TAIWANESE JOURNAL OF MATHEMATICS Vol. 2, No. 4, pp. 383-396, December 1998

A CHARACTERIZATION OF HOLOMORPHIC GENERATORS ON THE CARTESIAN PRODUCT OF HILBERT BALLS

Simeon Reich and David Shoikhet

Abstract. We present a necessary and sufficient condition for a holomorphic mapping to be a generator of a flow on any finite Cartesian product of Hilbert balls. A related null point theorem is also established.

Let X be a Banach space and let X^* be its dual. For a point $x \in X$ and a functional $x^* \in X$ we use the pairing $\langle x, x^* \rangle$ to denote $x^*(x)$. The duality mapping $J: X \to 2^{X^*}$ is defined by

$$J(x) := \{ x^* \in X^* : \operatorname{Re}\langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2 \}$$

for each $x \in X$.

In particular, if X = H is a Hilbert space, then $\langle \cdot, \cdot \rangle$ is the inner product in H and $J: H \to H$ is the identity mapping. Let now D be the open unit ball in X, and let $C(\bar{D}, X)$ denote the class of continuous mappings from \bar{D} into X. Suppose that f belongs to $C(\bar{D}, X)$ and satisfies the following boundary condition:

(*)
$$\inf_{x^* \in J(x)} \operatorname{Re}\langle f(x), x^* \rangle \ge 0,$$

for each $x \in \partial D$.

Following [10] we call this condition a "one-sided estimate". We recall that such estimates have been systematically used in many areas of analysis, e.g., boundary value problems ([9], [5], [16]), nonlinear integral equations [6], and monotone operator theory [4]. For an extension of condition (*) to topological vector spaces, with applications, we refer the reader to a paper by Fan [7].

Communicated by S.-Y. Shaw.

Received August 26, 1997; revised December 2, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 34G20, 46G20, 47H15, 47H20, 58C10.

Key words and phrases: Cauchy problem, flow, generator, Hilbert ball, holomorphic mapping, null point.

If D = B is the open unit ball in a Hilbert space H, and $f : B \to H$ is a completely continuous vector field on \overline{B} (i.e. $f \in C(\overline{B}, X)$ and I - fis compact), then by Krasnoselskii's theorem [9] condition (*) implies the existence of a null point of f in \overline{B} . As a matter of fact, this also follows from the Leray-Schauder Theorem because the mapping I - f is compact.

A similar assertion was proved by Shinbrot [16] under the assumptions that f is weakly continuous and H is separable. This result was applied by him to a class of quasi-linear partial differential equations and to Navier-Stokes equations.

Suppose now that H is complex and that $f: B \to H$ is a holomorphic mapping in B. As we proved in [2], the compactness condition in this case can be replaced by the condition of uniform continuity of f on \overline{B} . However, examples show (see [2]) that such an assertion is no longer true for every Banach space. Nevertheless, we will show in the sequel that Theorem 2 in [2] can be generalized to the case when X is the Cartesian product of complex Hilbert spaces with the maximum norm. The key to the solution of such a problem is the following observation related to another issue, namely evolution equations and a characterization of infinitesimal holomorphic generators.

First we note that if D is a ball in a Banach space X and $f \in C(D, X)$, then condition (*) is equivalent to the following "flow invariance condition":

(FIC)
$$\lim_{h \to 0^+} \frac{\operatorname{dist}(x - hf(x), D)}{h} = 0$$

(see [12]).

If we now suppose that f satisfies the condition:

For some $\delta > 0$ there exists a continuous family $F_t : [0, \delta) \to C(\overline{D}, X)$, $F_t(\overline{D}) \subset \overline{D}, t \in [0, \delta)$, such that for each $x \in D$,

$$f(x) = \lim_{t \to 0^+} \frac{x - F_t(x)}{t},$$

then it is clear that f satisfies (FIC) and hence the one-sided estimate (*). This happens, in particular, if f is a strong generator of a one-parameter semigroup.

The converse assertion, generally speaking, is not clear. Usually, its validity can be ensured by additional conditions, such as accretivity (see, for example, [11]).

