TAIWANESE JOURNAL OF MATHEMATICS Vol. 2, No. 3, pp. 369-381, September 1998

THE CRITICAL MASS OF COMPRESSIBLE VISCOUS GAS-STARS

Wen-Chi Kuan*

Abstract. Let γ be the adiabatic index of self-gravitating, spherically symmetric motion of compressible viscous gas-star. When $\gamma \in (1, 2]$, we prove the existence of nonisentropic equilibrium. Furthermore, at the adiabatic index $\gamma = \frac{4}{3}$, we found a family of particular solutions which corresponds to an expansive (contractive) gaseous star. Moreover, we find that there is a critical total mass M_0 . If the total mass M of star is less than M_0 , then the star expands infinitely. However, if $M \ge M_0$, then there is an "escape velocity" $v_e r$ associated with M and the initial configuration of the star. If $v(0,r) \ge v_e r$, then the star will expand infinitely. If $v(0,r) < v_e r$, then it will collapse after a finite time.

1. INTRODUCTION

In studying the evolution of a gaseous star, which consists of spherically symmetric movements of self-gravitating viscous gas, we have the following equations

(1.1)
$$\frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial r} + \rho \frac{\partial v}{\partial r} + \frac{2}{r} \rho v = 0,$$

$$(1.2) \quad \rho\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) + \frac{\partial p}{\partial r} + \frac{4\pi\rho}{r^2}\int_0^r \rho(t,\tau)\tau^2 d\tau = \nu\left\{\frac{\partial^2 v}{\partial r^2} + \frac{2}{r}\frac{\partial v}{\partial r} - \frac{2}{r^2}v\right\},$$

(1.3)
$$\frac{\partial S}{\partial t} + v \frac{\partial S}{\partial r} = 0,$$

Received April 14, 1997.

Communicated by S.-B. Hsu.

1991 Mathematics Subject Classification: 85A15.

Key words and phrases: Self-gravitating, compressible, viscous, nonisentropic, Pohozaev identity.

^{*}Work partially supported by the National Science Council of the Republic of China.

(1.4)
$$p = e^S \rho^\gamma,$$

where $t \ge 0, r \ge 0$ (see, e.g., [10, 11, 12, 15]). Here, the unknown variable ρ is the density of the gas, v is the outward velocity, and S is entropy, p is the pressure, $\gamma \in (1, 2]$ is the adiabatic exponent, and ν is the viscosity coefficient.

The problem originates in Newtonian (non-relativistic) astrophysical theory. One of the main problems in studying $(1.1) \sim (1.4)$ is the existence of temporarily global solution for a given set of initial data at t = 0. However, when $\gamma = \frac{4}{3}, \nu = 0$, Makino [9] found there is a family of particular solutions that tend toward the delta function after a finite time, i.e., a model for gravitational collapse of a gaseous star even in Newtonian theory. In [3], Fu and Lin studied the total mass M of these solutions and found that there is a critical total mass M_0 . If $M < M_0$, then the star expands infinitely. However, if $M \geq M_0$, then there is an "escape velocity", $v_e r$, associated with M and the initial configuration of the star. If the star expands at an initial velocity of $v(0,r) \geq v_e r$, then it will expand as in the case in which $M < M_0$. If the initial velocity $v(0,r) < v_e r$, then it will collapse in finite time. In [3,9], $\nu = 0$ and they considered S to be constant, i.e., the gas flow is isentropic. When $\nu > 0$, we can consider nonisentropic flow. In this paper, we extend the results in [3, 9] under some assumptions about S including the special case $S \equiv \text{constant}.$

The paper is organized as follows: in Section 2, we study the existence of a Ball-type stationary solution of $(1.1) \sim (1.4)$ for $\gamma \in (1,2]$. The definition of a Ball-type solution is given below. In Section 3 we study a family of special solutions of $(1.1)\sim(1.4)$ for $\gamma = \frac{4}{3}$, after which we compare the total mass of these solutions with the Ball-type solution, which yields a very interesting result.

