# THE CRITICAL MASS OF COMPRESSIBLE VISCOUS GAS-STARS 

Wen-Chi Kuan*


#### Abstract

Let $\gamma$ be the adiabatic index of self-gravitating, spherically symmetric motion of compressible viscous gas-star. When $\gamma \in(1,2]$, we prove the existence of nonisentropic equilibrium. Furthermore, at the adiabatic index $\gamma=\frac{4}{3}$, we found a family of particular solutions which corresponds to an expansive (contractive) gaseous star. Moreover, we find that there is a critical total mass $M_{0}$. If the total mass $M$ of star is less than $M_{0}$, then the star expands infinitely. However, if $M \geq M_{0}$, then there is an "escape velocity" $v_{e} r$ associated with $M$ and the initial configuration of the star. If $v(0, r) \geq v_{e} r$, then the star will expand infinitely. If $v(0, r)<v_{e} r$, then it will collapse after a finite time.


## 1. Introduction

In studying the evolution of a gaseous star, which consists of spherically symmetric movements of self-gravitating viscous gas, we have the following equations

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+v \frac{\partial \rho}{\partial r}+\rho \frac{\partial v}{\partial r}+\frac{2}{r} \rho v=0  \tag{1.1}\\
\rho\left(\frac{\partial v}{\partial t}+v \frac{\partial v}{\partial r}\right)+\frac{\partial p}{\partial r}+\frac{4 \pi \rho}{r^{2}} \int_{0}^{r} \rho(t, \tau) \tau^{2} d \tau=\nu\left\{\frac{\partial^{2} v}{\partial r^{2}}+\frac{2}{r} \frac{\partial v}{\partial r}-\frac{2}{r^{2}} v\right\}  \tag{1.2}\\
\frac{\partial S}{\partial t}+v \frac{\partial S}{\partial r}=0
\end{gather*}
$$

Received April 14, 1997.
Communicated by S.-B. Hsu.
1991 Mathematics Subject Classification: 85A15.
Key words and phrases: Self-gravitating, compressible, viscous, nonisentropic, Pohozaev identity.
*Work partially supported by the National Science Council of the Republic of China.

$$
\begin{equation*}
p=e^{S} \rho^{\gamma} \tag{1.4}
\end{equation*}
$$

where $t \geq 0, r \geq 0$ (see, e.g., $[10,11,12,15]$ ). Here, the unknown variable $\rho$ is the density of the gas, $v$ is the outward velocity, and $S$ is entropy, $p$ is the pressure, $\gamma \in(1,2]$ is the adiabatic exponent, and $\nu$ is the viscosity coefficient.

The problem originates in Newtonian (non-relativistic) astrophysical theory. One of the main problems in studying (1.1) $\sim(1.4)$ is the existence of temporarily global solution for a given set of initial data at $t=0$. However, when $\gamma=\frac{4}{3}, \nu=0$, Makino [9] found there is a family of particular solutions that tend toward the delta function after a finite time, i.e., a model for gravitational collapse of a gaseous star even in Newtonian theory. In [3], Fu and Lin studied the total mass $M$ of these solutions and found that there is a critical total mass $M_{0}$. If $M<M_{0}$, then the star expands infinitely. However, if $M \geq M_{0}$, then there is an "escape velocity", $v_{e} r$, associated with $M$ and the initial configuration of the star. If the star expands at an initial velocity of $v(0, r) \geq v_{e} r$, then it will expand as in the case in which $M<M_{0}$. If the initial velocity $v(0, r)<v_{e} r$, then it will collapse in finite time. In $[3,9]$, $\nu=0$ and they considered $S$ to be constant, i.e., the gas flow is isentropic. When $\nu>0$, we can consider nonisentropic flow. In this paper, we extend the results in $[3,9]$ under some assumptions about $S$ including the special case $S \equiv$ constant.

The paper is organized as follows: in Section 2, we study the existence of a Ball-type stationary solution of $(1.1) \sim(1.4)$ for $\gamma \in(1,2]$. The definition of a Ball-type solution is given below. In Section 3 we study a family of special solutions of $(1.1) \sim(1.4)$ for $\gamma=\frac{4}{3}$, after which we compare the total mass of these solutions with the Ball-type solution, which yields a very interesting result.

