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A LARGE DEVIATION PRINCIPLE OF
REFLECTING DIFFUSIONS

Shey Shiung Sheu

Abstract. In this paper, we will prove that the solution of stochastic
differential equation with a small diffusion coefficient in a nonsmooth do-
main normally reflected at boundary satisfies a large deviation principle
and converges to a deterministic path in Lp.

1. Introduction

Let D be a domain in Rd and for each x ∈ ∂D, let

Nx,r = {n ∈ Rd : |n| = 1, B(x− rn, r) ∩D = ∅},

Nx =
⋃
r>0
Nx,r,

where
B(z, r) = {y ∈ Rd : |y − z| < r}, z ∈ Rd, r > 0.

Assume D satisfies the following two conditions:

(A) There exists r0 > 0 such that Nx = Nx,r0 6= ∅.

(B) There exist constants α > 0 and β > 0 such that for any x ∈ ∂D, there
is a unit vector `x such that
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(`x,n) ≥ β, ∀ n ∈
⋃

y∈B(x,α)

Ny,

where ( , ) is the usual inner product in Rd.
For T > 0, let C = C[0, T ] = {f : f is a continuous map from [0, T ] to Rd

such that f(0) ∈ D}, C = C[0, T ] = {f : f is a continuous map from [0, T ]
to D}, let ‖f‖T = sup

s∈[0,T ]
|f(s)|. Let BV = {f : f is a continuous map from

[0, T ] to Rd with bounded variation, f(0) = 0}. For f ∈ BV , let |f |t = total
variation of f in the interval [0, t] ⊂ [0, T ]. For φ ∈ C,ψ ∈ C, η ∈ BV, (φ, ψ, η)
are associated if

( i ) ψ(t) = φ(t) + η(t), ∀t ∈ [0, T ], and

(ii) η(t) =
∫ t

0 nsd|η|s, |η|t =
∫ t

0 1∂D(ψ(s))d|η|s,
where 1∂D is the indicator function, ns ∈ Nψ(s).

Given a φ ∈ C, Tanaka [8] showed that there is a unique pair (ψ, η), ψ ∈
C, η ∈ BV , such that (φ, ψ, η) are associated whenever D is convex (hence
condition (A) is automatically satisfied for r0 = ∞). Lions and Sznitman [5]
extended Tanaka’s results to the case when D is C2. Saisho [6] relaxed their
conditions to (A) and (B).

The Skorohod equation has a stochastic counterpart. Let σ : D → Rd ⊗
Rd, b : D → Rd. Let (Ω,F , P ) be a complete probability space with filtration
(Ft)t≥0 satisfying the usual conditions. Suppose (Bt)t≥0 is a d-dimensional Ft-
Brownian motion. Consider the problem of solving the following stochastic
differential equation (called the Skorohod SDE): find a D-valued continuous
Ft- semimartingale (Xt)t≥0 and a continuous bounded variation process (ηt)t≥0

such that

Xt = x0 +
∫ t

0
σ(Xs)dBs +

∫ t

0
b(Xs)ds+ ηt,

|η|t =
∫ t

0
1∂D(Xs)d|η|s, ηt =

∫ t

0
nsd|η|s, ns ∈ NXs .

Saisho [6] showed that the Skorohod SDE has a pathwise unique solution under
the following condition:

(C) Both σ and b are bounded and uniformly Lipschitz; namely, there is an
absolute constant c > 0 such that

|σ(x)|+ |b(x)| ≤ c,

|σ(x)− σ(y)|+ |b(x)− b(y)| ≤ c|x− y|,

for every x, y ∈ D.

In other words, (x0+
∫ t

0 σ(Xs)dBs+
∫ t

0 b(Xs)ds,Xt, ηt) are associated for almost
all paths.
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2. Large Deviations

Now, replace σ by
√
εσ and let (Xε

t )t≥0 be a solution of the corresponding
Skorohod SDE. We will show Xε

t satisfies a large deviation principle. First, for
an associated triple (φ, ψ, η), let ψ = F (φ). It is known that F is continuous
(see Lions and Sznitman [5] and Saisho [6]). In addition to the conditions (A),
(B), (C), we will need the following condition:

(D) The matrix a(x) = σ(x)σ′(x) (the ‘′’ means transpose) is uniformly
elliptic; namely, there is a λ > 0 such that

a(x) ≥ λ|x|2, ∀x ∈ D.

Given σ, b satisfying conditions (C) and (D), let

S(ψ) =
1
2

inf
φ∈F−1(ψ)

∫ T

0

(
φ̇(s)− b(ψ(s))

)′
a−1(ψ(s))

(
φ̇(s)− b(ψ(s))

)
ds

for ψ ∈ C[0, T ], with the understanding that S(ψ) = ∞ if F−1(ψ) is empty
or φ(s) is not absolutely continuous (φ is the derivative of φ). The following
lemma collects some simple facts about S(ψ); see Stroock [6] or Varadhan [8].