If X is complex and f is holomorphic in D and uniformly continuous on \overline{D} , then condition (*) is equivalent to the assumption that f is an infinitesimal generator inside D (see [2]).

Thus the existence of an interior null point of f under the condition (*) or (FIC) is equivalent in this case to the existence of a stationary point of the flow $\{F_t\}, t > 0$, defined by the Cauchy problem:

(CP)
$$\begin{cases} \frac{dF_t(x)}{dt} + f(F_t(x)) = 0, \quad t > 0, \\ \lim_{t \to 0^+} F_t(x) = x \end{cases}$$

(see [13]).

The following question now arises: Are there interior characterizations of f to be a generator on the open unit ball D such that if f has a continuous extension to \overline{D} one can derive condition (*) (or (FIC))? For the one-dimensional case an implicit characterization of f to be an infinitesimal generator of a oneparameter semigroup of holomorphic self-mappings in $D = \Delta$ (the unit disk in \mathbb{C}) was obtained by E. Berkson and H. Porta [3]. They proved the following assertion.

Let $f : \Delta \to \mathbb{C}$ be a holomorphic mapping in Δ . Then the Cauchy problem (CP) has a global solution on $\mathbb{R}^+ = (0, \infty)$ if and only if f admits the representation:

(BPC)
$$f(x) = (y - x)(\bar{y}x - 1)g(x)$$

for some $y \in \overline{\Delta}$ and for some holomorphic mapping $g : \Delta \to \mathbb{C}$ with Re $g(x) \ge 0$ for all $x \in \Delta$.

This characterization was used in [3] to study semi-groups of composition operators on Hardy spaces of the unit disk. Recently M. Abate [1] established a different characterization of holomorphic generators on the open unit ball B of \mathbb{C}^n with the Euclidean norm (i.e., a finite-dimensional Hilbert space) by using the differentiability (in this case) of the Kobayashi metric. In our setting his characterization of $f: B \to \mathbb{C}^n$ to be a generator has the form

(AC)
$$2[\parallel g(x) \parallel^2 - |\langle g(x), x \rangle|^2] \operatorname{Re}\langle g(x), x \rangle + (1 - \|x\|^2)^2 \operatorname{Re}\langle f'(x)f(x), g(x) \rangle \ge 0,$$

where $g(x) = (1 - ||x||^2)f(x) + \langle f(x), x \rangle x$.

In particular, if n = 1, (AC) becomes

(AC)')
$$\operatorname{Re} f(x)\bar{x} \ge -\frac{1}{2}\operatorname{Re} f'(x)(1-|x|^2), \quad x \in \Delta.$$

It was also shown in [1] how to deduce (BPC) from (AC)' and conversely. However, a deficiency of these conditions is that it is not clear how to derive the condition

when f has a continuous extension to \overline{D} . The difficulty is, of course, the presence of the derivative in (AC) (or (AC)'), which generally speaking may be unbounded (consider, for example, $f(x) = x - 1 + \sqrt{1-x}$). Observe that when n = 1, condition (*)' can be written in the form

$$\operatorname{Re}\left(\frac{F(x) - F(0)}{x}\right) \le 1 - \operatorname{Re}(\overline{F(0)}x), \quad x \in \partial\Delta,$$

where F(x) := x - f(x), $x \in \overline{\Delta}$. Since both the left and the right hand sides of the last inequality are harmonic functions, it continues to hold throughout $\overline{\Delta}$. Multiplying now by $|x|^2$ and returning to f = I - F, we obtain

(**)
$$\operatorname{Re}(f(x)\overline{x}) \ge \operatorname{Re}(f(0)\overline{x})(1-|x|^2), \quad x \in \overline{\Delta}.$$

As a matter of fact, as we will see below, this condition (with $x \in \Delta$) characterizes holomorphic generators on Δ even when f is not assumed to have a continuous extension to $\overline{\Delta}$.