## 2. Star in Equilibrium - Stationary Solution

We seek a bounded stationary solution of the following form

$$
\begin{gather*}
\rho(t, r)=\left(\frac{q+1}{4 \pi}\right)^{\frac{q}{q-1}} y^{q}(r),  \tag{2.1}\\
v(t, r)=0,  \tag{2.2}\\
s(t, r)=(q+1) S(r), \tag{2.3}
\end{gather*}
$$

where $q=\frac{1}{\gamma-1}$ and $S(r)$ is a given function that satisfies the following assumptions:
(S-1) $S \in C^{1}(0, \infty)$ and is bounded;
(S-2) $S$ is nondecreasing.
According to $(2.1) \sim(2.3), y$ satisfies

$$
\begin{gather*}
e^{(q+1) S}\left(y^{\prime}+y S^{\prime}\right)+\frac{1}{r^{2}} \int_{0}^{r} y^{q} \tau^{2} d \tau=0  \tag{2.4}\\
y^{\prime}(0)+y(0) S^{\prime}(0)=0, \quad y(0)>0 \tag{2.5}
\end{gather*}
$$

It is easy to see that $(2.4) \sim(2.5)$ is equivalent to

$$
\begin{align*}
y(r)= & e^{-(q+1)^{S}}\left(y(0) e^{(q+1) S(0)}+\int_{0}^{r} q e^{(q+1) S} S^{\prime} y d \tau\right.  \tag{2.6}\\
& \left.-\int_{0}^{r} \tau\left(1-\frac{\tau}{r}\right) y^{q} d \tau\right) .
\end{align*}
$$

Using standard methods we obtain the following:

Proposition 2.1. If $S$ satisfies $(\boldsymbol{S} \mathbf{- 1})$, then for all $y(0)>0$, there is an $r_{0}$ dependent on $S$ and $y(0)$ such that $(2.4) \sim(2.5)$ has a unique solution in $C\left(\left[0, r_{0}\right]\right)$, which is $C^{2}$ in $\left(0, r_{0}\right)$.

Proof. Let $y_{1}=e^{(q+1) S} y$. Then $y_{1}$ satisfies

$$
\begin{equation*}
y_{1}(r)=y_{1}(0)+\int_{0}^{r} q S^{\prime} y_{1} d \tau+\int_{0}^{r} \tau\left(1-\frac{\tau}{r}\right) e^{-q(q+1) S} y_{1}^{q} d \tau \tag{2.7}
\end{equation*}
$$

Let us denote by $T y_{1}(r)$ the right-hand side of (2.7). Choosing $M>y_{1}(0)$, we consider the set of functions $F=\left\{\eta \in C\left[0, r_{0}\right]: \sup _{o \leq r \leq r_{0}}|\eta(r)| \leq M\right\}$. Then there exists an $r_{0}$ dependent on $y_{1}(0), M, S_{m}=\inf _{0 \leq r \leq \infty} S(r), S_{M}=\sup _{0 \leq r<\infty} S(r)$, such that $T$ is a contraction mapping with respect to the metric $d\left(\eta_{1}, \eta_{2}\right)=$ $\left\|\eta_{1}-\eta_{2}\right\|_{\infty}$. (2.6) then admits a unique solution in $F$, which is the fixed point of $T$. Since it is easy to deduce the estimate of $r_{0}$, we omit the computation here. The proof is complete.

If, in addition, $S$ satisfies (S-2), from (2.4) we have $y^{\prime}<0$ for $r>0$. Let us continue $y=y(r, y(0))$ to the right as long as possible.

Let $\bar{R}=\sup \{\tilde{r} \mid y>0$ in $[0, \tilde{r})\}$. We need the following definition.
Definition 2.2. (i) If $\bar{R}<\infty$, then we say $y$ is a Ball-type solution. (ii) If $\bar{R}=\infty$, then we say $y$ is a ground-state solution.