2. STAR IN EQUILIBRIUM - STATIONARY SOLUTION

We seek a bounded stationary solution of the following form

(2.1)
$$\rho(t,r) = \left(\frac{q+1}{4\pi}\right)^{\frac{q}{q-1}} y^q(r),$$

(2.3)
$$s(t,r) = (q+1)S(r),$$

where $q = \frac{1}{\gamma - 1}$ and S(r) is a given function that satisfies the following assumptions:

(S-1) $S \in C^1(0, \infty)$ and is bounded;

(S-2) S is nondecreasing.

According to $(2.1) \sim (2.3)$, y satisfies

(2.4)
$$e^{(q+1)S}(y'+yS') + \frac{1}{r^2} \int_0^r y^q \tau^2 d\tau = 0,$$

(2.5)
$$y'(0) + y(0)S'(0) = 0, \quad y(0) > 0.$$

It is easy to see that $(2.4) \sim (2.5)$ is equivalent to

(2.6)
$$y(r) = e^{-(q+1)^{S}} \left(y(0)e^{(q+1)S(0)} + \int_{0}^{r} q e^{(q+1)S} S' y d\tau - \int_{0}^{r} \tau \left(1 - \frac{\tau}{r} \right) y^{q} d\tau \right).$$

Using standard methods we obtain the following:

Proposition 2.1. If S satisfies (S-1), then for all y(0) > 0, there is an r_0 dependent on S and y(0) such that (2.4) ~ (2.5) has a unique solution in $C([0, r_0])$, which is C^2 in $(0, r_0)$.

Proof. Let $y_1 = e^{(q+1)S}y$. Then y_1 satisfies

(2.7)
$$y_1(r) = y_1(0) + \int_0^r q S' y_1 d\tau + \int_0^r \tau \left(1 - \frac{\tau}{r}\right) e^{-q(q+1)S} y_1^q d\tau.$$

Let us denote by $Ty_1(r)$ the right-hand side of (2.7). Choosing $M > y_1(0)$, we consider the set of functions $F = \{\eta \in C[0, r_0] : \sup_{\substack{o \le r \le r_0 \\ 0 \le r \le \infty}} |\eta(r)| \le M\}$. Then there exists an r_0 dependent on $y_1(0)$, M, $S_m = \inf_{\substack{o \le r \le \infty \\ 0 \le r \le \infty}} S(r)$, $S_M = \sup_{\substack{o \le r < \infty \\ 0 \le r < \infty}} S(r)$, such that T is a contraction mapping with respect to the metric $d(\eta_1, \eta_2) =$ $\|\eta_1 - \eta_2\|_{\infty}$. (2.6) then admits a unique solution in F, which is the fixed point of T. Since it is easy to deduce the estimate of r_0 , we omit the computation here. The proof is complete.

If, in addition, S satisfies (S-2), from (2.4) we have y' < 0 for r > 0. Let us continue y = y(r, y(0)) to the right as long as possible.

Let $\overline{R} = \sup\{\tilde{r}|y > 0 \text{ in } [0, \tilde{r})\}$. We need the following definition.

Definition 2.2. (i) If $\overline{R} < \infty$, then we say y is a Ball-type solution. (ii) If $\overline{R} = \infty$, then we say y is a ground-state solution. A Ball-type solution means that we have a gaseous star of finite radius. In order to know when we have Ball-type or ground-state solution, we deduce the generalized Pohozaev identity. Let

$$x(r) = ye^{S}$$

x(r) then satisfies

(2.8)
$$(r^2 e^{qS} x')' + r^2 e^{-qS} x^q = 0,$$

(2.9)
$$x(0) = y(0)e^{S(0)}, x'(0) = 0.$$

Let

(2.10)
$$g(r) = r^2 e^{qS},$$

and

(2.11)
$$h(r) = g \int_{r}^{\infty} g^{-1}(\tau) d\tau.$$

We then have the Pohozaev identity for $(2.8) \sim (2.9)$.

Lemma 2.3. Let x satisfy $(2.8) \sim (2.9)$ and g, h be given as in (2.10) and (2.11). Then,

(2.12)
$$\frac{d}{dr}\left\{(gx')(hx'+x) + \frac{2gh}{q+1}e^{-2qS}x^{q+1}\right\} = \frac{2}{1+q}ge^{-2qS}\left(\frac{4h}{r} - \frac{3+q}{2}\right)x^{q+1}.$$

Proof. By (2.8), (2.10) and (2.11), it is easy to see that x satisfies

(2.13)
$$(hx'+x)' + he^{-2qS}x^q = 0.$$

By (2.8), (2.10), (2.11) and (2.13), we have (2.12).