In another direction, a careful study of the notion of monotonicity in the hyperbolic sense has led us [14] to conclude that a bounded holomorphic mapping f on the open unit ball B of a complex Hilbert space H is a generator if and only if

$$\frac{\operatorname{Re}\langle x, f(x)\rangle}{1 - \|x\|^2} + \frac{\operatorname{Re}\langle y, f(y)\rangle}{1 - \|y\|^2} \ge \operatorname{Re}\frac{\langle f(x), y\rangle + \langle x, f(y)\rangle}{1 - \langle x, y\rangle}$$

for all x and y in B.

Setting y = 0 we obtain the condition

$$(**)') \qquad \qquad \operatorname{Re}\langle f(x), x \rangle \ge \operatorname{Re}\langle f(0), x \rangle (1 - \|x\|^2), \ x \in B,$$

which reduces to (**) in the one-dimensional case. Actually, it turns out that (**)' is also sufficient for f to be a generator. However, once again a crucial point of the arguments in [14] is the smoothness of the hyperbolic metric on B.

In the present paper we present an entirely different, but simple enough, approach to derive an analogous condition to (**)' as a necessary and sufficient condition for f to be a generator on any finite Cartesian product of Hilbert balls.

Let $X = H^n$ be the Cartesian product of n copies of a complex Hilbert space H, and let D be the open unit ball in X with the maximum norm, i.e., $D = B^n$, where B is the open unit ball in H. By $\operatorname{Hol}(D, \tilde{D})$ we denote the family of holomorphic mappings from D into a subset \tilde{D} of X.

We will say that $f \in \operatorname{Hol}(D, X)$ is a generator of a flow on D if for some $\delta > 0$ there is a continuous one-parameter semigroup $F_t : [0, \delta) \to \operatorname{Hol}(D, D)$ such that the strong limit

(1)
$$\lim_{t \to 0^+} \frac{x - F_t(x)}{t} = f(x)$$

exists for all $x \in D$.

Theorem 1. Let $f \in Hol(D, X)$, where $D = B^n$ and $X = H^n$.

1. If f is the generator of a flow on D, then it satisfies the following condition for all $x \in D$ and $x^* \in J(x)$:

(2)
$$\operatorname{Re}\langle f(x), x^* \rangle \ge \operatorname{Re}\langle f(0), x^* \rangle (1 - \|x\|^2).$$

2. Conversely, if f is bounded on each subset strictly inside D, and for each $x \in D$ there is $x^* \in J(x)$ such that

(2)')
$$\operatorname{Re}\langle f(x), x^* \rangle \ge \operatorname{Re}\langle f(0), x^* \rangle (1 - \|x\|^2),$$

then f is a generator of a flow on D.

Proof. Recall that for each $b \in B$ we can define the Möbius transformation $M_b: B \to B$ by

$$M_b(z) = (\sqrt{1 - \|b\|^2 Q_b} + P_b) m_b(z),$$

where

$$m_b(z) = \frac{z+b}{1+\langle z,b \rangle}, \ P_b(z) = \frac{\langle z,b \rangle b}{\|b\|^2}, \ \text{and} \ Q_b = I - P_b.$$

(See, for example, [15] and [8].)

Let f be the generator of a flow $F_t = (F_t^1, F_t^2, \dots, F_t^n)$. For each $t \ge 0$ we now consider the holomorphic mapping $G_t = (G_t^1, G_t^2, \dots, G_t^n) : D \to D$, $D = B^n$, defined by

$$G_t^k(x) := M_{-F_t^k(0)}(F_t^k(x)), \ x \in D, \ 1 \le k \le n.$$

Note that since $G_t(0) = 0$, we have

(3)
$$||G_t(x)|| \leq ||x||, x \in D,$$

by the Schwarz lemma.