A Ball-type solution means that we have a gaseous star of finite radius. In order to know when we have Ball-type or ground-state solution, we deduce the generalized Pohozaev identity. Let

$$
x(r)=y e^{S}
$$

$x(r)$ then satisfies

$$
\begin{gather*}
\left(r^{2} e^{q S} x^{\prime}\right)^{\prime}+r^{2} e^{-q S} x^{q}=0  \tag{2.8}\\
x(0)=y(0) e^{S(0)}, \quad x^{\prime}(0)=0 \tag{2.9}
\end{gather*}
$$

Let

$$
\begin{equation*}
g(r)=r^{2} e^{q S} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
h(r)=g \int_{r}^{\infty} g^{-1}(\tau) d \tau \tag{2.11}
\end{equation*}
$$

We then have the Pohozaev identity for $(2.8) \sim(2.9)$.
Lemma 2.3. Let $x$ satisfy $(2.8) \sim(2.9)$ and $g, h$ be given as in (2.10) and (2.11). Then,

$$
\begin{align*}
& \frac{d}{d r}\left\{\left(g x^{\prime}\right)\left(h x^{\prime}+x\right)+\frac{2 g h}{q+1} e^{-2 q S} x^{q+1}\right\}  \tag{2.12}\\
& \quad=\frac{2}{1+q} g e^{-2 q S}\left(\frac{4 h}{r}-\frac{3+q}{2}\right) x^{q+1}
\end{align*}
$$

Proof. By $(2.8),(2.10)$ and $(2.11)$, it is easy to see that $x$ satisfies

$$
\begin{equation*}
\left(h x^{\prime}+x\right)^{\prime}+h e^{-2 q S} x^{q}=0 \tag{2.13}
\end{equation*}
$$

By (2.8), (2.10), (2.11) and (2.13), we have (2.12).
Remark 2.4. Let $H(r)=\frac{4 h}{r}-\frac{3+q}{2}$. Using a partial integration, we have

$$
\begin{equation*}
H(r)=\frac{5-q}{2}-4 r e^{q S} \int_{r}^{\infty} q \tau^{-1} S^{\prime} e^{-q S} d \tau \tag{2.14}
\end{equation*}
$$

If $S \equiv$ constant, then $H(r)=\frac{5-q}{2}$, and (2.12) reduces to the usual Pohozaev identity.

From (2.4), (2.5), (S-1) and (S-2), it is easy to see that $y$ is decreasing to zero as $r \rightarrow \infty$ when $y$ is a ground-state solution. We next give some asymptotic behavior of $x$, when $y=e^{-S} x$ is a ground-state solution.

Lemma 2.5. Assume $S$ satisfies ( $S$-1) and ( $\mathbf{S - 2 )}$. If $x$ is the ground-state solution of (2.8) and (2.9), then we have
(i) $x(r) \geq c_{1} r^{-1}, x^{\prime} \leq c_{2} r^{-2}$ for all sufficiently large $r$, where $c_{1}>0, c_{2}<0$ are constants,
(ii) $x(r) \leq c_{3}(q) r^{\frac{-2}{q-1}}$ for all sufficiently large $r$ if $q>1$, and $r x(r) \rightarrow \infty$ as $r \rightarrow \infty$ if $q=3$.

The constants $c_{1}, c_{2}$ and $c_{3}(q)$ are independent of $r$.
Proof. Since $S$ is bounded and nondecreasing, according to the argument used in [14], Theorems 2.1, and 2.2, we have asymptotic behavior for $x$ if $x$ is the ground-state solution of (2.7) and (2.8).

By comparing the asymptotic behavior of $x(r) \geq c_{1} r^{-1}$, if $1<q<$ $3, r x(r) \rightarrow \infty$ when $q=3$, with $x(r) \leq c_{3}(q) r^{\frac{-2}{q-1}}$, we have an immediate contradiction. Thus, $1<q \leq 3$ and all solutions of (2.8)~(2.9) are Ball-type. The proof is complete.

Before we state the result for the full range of $q$, we make the following assumption:
(S-3) $H(r) \geq 0$ for any $r \geq 0$.
Indeed, as $1<q<5$, if $S^{\prime} \geq 0$ and $S(0)-S(\infty) \geq \ln \left(\frac{q+3}{8}\right)^{\frac{1}{q}}$ then $H(r) \geq 0$ for $r \geq 0$. We can now state the following:

Proposition 2.6. If $S$ satisfies (S-1) and (S-2), and if $x$ is the solution of $(2.8) \sim(2.9)$, then:
(i) if $1<q \leq 3$, then $\bar{R}<\infty$;
(ii) if $3<q<5$ and in addition, $S$ satisfies (S-3), then $\bar{R}<\infty$;
(iii) if $q \geq 5$, then $\bar{R}=\infty$.