Remark 2.4. Let $H(r) = \frac{4h}{r} - \frac{3+q}{2}$. Using a partial integration, we have

(2.14)
$$H(r) = \frac{5-q}{2} - 4re^{qS} \int_{r}^{\infty} q\tau^{-1}S'e^{-qS}d\tau.$$

If $S \equiv \text{constant}$, then $H(r) = \frac{5-q}{2}$, and (2.12) reduces to the usual Pohozaev identity.

From (2.4), (2.5), (S-1) and (S-2), it is easy to see that y is decreasing to zero as $r \to \infty$ when y is a ground-state solution. We next give some asymptotic behavior of x, when $y = e^{-S}x$ is a ground-state solution.

Lemma 2.5. Assume S satisfies (S-1) and (S-2). If x is the ground-state solution of (2.8) and (2.9), then we have

- (i) $x(r) \ge c_1 r^{-1}, x' \le c_2 r^{-2}$ for all sufficiently large r, where $c_1 > 0, c_2 < 0$ are constants,
- (ii) $x(r) \leq c_3(q)r^{\frac{-2}{q-1}}$ for all sufficiently large r if q > 1, and $rx(r) \to \infty$ as $r \to \infty$ if q = 3.

The constants c_1, c_2 and $c_3(q)$ are independent of r.

Proof. Since S is bounded and nondecreasing, according to the argument used in [14], Theorems 2.1, and 2.2, we have asymptotic behavior for x if x is the ground-state solution of (2.7) and (2.8).

By comparing the asymptotic behavior of $x(r) \ge c_1 r^{-1}$, if $1 < q < 3, rx(r) \to \infty$ when q = 3, with $x(r) \le c_3(q)r^{\frac{-2}{q-1}}$, we have an immediate contradiction. Thus, $1 < q \le 3$ and all solutions of (2.8)~(2.9) are Ball-type. The proof is complete.

Before we state the result for the full range of q, we make the following assumption:

(S-3) $H(r) \ge 0$ for any $r \ge 0$.

Indeed, as 1 < q < 5, if $S' \ge 0$ and $S(0) - S(\infty) \ge ln(\frac{q+3}{8})^{\frac{1}{q}}$ then $H(r) \ge 0$ for $r \ge 0$. We can now state the following:

Proposition 2.6. If S satisfies (S-1) and (S-2), and if x is the solution of $(2.8) \sim (2.9)$, then:

- (i) if $1 < q \leq 3$, then $\overline{R} < \infty$;
- (ii) if 3 < q < 5 and in addition, S satisfies (S-3), then $\overline{R} < \infty$;
- (iii) if $q \ge 5$, then $\overline{R} = \infty$.

Proof. For 3 < q < 5, since we have a Pohozaev identity and S satisfies **(S-3)**, we can use the argument for Theorem 3.1 [14] and draw the appropriate conclusion.

For $q \ge 5$, if $\overline{R} < \infty$, then integrating (2.12) from 0 to \overline{R} , since $S' \ge 0$, therefore H(r) < 0 and we have a contradiction. The proof is complete.

We can now state the following:

Theorem 2.7. Assume S(r) satisfies (S-1) and (S-2), and let $(\rho, v, S)_{(t,r)}$ be the solution given for $(2.1) \sim (2.3)$.

(i) If $\frac{4}{3} \leq \gamma < 2$, (ρ, v, S) is a Ball-type solution.

- (ii) If $\frac{6}{5} < \gamma < \frac{4}{3}$, and S(r) satisfies **(S-3)**, then (ρ, v, S) is a Ball-type solution.
- (iii) If $1 < \gamma < \frac{6}{5}$, then (ρ, v, S) is a ground-state solution.

Remark 2.8. It is interesting to know the mass-radius diagram (M - R diagram) from [1]. The total mass M of a Ball-type solution is given by

$$M = 4\pi C_q \int_0^{\overline{R}} y^q r^2 dr < \infty,$$

where $C_q = \left(\frac{q+1}{4\pi}\right)^{\frac{q}{q-1}}$.