To differentiate G_t at the origin we calculate

$$(4) \qquad \lim_{t \to 0^+} \frac{1}{t} \left(x^k - G_t^k(x) \right) \\ (4) \qquad = \lim_{t \to 0^+} \frac{x^k - \langle F_t^k(x), F_t^k(0) \rangle x^k + F_t^k(0) - \sqrt{1 - \|F_t^k(0)\|^2} F_t^k(x)}{t(1 - \langle F_t^k(x), F_t^k(0) \rangle)} \\ - \lim_{t \to 0^+} \frac{(1 - \sqrt{1 - \|F_t^k(0)\|^2}) \langle F_t^k(x), F_t^k(0) \rangle F_t^k(0)}{t(1 - \langle F_t^k(x), F_t^k(0) \rangle) \|F_t^k(0)\|^2}.$$

Since $F_t^k(0) \to 0$ and $\frac{\left(1 - \sqrt{1 - \|F_t^k(0)\|^2}\right)}{\|F_t^k(0)\|^2} \to \frac{1}{2}$ as $t \to 0^+$, the second limit in (4) is zero, and

$$\frac{x^k - \sqrt{1 - \|F_t^k(0)\|^2} \ F_t^k(x)}{t} \to f^k(x),$$

as $t \to 0+$.

Hence

(5)
$$g^k(x) := \lim_{t \to 0^+} \frac{1}{t} \left(x^k - G^k_t(x) \right) = f^k(x) + \langle x^k, f^k(0) \rangle x^k - f^k(0).$$

By (3) we have, for any $z \in J(x)$,

(6)
$$\operatorname{Re}\langle g(x), z \rangle \ge 0, \quad x \in D,$$

where $g = (g^1, g^2, ..., g^n)$.

We observe now that for each $x = (x^1, x^2, \dots, x^n) \in H^n$, $z = (z^1, z^2, \dots, z^n) \in J(x)$, and $1 \le k \le n$,

$$z^k = \alpha_k x^k$$
, where $0 \le \alpha_k \le 1$ and $\sum_{k=1}^n \alpha_k = 1$.

Moreover, if $||x^k|| < ||x|| = \max\{||x^j|| : 1 \le j \le n\}$, then $\alpha_k = 0$. Therefore for each $x \in D$ and $z \in J(x)$,

$$0 \leq \operatorname{Re}\langle g(x), z \rangle = \operatorname{Re}\left(\sum_{k=1}^{n} \langle g^{k}(x), z^{k} \rangle\right)$$
$$= \operatorname{Re}\langle f(x), z \rangle + \operatorname{Re}\left(\sum_{k=1}^{n} \langle x^{k}, f^{k}(0) \rangle \langle x^{k}, z^{k} \rangle\right) - \operatorname{Re}\left(\sum_{k=1}^{n} \langle f^{k}(0), z^{k} \rangle\right)$$
$$= \operatorname{Re}\langle f(x), z \rangle + \sum_{k=1}^{n} \alpha_{k} \operatorname{Re}\langle f^{k}(0), x^{k} \rangle (\|x^{k}\|^{2} - 1)$$
$$= \operatorname{Re}\langle f(x), z \rangle + (\|x\|^{2} - 1) \operatorname{Re}\langle f(0), z \rangle.$$

This yields (2) and the first assertion of the theorem is proven.

Conversely, by Theorem 1.2 in [14] it is sufficient to prove that under the assumptions of assertion 2, $f \in Hol(D, X)$ satisfies the following range condition:

For each r > 0 and for each $y \in D$, the equation

$$(7) x + rf(x) = y$$

has a unique solution $x \in D$.

Indeed, fix r > 0 and $y \in D$, and consider the mapping $G \in Hol(D, X)$ defined by the formula

(8)
$$G(x) = y - rf(x).$$

For each $t \in (0, 1)$, ||y|| < s < 1, and $x \in D$ with ||x|| = s, there exists by (2)' a functional $x^* \in J(x)$ such that

$$\begin{aligned} \operatorname{Re}\langle x - tG(x), x^* \rangle &= \|x\|^2 - t\operatorname{Re}\langle y, x^* \rangle + tr\operatorname{Re}\langle f(x), x^* \rangle \\ &\geq s^2 - ts\|y\| - trs\|f(0)\|(1 - s^2) \\ &= s^2 \left[1 - t \left(\frac{\|y\|}{s} + \frac{r\|f(0)\|(1 - s^2)}{s} \right) \right]. \end{aligned}$$

If we choose now s close enough to 1, we obtain

$$\begin{aligned} \|x - tG(x)\| \ \|x\| \ &\geq \operatorname{Re}\langle x - tG(x), x^* \rangle \ &\geq \ \|x\|^2 (1 - tK), \\ \text{with} \ \ K = \frac{\|y\|}{s} + \frac{r \|f(0)\| (1 - s^2)}{s} < 1. \end{aligned}$$

Hence it follows by Lemma 1 in [2] that $G: D \to X$ has a unique fixed point $x \in D$.