Proof. For $3<q<5$, since we have a Pohozaev identity and $S$ satisfies (S-3), we can use the argument for Theorem 3.1 [14] and draw the appropriate conclusion.

For $q \geq 5$, if $\bar{R}<\infty$, then integrating (2.12) from 0 to $\bar{R}$, since $S^{\prime} \geq 0$, therefore $H(r)<0$ and we have a contradiction. The proof is complete.

We can now state the following:
Theorem 2.7. Assume $S(r)$ satisfies (S-1) and (S-2), and let $(\rho, v, S)_{(t, r)}$ be the solution given for $(2.1) \sim(2.3)$.
(i) If $\frac{4}{3} \leq \gamma<2,(\rho, v, S)$ is a Ball-type solution.
(ii) If $\frac{6}{5}<\gamma<\frac{4}{3}$, and $S(r)$ satisfies ( $S$-3), then $(\rho, v, S$ ) is a Ball-type solution.
(iii) If $1<\gamma<\frac{6}{5}$, then $(\rho, v, S)$ is a ground-state solution.

Remark 2.8. It is interesting to know the mass-radius diagram ( $M-R$ diagram) from [1]. The total mass $M$ of a Ball-type solution is given by

$$
M=4 \pi C_{q} \int_{0}^{\bar{R}} y^{q} r^{2} d r<\infty
$$

where $C_{q}=\left(\frac{q+1}{4 \pi}\right)^{\frac{q}{q-1}}$.
To understand the $M-R$ diagram, it is useful to study the following two problems.

Problem 1. Given $y(0)=\alpha>0, M>0$, how many solutions of (2.4) and (2.5) are there?

Problem 2. Given $y(0)=\alpha>0, \bar{R}>0$, how many solutions of (2.4) and (2.5) are there?

In [7], $S \equiv$ constant, we know the $M-R$ diagram for $1<q \leq 3$ looks like the following Fig. 1

FIG. 1.
But in (2.2) and (2.3), when $S \not \equiv$ constant, the computation of $\frac{d M}{d \alpha}$ in Problem 1 or $\frac{d \bar{R}}{d \alpha}$ in Problem 2 is more difficult than the case in which $S \equiv$ constant.

## 3. The Relation of Mass and Expanding of Star

In this section we shall study a particular solution for nonisentropic gas. Following [9], we adopt the following transformation to seek a particular class of solutions. Let

$$
\begin{gather*}
r=a(t) z,  \tag{3.1}\\
\rho(t, r)=A a^{-3}(t) y^{3}(z),  \tag{3.2}\\
v(t, r)=\dot{a}(t) z \text { and }  \tag{3.3}\\
s(t, r)=4 S(z) . \tag{3.4}
\end{gather*}
$$

The positive $r$ and $\rho \geq 0$ require $z>0, y(z) \geq 0$ and $a(t)>0$. It is easy to verify that $(1.1) \sim(1.3)$ are satisfied by (3.1) $\sim(3.4)$ and (1.2) becomes

$$
\begin{equation*}
a^{2} \ddot{a} z^{3}+A^{\gamma-1} z^{2} e^{4 S} a^{-3 \gamma+4} y^{3 \gamma-4}\left(3 \gamma y^{\prime}+4 S^{\prime} y\right)+4 \pi A \int_{0}^{z} y^{3} \xi^{2} d \xi=0 . \tag{3.5}
\end{equation*}
$$

Furthermore, if $\gamma=\frac{4}{3}$ and we let $A=\pi^{-3 / 2}$, then (3.5) becomes

$$
\begin{equation*}
\frac{1}{4 \pi A} a^{2} \ddot{a} z^{3}+z^{2} e^{4 S}\left(y^{\prime}+S^{\prime} y\right)+\int_{0}^{z} y^{3} \xi^{2} d \xi=0 . \tag{3.6}
\end{equation*}
$$

Now, (3.6) can be solved by the method of separation of variables. Indeed, let

$$
\begin{equation*}
a^{2} \ddot{a}(t)=\frac{4}{3} \pi A \lambda . \tag{3.7}
\end{equation*}
$$

Then (3.6) becomes

$$
\begin{equation*}
z^{2} e^{4 S}\left(y^{\prime}+y S^{\prime}\right)+\int_{0}^{z} \xi^{2}\left(y^{3}+\lambda\right) d \xi=0 \tag{3.8}
\end{equation*}
$$