To understand the M - R diagram, it is useful to study the following two problems.

Problem 1. Given $y(0) = \alpha > 0, M > 0$, how many solutions of (2.4) and (2.5) are there?

Problem 2. Given $y(0) = \alpha > 0, \overline{R} > 0$, how many solutions of (2.4) and (2.5) are there?

In [7], $S \equiv$ constant, we know the M - R diagram for $1 < q \leq 3$ looks like the following Fig. 1

FIG. 1.

But in (2.2) and (2.3), when $S \not\equiv \text{constant}$, the computation of $\frac{dM}{d\alpha}$ in Problem 1 or $\frac{d\overline{R}}{d\alpha}$ in Problem 2 is more difficult than the case in which $S \equiv \text{constant}$.

3. The Relation of Mass and Expanding of Star

In this section we shall study a particular solution for nonisentropic gas. Following [9], we adopt the following transformation to seek a particular class of solutions. Let

$$(3.1) r = a(t)z,$$

(3.2)
$$\rho(t,r) = Aa^{-3}(t)y^{3}(z),$$

(3.3)
$$v(t,r) = \dot{a}(t)z \quad and$$

$$(3.4) s(t,r) = 4S(z)$$

The positive r and $\rho \ge 0$ require $z > 0, y(z) \ge 0$ and a(t) > 0. It is easy to verify that $(1.1) \sim (1.3)$ are satisfied by $(3.1) \sim (3.4)$ and (1.2) becomes

(3.5)
$$a^2\ddot{a}z^3 + A^{\gamma-1}z^2e^{4S}a^{-3\gamma+4}y^{3\gamma-4}(3\gamma y'+4S'y) + 4\pi A \int_0^z y^3\xi^2d\xi = 0.$$

Furthermore, if $\gamma = \frac{4}{3}$ and we let $A = \pi^{-3/2}$, then (3.5) becomes

(3.6)
$$\frac{1}{4\pi A}a^2\ddot{a}z^3 + z^2e^{4S}(y'+S'y) + \int_0^z y^3\xi^2d\xi = 0.$$

Now, (3.6) can be solved by the method of separation of variables. Indeed, let

(3.7)
$$a^2\ddot{a}(t) = \frac{4}{3}\pi A\lambda.$$

Then (3.6) becomes

(3.8)
$$z^2 e^{4S} (y' + yS') + \int_0^z \xi^2 (y^3 + \lambda) d\xi = 0.$$

We consider the initial condition

(3.9)
$$y'(0) + y(0)S'(0) = 0, \quad y(0) > 0.$$

Remark 3.1. We denote the solution of (3.8) and (3.9) by $y_{\lambda}(z) = y(z, \lambda, y(0))$. As $\lambda = 0$, the equation for $y_0(z)$ is the same as (2.1) and (2.2) for q = 3. Henceforth, we will omit the subscript λ , which causes no confusion.

(3.8) and (3.9) are equivalent to

$$(3.10) \quad y(z) = e^{-4S} \left\{ y(0)e^{4S(0)} + \int_0^r 3e^{4S}S'yd\xi - \int_0^z \xi\left(1 - \frac{\xi}{z}\right)\left(y^3 + \lambda\right)d\xi \right\}.$$

Using standard methods as in Proposition 2.1, we have a local solution y(z) for (3.8) and (3.9) near z = 0 if S satisfies (S-1). We continue y(z) to the

right as long as possible. Furthermore, if S satisfies (S-2), then y' < 0 for $r \ge 0$ as $\lambda \ge 0$. On the other hand, y' may change signs as $\lambda < 0$. In order to get more information about the solution y(z), let

$$(3.11) x = e^S y.$$

Differentiating (3.8) once, we obtain

(3.12)
$$(z^2 e^{3S} x')' + z^2 e^{-3S} x^3 + \lambda z^2 = 0,$$

(3,13)
$$x(0) = y(0)e^{S(0)}, x'(0) = 0.$$

Lemma 3.2 Let x(z) be the solution of $(3.12) \sim (3.13)$. Let $Z = Z(\lambda) = \sup\{z|x(z) > 0 \text{ in } (0,z)\}, \ \varphi(z) = \frac{\partial x}{\partial \lambda}$. Assume S satisfies **(S-1)** and **(S-2)**. If $x'(z) \leq 0$ in (0,Z), then $\varphi(z) < 0$ in (0,Z].