This fixed point is the solution of the equation (7). This concludes the proof of the theorem. \blacksquare

Combining this theorem with our results in [13] and [14] we deduce the following results.

Corollary 1. Let $D = B^n$, and let $f \in Hol(D, X)$ be bounded on each ball strictly inside D. Then the following are equivalent:

(i) For each $x \in D$ there exist $x^* \in J(x)$ and $m \in R$ such that

$$\operatorname{Re}\langle f(x), x^* \rangle \ge m(1 - \|x\|^2);$$

(ii) For each $x \in D$ and all $x^* \in J(x)$,

 $\operatorname{Re}\langle f(x), x^* \rangle \ge \operatorname{Re}\langle f(0), x^* \rangle (1 - \|x\|^2);$

(iii) For some $\delta > 0$ there exists a continuous family $F_t : [0, \delta) \to \operatorname{Hol}(D, D)$ such that

$$\lim_{t \to 0^+} \frac{1}{t} (x - F_t(x)) = f(x)$$

for each $x \in D$;

- (iv) The Cauchy problem (CP) has a unique solution on \mathbb{R}^+ for each $x \in D$;
- (v) For each r > 0 the mapping $J_r = (I + rf)^{-1}$ is well-defined on D and belongs to Hol (D, D).

Corollary 2. Let D and f be as above and assume that f has a uniformly continuous extension to \overline{D} . Then the following assertions are equivalent:

(i) For each $x \in \partial D$ there exists $x^* \in J(x)$ such that

$$\operatorname{Re}\langle f(x), x^* \rangle \ge 0;$$

(ii) For each $x \in \partial D$

$$\inf_{x^*\in J(x)} \operatorname{Re}\langle f(x), x^*\rangle \geq 0;$$

(iii) For each $x \in \partial D$, f satisfies the flow invariance condition (FIC):

$$\lim_{h \to 0^+} \frac{1}{h} \operatorname{dist}(x - hf(x), \ \bar{D}) = 0;$$

(iv) The mapping f generates a flow (one-parameter semigroup) $\{F_t\}_{t>0} \subset \operatorname{Hol}(D, D).$

Corollary 3. If $D = B^n$ and $f \in Hol(D, X)$ is a generator of a flow on D, then the linear operator A = f'(0) is accretive.

Proof. Let us represent f in the form

$$f(x) = f(0) + Ax + h(x),$$

where $\lim_{\|x\|\to 0} \frac{1}{\|x\|} h(x) = 0$. Then it follows by Theorem 1 that for $x \in D$,

$$\begin{aligned} \operatorname{Re}\langle f(x), x^* \rangle &= \operatorname{Re}\langle f(0), x^* \rangle + \operatorname{Re}\langle Ax, x^* \rangle + \operatorname{Re}\langle h(x), x^* \rangle \\ &\geq \operatorname{Re}\langle f(0), x^* \rangle (1 - \|x\|^2) \end{aligned}$$

for all $x^* \in J(x)$. This yields the inequality

$$\operatorname{Re}\langle Ax, x^* \rangle \ge -\operatorname{Re}\left(\langle h(x), x^* \rangle + \|x\|^2 \langle f(0), x^* \rangle\right).$$

Let now $y \in \partial D$ be arbitrary and set x = ty, 0 < t < 1. The last inequality implies

$$t^{2}\operatorname{Re}\langle Ay, y^{*}\rangle \geq -\operatorname{Re}\left(\langle h(ty), ty^{*}\rangle + t^{3}\langle f(0), y^{*}\rangle\right).$$

Hence for 0 < t < 1,

$$\operatorname{Re}\langle Ay,y^*\rangle \geq -\operatorname{Re}\left(\langle \frac{1}{t}h(ty),y^*\rangle + t\langle f(0),y^*\rangle\right).$$

But the right hand side of this inequality converges to zero as $t \to 0^+$.