We consider the initial condition

$$
\begin{equation*}
y^{\prime}(0)+y(0) S^{\prime}(0)=0, \quad y(0)>0 . \tag{3.9}
\end{equation*}
$$

Remark 3.1. We denote the solution of (3.8) and (3.9) by $y_{\lambda}(z)=$ $y(z, \lambda, y(0))$. As $\lambda=0$, the equation for $y_{0}(z)$ is the same as (2.1) and (2.2) for $q=3$. Henceforth, we will omit the subscript $\lambda$, which causes no confusion.
(3.8) and (3.9) are equivalent to

$$
\begin{equation*}
y(z)=e^{-4 S}\left\{y(0) e^{4 S(0)}+\int_{0}^{r} 3 e^{4 S} S^{\prime} y d \xi-\int_{0}^{z} \xi\left(1-\frac{\xi}{z}\right)\left(y^{3}+\lambda\right) d \xi\right\} . \tag{3.10}
\end{equation*}
$$

Using standard methods as in Proposition 2.1, we have a local solution $y(z)$ for (3.8) and (3.9) near $z=0$ if $S$ satisfies (S-1). We continue $y(z)$ to the
right as long as possible. Furthermore, if $S$ satisfies (S-2), then $y^{\prime}<0$ for $r \geq 0$ as $\lambda \geq 0$. On the other hand, $y^{\prime}$ may change signs as $\lambda<0$. In order to get more information about the solution $y(z)$, let

$$
\begin{equation*}
x=e^{S} y \tag{3.11}
\end{equation*}
$$

Differentiating (3.8) once, we obtain

$$
\begin{gather*}
\left(z^{2} e^{3 S} x^{\prime}\right)^{\prime}+z^{2} e^{-3 S} x^{3}+\lambda z^{2}=0  \tag{3.12}\\
x(0)=y(0) e^{S(0)}, \quad x^{\prime}(0)=0 \tag{3,13}
\end{gather*}
$$

Lemma 3.2 Let $x(z)$ be the solution of (3.12) $\sim(3.13)$. Let $Z=Z(\lambda)=$ $\sup \{z \mid x(z)>0$ in $(0, z)\}, \varphi(z)=\frac{\partial x}{\partial \lambda}$. Assume $S$ satisfies $(\mathbf{S}-\mathbf{1})$ and $\mathbf{( S - 2 )}$. If $x^{\prime}(z) \leq 0$ in $(0, Z)$, then $\varphi(z)<0$ in $(0, Z]$.

Proof. By (3.11), (3.12) and (3.13), it is easy to see that $\varphi(z)$ satisfies

$$
\begin{equation*}
\left(z^{2} e^{3 S} \varphi^{\prime}\right)^{\prime}+3 z^{2} e^{-3 S} x^{2} \varphi+z^{2}=0 \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(0)=0=\varphi^{\prime}(0) \tag{3.15}
\end{equation*}
$$

Define

$$
\begin{equation*}
\varphi \lambda(x)=\frac{1}{2} e^{3 S} \varphi^{\prime 2}+\int_{0}^{z}\left(3 e^{-3 S} x^{2} \varphi+1\right) \varphi^{\prime} d \xi . \tag{3.16}
\end{equation*}
$$

By partial integration, we have

$$
\begin{align*}
\varphi_{\lambda}(z)= & \frac{1}{2} e^{3 S} \varphi^{\prime 2}+\varphi+\frac{3}{2} e^{-3 S} x^{2} \varphi^{2} \\
& +\int_{0}^{z} \frac{3}{2} \varphi^{2}\left(3 S^{\prime} e^{-3 S} x^{2}-2 e^{-3 S} x x^{\prime}\right) d \xi \tag{3.17}
\end{align*}
$$

Then by (3.14), we have

$$
\begin{equation*}
\frac{d \varphi_{\lambda}}{d z}=-\left(\frac{2}{z}+\frac{3}{2} S^{\prime}\right) e^{3 S} \varphi^{\prime 2} \leq 0 \quad \text { for } z>0 \tag{3.18}
\end{equation*}
$$

Since $\varphi_{\lambda}(0)=0$,

$$
\begin{equation*}
\varphi_{\lambda}(z)<0 \text { in }(0, Z] . \tag{3.19}
\end{equation*}
$$

By (3.17), (3.19), (S-2) and our assumption that $x^{\prime}(z) \leq 0$, we have $\varphi(z)<0$ in $(0, Z]$.

