit ball B of
a complex Hilbert space H. Let {zn} and {wn} be two sequences in B such
that {zn} converges to e ∈ ∂B as n → ∞, and for some sequence tn ∈ (0, 1),
tn → 1−, the following condition holds for all n ∈ N :

ρ

(
1
tn
zn, wn

)
≤ ρ(zn, wn).(12)

Then {wn} converges to e as n→∞.

Proof. It is not difficult to see that if there exists a subsequence of
{〈zn, wn〉} which does not converge to 1, then condition (12) leads to a con-
tradiction. Therefore {〈zn, wn〉} → 1, and {zn − wn} → 0 as n→∞.

Proof of Theorem 2. Let f = (f1, f2), where each fi : B2 → H, i = 1, 2,
is a bounded holomorphic mapping on B2 which is uniformly continuous on
B2. It follows from condition (9) that for each fixed x2 ∈ B and for each fixed
x1 ∈ B, the mappings f1(·, x2) and f2(x1, ·) satisfy the boundary conditions

Re〈f1(x1, x2), x1〉 ≥ 0, x1 ∈ ∂B, x2 ∈ B,(13)

and

Re〈f2(x1, x2), x2〉 ≥ 0, x2 ∈ ∂B, x1 ∈ B.(14)

Lemma 1 and condition (13) imply that for each x2 ∈ B, the mapping
f1(·, x2) has a null point x1 = ϕ(x2) in B̄. If for some x2 ∈ B, f1(·, x2) has no
null point in B, then it has no null point in B for all x2 ∈ B, and therefore
the function x1 = ϕ(x2) is a constant e1 ∈ ∂B by the maximum principle. In
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other words, f1(e1, x2) ≡ 0 for all x2 ∈ B. But by (14) and continuity, the
mapping f2(e1, ·) : B̄ → H has a null point e2 ∈ B̄ and therefore e = (e1, e2)
is a null point of f = (f1, f2).

Thus we can suppose that for at least one x2 ∈ B and hence for all x2 ∈ B,
the mapping f1(·, x2) has a null point x1 = ϕ(x2) in B. In addition we can
assume that f2(x1, ·) has a null point x2 = ψ(x1) ∈ B, since otherwise the
same considerations as above yield the result. Thus we arrive at the following
system: {

f1(ϕ(x2), x2) = 0, x2 ∈ B,
f2(x1, ψ(x1)) = 0, x1 ∈ B,

(15)

where ϕ(·) and ψ(·) are holomorphic self-mappings of B.
We now claim that the equations

x1 − J1(x1, x2) = f1(J1(x1, x2), x2),

x2 − J2(x1, x2) = f2(x1, J2(x1, x2))
(16)

have unique holomorphic solutions Ji(·, ·) : B2 → B, i = 1, 2. To see this,
consider the mappings gi : B ×B2 → H defined by the formulas

g1(y, x1, x2) := y + f1(y, x2)− x1,

g2(y, x1, x2) := y + f2(x1, y)− x2,

where y ∈ B. Setting in Lemma 1, B2 = Ω and λ = (x1, x2) ∈ B2, we see
that the mappings gi(·, λ), i = 1, 2, have uniformly continuous extensions to
B̄, and therefore we have by (13) and (14),

Re〈gi(y, λ), y〉 ≥ 1− ‖xi‖ , y ∈ ∂B, i = 1, 2.

Thus assertion (2) of Lemma 1 implies the existence and uniqueness of
holomorphic solutions y = Ji(x1, x2), i = 1, 2, to the equations gi(y, λ) =
0, i = 1, 2, which are equivalent to (16). In addition, the uniqueness of
Ji : B2 → B, i = 1, 2, and (15) imply that the mappings ϕ(·) and ψ(·)
satisfy the following equations:

ϕ(x2) = J1(ϕ(x2), x2),

ψ(x1) = J2(x1, ψ(x1)).
(17)

Now we consider the holomorphic mappings Fi : B → B, i = 1, 2, defined as
follows:

F1 := J1(·, ψ(·)),

F2 := J2(ϕ(·), ·).
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Suppose that one of them, say F1, has a fixed point z ∈ B. That is, z =
J1(z, ψ(z)) and ψ(z) = J2(z, ψ(z)) by (17). Hence it follows from (16) that
the point (z, ψ(z)) ∈ B2 is a null point of f = (f1, f2).

Finally, assume that neither F1 nor F2 has a fixed point in B. In this case,
it is known (see [8]) that the approximating curves

z(t) = tF1(z(t))

and
w(t) = tF2(w(t))

converge as t→ 1− to points a and b, respectively, on ∂B. If ρ is the hyperbolic
metric on B, then we have

ρ

(
1
t
z(t), ϕ(w(t)

)
= ρ(F1(z(t)), ϕ(w(t)))

= ρ(J1(z(t), ψ(z(t))), ϕ(w(t)))

= ρ(J1(z(t), ψ(z(t))), J1(ϕ(w(t)), w(t)))

≤ max{ρ(z(t), ϕ(w(t))); ρ(ψ(z(t)), w(t))} = m(t).

(18)

In a similar way we also get

ρ

(
1
t
w(t), ψ(z(t))

)
≤ m(t).(19)

Suppose that there is a sequence tn → 1− such thatm(tn) = ρ(z(tn), ϕ(w(tn))).
By Lemma 2, we have ϕ(w(tn))→ a strongly and hence f1(a, b) = limn→∞ f1(ϕ(w(tn)),
w(tn)) = 0 by (15). To show that f2(a, b) = 0 we use (16) and the following
simple calculations:

f2(a, b)= lim
n→∞

f2(ϕ(w(tn)),
1
tn
w(tn))

= lim
n→∞

f2(ϕ(w(tn)), J2(ϕ(w(tn)), w(tn)))

= lim
n→∞

[w(tn)− J2(ϕ(w(tn)), w(tn))]

= lim
n→∞

(tn − 1)J2(ϕ(w(tn)), w(tn)) = 0.

If, on the other hand, there is a sequence tn → 1− such that m(tn) =
ρ(ψ(z(tn)), w(tn)), then we can use (18), and once again the same arguments
as above show that f(a, b) = (f1(a, b), f2(a, b)) = (0, 0) ∈ H2. This concludes
the proof of Theorem 2.
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