Lemma 2.1. We have
1. S(ψ) is lower semi-continuous in ψ,
2. {ψ ∈ C[0, T ] : S(ψ) ≤ h} is compact for each h ≥ 0,
3. If S(ψ) <∞, then there is a φ ∈ C[0, T ] such that F (φ) = ψ and

S(ψ) =
1
2

∫ T

0

(
φ̇(s)− b(ψ(s))

)′
a−1(ψ(s))

(
φ̇(s)− b(ψ(s))

)
ds.

Theorem 2.2. Xε = (Xε
t ) satisfies a large deviation principle with rate

function S(ψ). That is, for every Borel set A ⊆ C[0, T ], we have

limε↓0ε logP (Xε ∈ A) ≤ − inf
ψ∈A

S(ψ)

and

lim
ε↓0

ε logP (Xε ∈ A) ≥ − inf
ψ∈A◦

S(ψ),

where A is the closure of A,A◦ the interior of A.

Proof. This follows directly from the so-called contraction principle and a
large deviation principle for diffusions (see Stroock [7] or Varadhan [9], p. 5).
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Similar results were obtained by Anderson and Orey [2], Doss and Priouret
[3] when D is smooth, and by Dupuis [4] when D is convex.

Lemma 2.3. If (φ, ψ, η) are associated and if φ is Hölder continuous:
|φ(t)− φ(s)| ≤ K|t− s|γ , 0 < γ ≤ 1,K > 0, then

|η|t ≤ Kek1‖φ‖t+k2 ,

where k1, k2 are positive constants, k1 depends only on r0, α, β, γ; k2 depends
only on r0, α, β, γ and t; r0 comes from condition (A); α and β come from
condition (B).

Proof. By Theorem 4.2 in Saisho [5], we have

|η|t ≤ k sup
0≤s1<s2≤t

|φ(s1)− φ(s2)|,

where k is a positive constant depending only on r0, α, β, t, ‖φ‖t, and the mod-
ulus of uniform continuity of φ on [0, t]. In fact, by looking carefully at Saisho’s
proof and using the Hölder continuity of φ, one sees k can be written as

k = Kek1‖φ‖t+k2 ,

where k1 = k1(r0, α, β, γ) > 0, k2 = k2(r0, α, β, γ, t) > 0. Hence the result
follows.

ψ ∈ C is called an equilibrium point of S if S(ψ) = 0.

Theorem 2.4. Let Xε = (Xε
t )t≥0 be a solution of Skorohod SDE and ψ

an equilibrium point. Then for each p, 0 < p <∞, each t > 0, we have

E‖Xε − ψ‖pt → 0 as ε→ 0.

Proof. Let Xε = (Xε
t ), Y = (Y ε

t ), where

Xε
t = Y ε

t + ηt, Y ε
t = x0 +

∫ t

0

√
εσ(Xs)dBs +

∫ t

0
b(Xs)ds.

By Theorem 2.2, Xε converges exponentially fast to ψ in probability as ε→ 0
and hence it is enough to show ‖Xε‖pt is uniformly integrable in ε. We know
for any positive number k > 0, by condition (C),

sup
0≤ε≤1

E
(
ek‖Y

ε‖t
)
<∞.
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By the well-known Borel inequality (see, e.g., Adler [1] p. 43), we know if

Z = sup
0≤s1<s2≤t

|Bs2 −Bs1 |
|s2 − s1|1/3

,

then
E(Zp) <∞ for each p, 0 < p <∞.

Since σ and b are bounded, for almost all ω we have∣∣Y ε
s2

(ω)− Y ε
s1

(ω)
∣∣ ≤ K(ω)|s2 − s1|1/3, 0 ≤ s1 < s2 ≤ t,

with
E(Kp) <∞, 0 < p <∞.

Then by Lemma 2.3, we get for 0 < p < ∞, sup
0≤ε≤1

E(|η|pt ) < ∞. Obviously,

sup
0≤ε≤1

E‖Y ε‖pt <∞. Hence, sup
0≤ε≤1

E‖Xε‖pt <∞, ∀p > 0, which implies ‖Xε‖p
′

t

is uniformly integrable ∀p′, 0 < p′ < p. But this is enough since p is any
positive number.

Remark 2.5. ψ is an equilibrium point if and only if

ψ(t) = x0 +
∫ t

0
b(ψ(s))ds+ η(t),

η(t) =
∫ t

0
nsd|η|s, ns ∈ Nψ(s),

|η|t =
∫ t

0
1∂D(ψ(x))d|η|s.

Therefore, ψ is a solution of the following problem: a particle starts initially
at x0 ∈ D. It moves according to the velocity field b(x), x ∈ D. Whenever
it reaches the boundary, it bounces back normally. Such ψ exists uniquely
because it is a special care corresponding to σ = 0 in the Skorohod SDE.
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