Observe that $x(z, \lambda)$ is $C^{1}$ in $\lambda$, and if $x^{\prime}(Z(\lambda)) \neq 0$, then by the implicit function theorem $Z(\lambda)$ is $C^{1}$ in $\lambda$. If $Z<\infty$, we have

$$
\begin{equation*}
\frac{\partial x}{\partial z}(Z(\lambda), \lambda) \frac{d Z}{d \lambda}+\varphi(Z(\lambda), \lambda)=0 \tag{3.20}
\end{equation*}
$$

Hence, if $x^{\prime}(z) \leq 0$ in $(0, Z)$, then, by Lemma 3.2, $\frac{d Z}{d \lambda}<0$. Thus it is important to know when $x^{\prime}(z)$ is nonpositive in $(0, Z]$.

Lemma 3.3. Assume $S$ satisfies (S-1) and (S-2). If $x(z)$ is the solution of $(3.12) \sim(3.13)$, then there is $\bar{\lambda}<0$ such that for all $\lambda>\bar{\lambda}$, there exists $Z=Z(\lambda)<\infty$ such that $x(z)>0$ in $(0, Z), x(Z)=0$ and $x^{\prime}(z)<0$ in $(0, Z]$.

Proof. If $\lambda \geq 0$, by (3.12) $\sim(3.13)$

$$
\begin{equation*}
z^{2} e^{3 S} x^{\prime}(z)=-\int_{0}^{z}\left(\xi^{2} e^{-3 S} x^{3}+\lambda \xi^{2}\right) d \xi \tag{3.21}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
x^{\prime}(z)<0 \text { for } z>0, \quad \lambda \geq 0 . \tag{3.22}
\end{equation*}
$$

As $\lambda=0$, the equation of (3.12) is the same as (2.8). Thus, by Proposition $2.6(\mathrm{i}), Z(0)<\infty$. Furthermore, as $\lambda>0$, by (3.22) and Lemma 3.2, we have $\varphi(Z)<0$. Hence, $\frac{d Z}{d \lambda}<0$ for $\lambda>0$.

Since for $\lambda=0, x^{\prime}(z)<0$ in $(0, Z(0)]$, therefore as $\lambda<0$ and $|\lambda|$ is sufficiently small, we can use the argument of continued dependence on parameter $\lambda$ to obtain $Z(\lambda)<\infty$ such that $x(z)>0$ in $(0, Z(\lambda)), x^{\prime}(z)<0$ in $(0, Z(\lambda))$. We may choose $\bar{\lambda}$ to be the smallest number that still allows this argument to hold. The proof is complete.

Indeed, if $\lambda<0$ and is small enough, then $x(z)>0$ for all $z>0$. We state the result below.

Lemma 3.4. Assume $S$ satisfies ( $\boldsymbol{S} \mathbf{- 1}$ ) and ( $\boldsymbol{S}$-2). If $\lambda+\frac{1}{4} y^{3}(0)<0$, then every solution $x(z)$ of (3.11) $\sim(3.12)$ is positive for any $z>0$.

Proof. We define the energy function

$$
\begin{equation*}
E(z)=\frac{1}{2} e^{3 S} x^{\prime 2}+\int_{0}^{z}\left(e^{-3 S} x^{3}+\lambda\right) x^{\prime} d \xi+\lambda x(0)+\frac{1}{4} x^{4}(0) e^{-3 S(0)} . \tag{3.23}
\end{equation*}
$$

By partial integration, we have

$$
\begin{equation*}
E(z)=\frac{1}{2} e^{3 S} x^{\prime 2}+\lambda x+\frac{1}{4} e^{-3 S} x^{4}+\int_{0}^{z} \frac{3}{4} e^{-3 S} S^{\prime} x^{4} d \xi \tag{3.24}
\end{equation*}
$$

Differentiating (3.23) once, we obtain

$$
\begin{equation*}
\frac{d E}{d z}=-\left(\frac{2}{z}+\frac{3}{2} S^{\prime}\right) e^{3 S} x^{\prime 2} \leq 0 \tag{3.25}
\end{equation*}
$$

If there is any $Z(\lambda)<\infty$ such that $x(Z(\lambda))=0$, then by (S-2),(3.23) and (3.24), $0<E(Z(\lambda)) \leq E(0)$. Hence, if $\lambda+\frac{1}{4} y^{3}(0)=\frac{E(0)}{x(0)}<0$, then we have a contradiction. The proof is complete.