Proof. By (3.11), (3.12) and (3.13), it is easy to see that $\varphi(z)$ satisfies

(3.14)
$$(z^2 e^{3S} \varphi')' + 3z^2 e^{-3S} x^2 \varphi + z^2 = 0$$

and

(3.15)
$$\varphi(0) = 0 = \varphi'(0)$$

Define

(3.16)
$$\varphi\lambda(x) = \frac{1}{2}e^{3S}\varphi'^2 + \int_0^z (3e^{-3S}x^2\varphi + 1)\varphi'd\xi.$$

By partial integration, we have

(3.17)
$$\varphi_{\lambda}(z) = \frac{1}{2}e^{3S}\varphi'^{2} + \varphi + \frac{3}{2}e^{-3S}x^{2}\varphi^{2} + \int_{0}^{z}\frac{3}{2}\varphi^{2}(3S'e^{-3S}x^{2} - 2e^{-3S}xx')d\xi.$$

Then by (3.14), we have

(3.18)
$$\frac{d\varphi_{\lambda}}{dz} = -\left(\frac{2}{z} + \frac{3}{2}S'\right)e^{3S}\varphi'^2 \le 0 \quad for \ z > 0.$$

Since $\varphi_{\lambda}(0) = 0$,

(3.19)
$$\varphi_{\lambda}(z) < 0 \quad in \ (0, Z].$$

By (3.17), (3.19), (S-2) and our assumption that $x'(z) \leq 0$, we have $\varphi(z) < 0$ in (0, Z].

Observe that $x(z, \lambda)$ is C^1 in λ , and if $x'(Z(\lambda)) \neq 0$, then by the implicit function theorem $Z(\lambda)$ is C^1 in λ . If $Z < \infty$, we have

(3.20)
$$\frac{\partial x}{\partial z}(Z(\lambda),\lambda)\frac{dZ}{d\lambda} + \varphi(Z(\lambda),\lambda) = 0.$$

Hence, if $x'(z) \leq 0$ in (0, Z), then, by Lemma 3.2, $\frac{dZ}{d\lambda} < 0$. Thus it is important to know when x'(z) is nonpositive in (0, Z].

Lemma 3.3. Assume S satisfies (S-1) and (S-2). If x(z) is the solution of (3.12) ~ (3.13), then there is $\overline{\lambda} < 0$ such that for all $\lambda > \overline{\lambda}$, there exists $Z = Z(\lambda) < \infty$ such that x(z) > 0 in (0, Z), x(Z) = 0 and x'(z) < 0 in (0, Z].

Proof. If $\lambda \ge 0$, by (3.12) ~ (3.13)

(3.21)
$$z^2 e^{3S} x'(z) = -\int_0^z (\xi^2 e^{-3S} x^3 + \lambda \xi^2) d\xi.$$

Hence,

(3.22)
$$x'(z) < 0 \text{ for } z > 0, \ \lambda \ge 0.$$

As $\lambda = 0$, the equation of (3.12) is the same as (2.8). Thus, by Proposition 2.6(i), $Z(0) < \infty$. Furthermore, as $\lambda > 0$, by (3.22) and Lemma 3.2, we have $\varphi(Z) < 0$. Hence, $\frac{dZ}{d\lambda} < 0$ for $\lambda > 0$.

Since for $\lambda = 0, x'(z) < 0$ in (0, Z(0)], therefore as $\lambda < 0$ and $|\lambda|$ is sufficiently small, we can use the argument of continued dependence on parameter λ to obtain $Z(\lambda) < \infty$ such that x(z) > 0 in $(0, Z(\lambda)), x'(z) < 0$ in $(0, Z(\lambda))$. We may choose $\overline{\lambda}$ to be the smallest number that still allows this argument to hold. The proof is complete.

Indeed, if $\lambda < 0$ and is small enough, then x(z) > 0 for all z > 0. We state the result below.

Lemma 3.4. Assume S satisfies (S-1) and (S-2). If $\lambda + \frac{1}{4}y^3(0) < 0$, then every solution x(z) of $(3.11) \sim (3.12)$ is positive for any z > 0.