It follows that for each y with ||y|| = 1 and each $y^* \in J(y)$,

$$\operatorname{Re}\langle Ay, y^* \rangle \ge 0.$$

In other words, A is an accretive linear operator.

Returning now to the existence of null points, we consider for simplicity only the case n = 2.

Theorem 2. Let B be the open unit ball in a complex Hilbert space H, and let $D = B^2$. Suppose that a bounded $f \in Hol(D, H^2)$ has a uniformly continuous extension to \overline{D} . If for each $x \in \partial D$ there exists $x^* \in J(x)$ such that

(9)
$$\operatorname{Re}\langle f(x), x^* \rangle \ge 0,$$

then f has a null point in \overline{D} .

For the proof we need the following lemmata.

Lemma 1. Let B be the open unit ball in a complex Hilbert space H, and let Ω be a domain in a complex reflexive Banach space X. Suppose that $g: B \times \Omega \to H$ is a bounded holomorphic mapping such that for each $\lambda \in \Omega$ the mapping $g(\cdot, \lambda)$ has a uniformly continuous extension to \overline{B} and satisfies the condition

(10)
$$\operatorname{Re}\langle g(x,\lambda), x \rangle \ge 0, \quad x \in \partial B.$$

Then

1) The equation

Simeon Reich and David Shoikhet

(11)
$$g(x,\lambda) = 0$$

has a holomorphic solution $x: \Omega \to \overline{B}$;

2) If for some $\lambda_0 \in \Omega$ the equation

$$g(x,\lambda_0) = 0$$

has no solution on ∂B , then for each $\lambda \in \Omega$, equation (11) has a unique solution $x = x(\lambda)$ in B.

This lemma can be obtained by combining Theorem 8.1 of [13] with Theorem 2 of [2]. For information on the hyperbolic metric, see, for example, [8, p. 98].

Lemma 2. Let $\rho(\cdot, \cdot)$ be the hyperbolic metric on the open unit ball B of a complex Hilbert space H. Let $\{z_n\}$ and $\{w_n\}$ be two sequences in B such that $\{z_n\}$ converges to $e \in \partial B$ as $n \to \infty$, and for some sequence $t_n \in (0, 1)$, $t_n \to 1-$, the following condition holds for all $n \in N$:

(12)
$$\rho\left(\frac{1}{t_n}z_n, w_n\right) \le \rho(z_n, w_n).$$

Then $\{w_n\}$ converges to e as $n \to \infty$.

Proof. It is not difficult to see that if there exists a subsequence of $\{\langle z_n, w_n \rangle\}$ which does not converge to 1, then condition (12) leads to a contradiction. Therefore $\{\langle z_n, w_n \rangle\} \to 1$, and $\{z_n - w_n\} \to 0$ as $n \to \infty$.

Proof of Theorem 2. Let $f = (f_1, f_2)$, where each $f_i : B^2 \to H$, i = 1, 2, is a bounded holomorphic mapping on B^2 which is uniformly continuous on $\overline{B^2}$. It follows from condition (9) that for each fixed $x_2 \in B$ and for each fixed $x_1 \in B$, the mappings $f_1(\cdot, x_2)$ and $f_2(x_1, \cdot)$ satisfy the boundary conditions

(13)
$$\operatorname{Re}\langle f_1(x_1, x_2), x_1 \rangle \ge 0, \quad x_1 \in \partial B, \ x_2 \in B,$$

and

(14)
$$\operatorname{Re}\langle f_2(x_1, x_2), x_2 \rangle \ge 0, \quad x_2 \in \partial B, \ x_1 \in B.$$

Lemma 1 and condition (13) imply that for each $x_2 \in B$, the mapping $f_1(\cdot, x_2)$ has a null point $x_1 = \varphi(x_2)$ in \overline{B} . If for some $x_2 \in B$, $f_1(\cdot, x_2)$ has no null point in B, then it has no null point in B for all $x_2 \in B$, and therefore the function $x_1 = \varphi(x_2)$ is a constant $e_1 \in \partial B$ by the maximum principle. In

other words, $f_1(e_1, x_2) \equiv 0$ for all $x_2 \in B$. But by (14) and continuity, the mapping $f_2(e_1, \cdot) : \overline{B} \to H$ has a null point $e_2 \in \overline{B}$ and therefore $e = (e_1, e_2)$ is a null point of $f = (f_1, f_2)$.