The total mass $M$ of solution ( $\rho, v, S$ ) of (1.1)~(1.4) is given by

$$
\begin{equation*}
M=4 \pi \int_{0}^{R(t)} \rho(t, r) r^{2} d r \tag{3.26}
\end{equation*}
$$

where $R(t) \leq \infty$ is the first zero of $\rho(t, r)$ at time t . For solutions of the form (3.1) $\sim(3.4), M(\lambda)$ is dependent only on $\lambda$ and $y(0)$, with

$$
\begin{equation*}
M(\lambda)=4 \pi A \int_{0}^{Z(\lambda)} y^{3} \xi^{2} d \xi \tag{3.27}
\end{equation*}
$$

By (3.11),

$$
\begin{equation*}
M(\lambda)=4 \pi A \int_{0}^{Z(\lambda)} e^{-3 S} x^{3} \xi^{2} d \xi \tag{3.28}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{d M}{d \lambda}=4 \pi A \int_{0}^{Z(\lambda)} 3 e^{-3 S} x^{2} \cdot \frac{\partial x}{\partial \lambda} \xi^{2} d \xi \tag{3.29}
\end{equation*}
$$

if $Z(\lambda)<\infty$ and $x(Z(\lambda))=0$. By Lemmas 3.2, and 3.3, we have:
Lemma 3.5. Assume $S$ satisfies (S-l) and (S-2), and let $x(0)$ be fixed. Then there is a $\bar{\lambda}$ dependent on $x(0)$ such that for all $\lambda>\bar{\lambda}$,

$$
\begin{equation*}
\frac{d M}{d \lambda}<0 . \tag{3.30}
\end{equation*}
$$

Proof. The result follows easily from Lemmas 3.2 and 3.3. The proof is complete.

By Lemma 3.5, we define

$$
\begin{equation*}
\bar{M}=\lim _{\lambda \rightarrow \bar{\lambda}} M(\lambda) . \tag{3.31}
\end{equation*}
$$

On the other hand, for the equation (3.7), we consider the initial-value problem

$$
\begin{equation*}
a(0)=a_{0}>0, \dot{a}(0)=a_{1} . \tag{3.32}
\end{equation*}
$$

The solutions of (3.7) and (3.32) have been studied in [3, 9]. We merely review the results here.

Proposition 3.6. Let $a(t)$ be the solution of (3.7) and (3.32). We then have the following results.
(I) If $\lambda>0$, then $a(t)>0$ for any $t>0$, and $a(t) \rightarrow \infty$ as $t \rightarrow \infty$.
(II) If $\lambda=0$, then $a(t)=a_{1} t+a_{0}$.
(III) If $\lambda<0$, let

$$
\begin{equation*}
a_{1}^{*}(\lambda)=\left(\frac{S \pi A}{3}|\lambda| a_{0}^{-1}\right)^{1 / 2} \tag{3.33}
\end{equation*}
$$

If $a^{1} \geq a_{1}^{*}(\lambda)$, then $a(t)>0$ for any $t>0$, and $a(t) \rightarrow \infty$ as $t \rightarrow \infty$.
If $a_{1}<a_{1}^{*}(\lambda)$, then there is $T<\infty$ such that $a(t)>0$ in $(0, T)$, and $a(t) \rightarrow 0$ as $t \rightarrow T^{-}$.