Proof. We define the energy function

(3.23)
$$E(z) = \frac{1}{2}e^{3S}x'^2 + \int_0^z (e^{-3S}x^3 + \lambda)x'd\xi + \lambda x(0) + \frac{1}{4}x^4(0)e^{-3S(0)}.$$

By partial integration, we have

(3.24)
$$E(z) = \frac{1}{2}e^{3S}x'^2 + \lambda x + \frac{1}{4}e^{-3S}x^4 + \int_0^z \frac{3}{4}e^{-3S}S'x^4d\xi.$$

Differentiating (3.23) once, we obtain

(3.25)
$$\frac{dE}{dz} = -\left(\frac{2}{z} + \frac{3}{2}S'\right)e^{3S}x'^2 \le 0.$$

If there is any $Z(\lambda) < \infty$ such that $x(Z(\lambda)) = 0$, then by **(S-2)**,(3.23) and (3.24), $0 < E(Z(\lambda)) \le E(0)$. Hence, if $\lambda + \frac{1}{4}y^3(0) = \frac{E(0)}{x(0)} < 0$, then we have a contradiction. The proof is complete.

The total mass M of solution (ρ, v, S) of $(1.1) \sim (1.4)$ is given by

(3.26)
$$M = 4\pi \int_0^{R(t)} \rho(t, r) r^2 dr,$$

where $R(t) \leq \infty$ is the first zero of $\rho(t, r)$ at time t. For solutions of the form $(3.1) \sim (3.4), M(\lambda)$ is dependent only on λ and y(0), with

(3.27)
$$M(\lambda) = 4\pi A \int_0^{Z(\lambda)} y^3 \xi^2 d\xi.$$

By (3.11),

(3.28)
$$M(\lambda) = 4\pi A \int_0^{Z(\lambda)} e^{-3S} x^3 \xi^2 d\xi.$$

Thus,

(3.29)
$$\frac{dM}{d\lambda} = 4\pi A \int_0^{Z(\lambda)} 3e^{-3S} x^2 \cdot \frac{\partial x}{\partial \lambda} \xi^2 d\xi$$

if $Z(\lambda) < \infty$ and $x(Z(\lambda)) = 0$. By Lemmas 3.2, and 3.3, we have:

Lemma 3.5. Assume S satisfies (S-l) and (S-2), and let x(0) be fixed. Then there is a $\overline{\lambda}$ dependent on x(0) such that for all $\lambda > \overline{\lambda}$,

$$\frac{dM}{d\lambda} < 0.$$

Proof. The result follows easily from Lemmas 3.2 and 3.3. The proof is complete.

By Lemma 3.5, we define

(3.31)
$$\overline{M} = \lim_{\lambda \to \overline{\lambda}} M(\lambda).$$

On the other hand, for the equation (3.7), we consider the initial-value problem

$$(3.32) a(0) = a_0 > 0, \ \dot{a}(0) = a_1.$$

The solutions of (3.7) and (3.32) have been studied in [3,9]. We merely review the results here.

Proposition 3.6. Let a(t) be the solution of (3.7) and (3.32). We then have the following results.

- (I) If $\lambda > 0$, then a(t) > 0 for any t > 0, and $a(t) \to \infty$ as $t \to \infty$.
- (II) If $\lambda = 0$, then $a(t) = a_1 t + a_0$.
- (III) If $\lambda < 0$, let

(3.33)
$$a_1^*(\lambda) = \left(\frac{S\pi A}{3}|\lambda|a_0^{-1}\right)^{1/2}.$$

If $a^1 \ge a_1^*(\lambda)$, then a(t) > 0 for any t > 0, and $a(t) \to \infty$ as $t \to \infty$.

If $a_1 < a_1^*(\lambda)$, then there is $T < \infty$ such that a(t) > 0 in (0,T), and $a(t) \rightarrow 0$ as $t \rightarrow T^-$.