Thus we can suppose that for at least one $x_2 \in B$ and hence for all $x_2 \in B$, the mapping $f_1(\cdot, x_2)$ has a null point $x_1 = \varphi(x_2)$ in B. In addition we can assume that $f_2(x_1, \cdot)$ has a null point $x_2 = \psi(x_1) \in B$, since otherwise the same considerations as above yield the result. Thus we arrive at the following system:

(15)
$$\begin{cases} f_1(\varphi(x_2), x_2) = 0, & x_2 \in B, \\ f_2(x_1, \psi(x_1)) = 0, & x_1 \in B, \end{cases}$$

where $\varphi(\cdot)$ and $\psi(\cdot)$ are holomorphic self-mappings of B.

We now claim that the equations

(16)
$$\begin{aligned} x_1 - J_1(x_1, x_2) &= f_1(J_1(x_1, x_2), x_2), \\ x_2 - J_2(x_1, x_2) &= f_2(x_1, J_2(x_1, x_2)) \end{aligned}$$

have unique holomorphic solutions $J_i(\cdot, \cdot) : B^2 \to B$, i = 1, 2. To see this, consider the mappings $g_i : B \times B^2 \to H$ defined by the formulas

$$g_1(y, x_1, x_2) := y + f_1(y, x_2) - x_1,$$

$$g_2(y, x_1, x_2) := y + f_2(x_1, y) - x_2,$$

where $y \in B$. Setting in Lemma 1, $B^2 = \Omega$ and $\lambda = (x_1, x_2) \in B^2$, we see that the mappings $g_i(\cdot, \lambda)$, i = 1, 2, have uniformly continuous extensions to \overline{B} , and therefore we have by (13) and (14),

$$\operatorname{Re}\langle g_i(y,\lambda), y \rangle \ge 1 - ||x_i||, y \in \partial B, i = 1, 2.$$

Thus assertion (2) of Lemma 1 implies the existence and uniqueness of holomorphic solutions $y = J_i(x_1, x_2)$, i = 1, 2, to the equations $g_i(y, \lambda) =$ 0, i = 1, 2, which are equivalent to (16). In addition, the uniqueness of $J_i : B^2 \to B, i = 1, 2$, and (15) imply that the mappings $\varphi(\cdot)$ and $\psi(\cdot)$ satisfy the following equations:

(17)
$$\begin{aligned} \varphi(x_2) &= J_1(\varphi(x_2), x_2), \\ \psi(x_1) &= J_2(x_1, \psi(x_1)). \end{aligned}$$

Now we consider the holomorphic mappings $F_i: B \to B, i = 1, 2$, defined as follows:

$$F_1 := J_1(\cdot, \psi(\cdot)),$$

$$F_2 := J_2(\varphi(\cdot), \cdot).$$

Suppose that one of them, say F_1 , has a fixed point $z \in B$. That is, $z = J_1(z, \psi(z))$ and $\psi(z) = J_2(z, \psi(z))$ by (17). Hence it follows from (16) that the point $(z, \psi(z)) \in B_2$ is a null point of $f = (f_1, f_2)$.