Denote by $M_{0}=M(0)$. For any $\lambda \in(\bar{\lambda}, \infty), a_{0}>0, a_{1} \in \mathbb{R}$, the solutions of (3.1) $\sim(3.4)$ are given by

$$
\begin{gather*}
\rho(t, r)=A a^{-3}(t) y^{3}\left(\frac{r}{a(t)}\right),  \tag{3.34}\\
v(t, r)=a^{-1}(t) \dot{a}(t) r \text { and }  \tag{3.35}\\
S(t, r)=S\left(\frac{r}{a(t)}\right), \tag{3.36}
\end{gather*}
$$

with an initial velocity of

$$
\begin{equation*}
v\left(0, r ; a_{0}, a_{1}\right)=a_{0}^{-1} a_{1} r \tag{3.37}
\end{equation*}
$$

where $a(t) \equiv a\left(t ; a_{0}, a_{1}\right)$ and $S$ is any given function satisfying (S-1) and (S-2). Denote the escape velocity, $v_{e} r$, as

$$
\begin{equation*}
v_{e} \equiv v_{e}\left(\lambda, a_{0}\right)=\left(\frac{8 \pi A}{3}|\lambda| a_{0}^{-1}\right)^{1 / 2} \tag{3.38}
\end{equation*}
$$

Combining the results of Proposition 3.6 and Lemma 3.5, we obtain the following main result.

Theorem 3.7. Assume $S$ satisfies ( $\mathbf{S}-\mathbf{1}$ ), (S-2), and the total mass $M \in$ $(0, \bar{M})$. Then a gaseous star of the form (3.1) $\sim(3.4)$ is given by (3.33) ~ (3.35). Furthermore, we have:
(I) If $M<M_{0}$, then the star will expand and the density eventually tends toward zero.
(II) If $M>M_{0}$, and the initial velocity $v(0, r) \geq v_{e} r$ for $r \in\left(0, R_{0}\right)$, where $\rho\left(0, R_{0}\right)=0$, then the star behaves as in (I). On the other hand, if $v(0, r)<v_{e} r$ for $r \in\left(0, R_{0}\right)$, then the star will collapse toward its center in a finite time.
(III) If $M=M_{0}$, we have three cases:
(i) when $a_{1}>0$, the star behaves as in (I);
(ii) when $a_{1}<0$, the star collapses toward its center;
(iii) when $a_{1}=0$, the star is in equilibrium.

## Acknowledgment

The author expresses his appreciation to Professor S. S. Lin and Professor T. Makino for their many helpful suggestions.

## References

1. S. Chandrasekhar, An Introduction to the Study of Stellar Structures, University of Chicago Press, 1939.
2. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
3. C. C. Fu and S. S. Lin, On the critical mass of the collapse of gaseous star in spherically symmetric and isentropic motion, preprint, 1997.
4. B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
5. M. Kriele, On the collapse of a spherically symmetric star, J. Math. Phys. 36 (1995), 3676-3693.
6. N. Kawano, E. Yanagida and S. Yotsutani, Structure theorem for positive radial solution to $\Delta u+K(|x|) u^{p}=0$ in $\mathbb{R}^{n}$, Funkcial. Ekvac. 36 (1993), 557-579.
7. W. C. Kuan and S. S. Lin, Numbers of equilibria for the equation of selfgravitating isentropic gas surrounding a solid ball, Japan J. Indust. Appl. Math. 13 (1996), 311-331.
8. S. S. Lin, Stability of gaseous stars in spherically symmetric motion, SIAM J. Math. Anal., to appear.
9. T. Makino, Blowing up solutions of the Euler-Poisson equation for the evolution of gaseous stars, Transport Theory Statist. Phys. 21 (1992), 615-624.
10. T. Makino, Mathematical aspects of the Euler-Poisson equation for the evolution of gaseous stars, Lecture Notes 1993, National Chiao-Tung University, Hsinchu, Taiwan, March 1993.
11. T. Makino, K. Mizohata and S. Ukai, The global weak solutions of compressible Euler equation with spherical symmetry, Japan J. Indust. Appl. Math. 9 (1992), 431-449.
12. T. Makino, K. Mizohata and S. Ukai, The global weak solutions of compressible Euler equation with spherical symmetry (II), Japan J. Indust. Appl. Math. 11 (1994), 417-426.
13. W.-M. Ni and R. Nussbaum, Uniqueness and non-uniqueness for positive radial solution of $\Delta u+f(u, r)=0$, Comm. Pure Appl. Math. 38 (1985), 67-108.
14. W.-M. Ni and J. Serrin, Existence and nonexistence theorem for ground states of quasilinear partial differential equation. The Anomalus case., Accad. Naz. Lincei 77 (1986), 231-257.
15. J. L. Tassoul, Theory of Rotating Stars, Princeton University Press, Princeton, NJ, 1978.

Department of Applied Mathematics, National Chiao Tung University
Hsinchu, Taiwan