Denote by $M_0 = M(0)$. For any $\lambda \in (\overline{\lambda}, \infty), a_0 > 0, a_1 \in \mathbb{R}$, the solutions of $(3.1) \sim (3.4)$ are given by

(3.34)
$$\rho(t,r) = Aa^{-3}(t)y^3\left(\frac{r}{a(t)}\right),$$

(3.35)
$$v(t,r) = a^{-1}(t)\dot{a}(t)r$$
 and

(3.36)
$$S(t,r) = S\left(\frac{r}{a(t)}\right),$$

with an initial velocity of

(3.37)
$$v(0,r;a_0,a_1) = a_0^{-1}a_1r,$$

where $a(t) \equiv a(t; a_0, a_1)$ and S is any given function satisfying (S-1) and (S-2). Denote the escape velocity, $v_e r$, as

(3.38)
$$v_e \equiv v_e(\lambda, a_0) = \left(\frac{8\pi A}{3}|\lambda|a_0^{-1}\right)^{1/2}.$$

Combining the results of Proposition 3.6 and Lemma 3.5, we obtain the following main result.

Theorem 3.7. Assume S satisfies (S-1), (S-2), and the total mass $M \in (0, \overline{M})$. Then a gaseous star of the form (3.1) ~ (3.4) is given by (3.33) ~ (3.35). Furthermore, we have:

- (I) If $M < M_0$, then the star will expand and the density eventually tends toward zero.
- (II) If $M > M_0$, and the initial velocity $v(0,r) \ge v_e r$ for $r \in (0, R_0)$, where $\rho(0, R_0) = 0$, then the star behaves as in (I). On the other hand, if $v(0,r) < v_e r$ for $r \in (0, R_0)$, then the star will collapse toward its center in a finite time.
- (III) If $M = M_0$, we have three cases:
 - (i) when $a_1 > 0$, the star behaves as in (I);
 - (ii) when $a_1 < 0$, the star collapses toward its center;
 - (iii) when $a_1 = 0$, the star is in equilibrium.

Acknowledgment

The author expresses his appreciation to Professor S. S. Lin and Professor T. Makino for their many helpful suggestions.

References

- S. Chandrasekhar, An Introduction to the Study of Stellar Structures, University of Chicago Press, 1939.
- E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
- 3. C. C. Fu and S. S. Lin, On the critical mass of the collapse of gaseous star in spherically symmetric and isentropic motion, preprint, 1997.
- B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, *Comm. Math. Phys.* 68 (1979), 209-243.
- M. Kriele, On the collapse of a spherically symmetric star, J. Math. Phys. 36 (1995), 3676-3693.
- 6. N. Kawano, E. Yanagida and S. Yotsutani, Structure theorem for positive radial solution to $\Delta u + K(|x|)u^p = 0$ in \mathbb{R}^n , Funkcial. Ekvac. **36** (1993), 557-579.
- W. C. Kuan and S. S. Lin, Numbers of equilibria for the equation of selfgravitating isentropic gas surrounding a solid ball, *Japan J. Indust. Appl. Math.* 13 (1996), 311-331.
- 8. S. S. Lin, Stability of gaseous stars in spherically symmetric motion, *SIAM J. Math. Anal.*, to appear.

- 9. T. Makino, Blowing up solutions of the Euler-Poisson equation for the evolution of gaseous stars, *Transport Theory Statist. Phys.* **21** (1992), 615-624.
- T. Makino, Mathematical aspects of the Euler-Poisson equation for the evolution of gaseous stars, Lecture Notes 1993, National Chiao-Tung University, Hsinchu, Taiwan, March 1993.
- T. Makino, K. Mizohata and S. Ukai, The global weak solutions of compressible Euler equation with spherical symmetry, *Japan J. Indust. Appl. Math.* 9 (1992), 431-449.
- T. Makino, K. Mizohata and S. Ukai, The global weak solutions of compressible Euler equation with spherical symmetry (II), *Japan J. Indust. Appl. Math.* 11 (1994), 417-426.
- 13. W.-M. Ni and R. Nussbaum, Uniqueness and non-uniqueness for positive radial solution of $\Delta u + f(u, r) = 0$, Comm. Pure Appl. Math. **38** (1985), 67-108.
- W.-M. Ni and J. Serrin, Existence and nonexistence theorem for ground states of quasilinear partial differential equation. The Anomalus case., Accad. Naz. Lincei 77 (1986), 231-257.
- J. L. Tassoul, Theory of Rotating Stars, Princeton University Press, Princeton, NJ, 1978.

Department of Applied Mathematics, National Chiao Tung University Hsinchu, Taiwan