Finally, assume that neither F_1 nor F_2 has a fixed point in B. In this case, it is known (see [8]) that the approximating curves

$$z(t) = tF_1(z(t))$$

and

$$w(t) = tF_2(w(t))$$

converge as $t \to 1^-$ to points a and b, respectively, on ∂B . If ρ is the hyperbolic metric on B, then we have

$$\rho\left(\frac{1}{t}z(t),\varphi(w(t))\right) = \rho(F_1(z(t)),\varphi(w(t)))$$

$$= \rho(J_1(z(t),\psi(z(t))),\varphi(w(t)))$$

$$= \rho(J_1(z(t),\psi(z(t))),J_1(\varphi(w(t)),w(t)))$$

$$\leq \max\{\rho(z(t),\varphi(w(t)));\rho(\psi(z(t)),w(t))\} = m(t).$$

In a similar way we also get

(19)
$$\rho\left(\frac{1}{t}w(t),\psi(z(t))\right) \le m(t).$$

Suppose that there is a sequence $t_n \to 1^-$ such that $m(t_n) = \rho(z(t_n), \varphi(w(t_n)))$. By Lemma 2, we have $\varphi(w(t_n)) \to a$ strongly and hence $f_1(a, b) = \lim_{n\to\infty} f_1(\varphi(w(t_n)), w(t_n)) = 0$ by (15). To show that $f_2(a, b) = 0$ we use (16) and the following simple calculations:

$$f_2(a,b) = \lim_{n \to \infty} f_2(\varphi(w(t_n)), \frac{1}{t_n}w(t_n))$$

=
$$\lim_{n \to \infty} f_2(\varphi(w(t_n)), J_2(\varphi(w(t_n)), w(t_n)))$$

=
$$\lim_{n \to \infty} [w(t_n) - J_2(\varphi(w(t_n)), w(t_n))]$$

=
$$\lim_{n \to \infty} (t_n - 1)J_2(\varphi(w(t_n)), w(t_n)) = 0.$$

If, on the other hand, there is a sequence $t_n \to 1^-$ such that $m(t_n) = \rho(\psi(z(t_n)), w(t_n))$, then we can use (18), and once again the same arguments as above show that $f(a, b) = (f_1(a, b), f_2(a, b)) = (0, 0) \in H^2$. This concludes the proof of Theorem 2.

Acknowledgement

The first author was partially supported by the Fund for the Promotion of Research at the Technion and by the Technion VPR Fund - M. and M. L. Bank Mathematics Research Fund. Both authors thank the referee for many useful suggestions and corrections.

References

- M. Abate, The infinitesimal generators of semigroups of holomorphic maps, Ann. Mat. Pura Appl. (4) 161 (1992), 167-180.
- L. Aizenberg, S. Reich and D. Shoikhet, One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces, J. Math. Anal. Appl. 203 (1996), 35-54.
- E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, *Michigan Math. J.* 25 (1978), 101-115.
- H. Brezis, Équations et inéquations non-linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115-175.
- F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874.
- F. E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, in: Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 425-500.
- K. Fan, A minimax inequality and applications, in: Inequalities III, Academic Press, New York, 1972, pp. 103-113.
- 8. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Dekker, New York and Basel, 1984.
- M. A. Krasnoselskii, On a boundary problem, *Izv. Akad. Nauk. SSSR Ser. Mat.* 20 (1956), 241-252.
- M. Krasnoselskii and P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984.
- R. H. Martin, Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414.
- S. Reich, Minimal displacement of points under weakly inward pseudo-lipschitzian mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (1975), 40-44.
- 13. S. Reich and D. Shoikhet, Generation theory for semigroups of holomorphic mappings in Banach spaces, *Abstr. Appl. Anal.* **1** (1996), 1-44.

- 14. S. Reich and D. Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric, Technion Preprint Series, No. MT-1023, 1997, *Atti. Accad. Naz. Lincei*, accepted for publication.
- 15. W. Rudin, Function Theory in the Unit Ball in \mathbb{C}^n . Springer-Verlag, Berlin, 1980.
- M. Shinbrot, A fixed point theorem and some applications, Arch. Rational Mech. Anal. 17 (1964), 255-271.

Simeon Reich Department of Mathematics, The Technion - Israel Institute of Technology 32000 Haifa, Israel E-mail: sreich@tx.technion.ac.il

David Shoikhet Department of Applied Mathematics, International College of Technology P.O. Box 78, 20101 Karmiel, Israel.