ESTIMATION OF PARAMETERS OF A LOGNORMAL DISTRIBUTION

Wei-Hsiung Shen

Abstract

To estimate the mean and the variance of a lognormal distribution, Finney (1941) derived the uniformly minimum variance unbiased estimators $(U M V U E)$ in the form of infinite series. In this paper, we give an alternative derivation of the $U M V U E$ s, and also obtain them in integral forms.

1. Introduction

Assume that X_{1}, \ldots, X_{n} are independent random variables each having the same $\operatorname{lognormal}$ distribution with mean θ and variance η^{2}, both being unknown. To estimate θ and η^{2}, the usual approach is to use the transformation $Y_{i}=\ln X_{i}, i=1, \ldots, n$, and the problem is reduced to that of estimation of parameters of a normal distribution. Suppose that Y_{i} is distributed as $N\left(\mu, \sigma^{2}\right)$ with mean μ and variance σ^{2} so that

$$
\begin{aligned}
\theta & =\exp \left(\mu+\sigma^{2} / 2\right) \\
\eta^{2} & =\exp \left(2 \mu+\sigma^{2}\right)\left\{\exp \left(\sigma^{2}\right)-1\right\}
\end{aligned}
$$

Obviously, $\bar{Y}=\sum_{1}^{n} Y_{i} / n$ and $S_{Y}^{2}=\sum_{1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$ are jointly sufficient and complete for μ and σ^{2}. We can get the maximum likelihood estimators ($M L E$) of θ and η^{2} as

$$
\begin{aligned}
\tilde{\theta}_{M L E} & =\exp \left(\bar{Y}+\frac{1}{2 n} S_{Y}^{2}\right) \\
\tilde{\eta}_{M L E}^{2} & =\exp \left(2 \bar{Y}+\frac{1}{n} S_{Y}^{2}\right)\left\{\exp \left(\frac{1}{n} S_{Y}^{2}\right)-1\right\}
\end{aligned}
$$

Received October 17, 1996; revised February 26, 1997.
Communicated by I.-S. Chang.
1991 Mathematics Subject Classification: 62G05.
Key words and phrases: Lognormal distribution, uniformly minimum unbiased estimator.
respectively. However, $\tilde{\theta}_{M L E}$ and $\tilde{\eta}_{M L E}^{2}$ are biased since

$$
\begin{aligned}
E\left(\tilde{\theta}_{M L E}\right)= & \theta \exp \left\{-\frac{n-1}{n} \frac{\sigma^{2}}{2}\right\}\left(1-\frac{\sigma^{2}}{n}\right)^{-(n-1) / 2} \\
E\left(\tilde{\eta}_{M L E}^{2}\right)= & \eta^{2} \exp \left\{\left(\frac{2}{n}-1\right) \sigma^{2}\right\}\left\{\exp \left(\sigma^{2}\right)-1\right\}^{-1} \\
& \cdot\left\{\left(1-\frac{4 \sigma^{2}}{n}\right)^{-(n-1) / 2}-\left(1-\frac{2 \sigma^{2}}{n}\right)^{-(n-1) / 2}\right\} .
\end{aligned}
$$

Finney (1941) defined the series

$$
\begin{equation*}
f(t)=1+t+\frac{n-1}{n+1} \frac{t^{2}}{2!}+\frac{(n-1)^{2}}{(n+1)(n+3)} \frac{t^{3}}{3!}+\cdots \tag{1.1}
\end{equation*}
$$

and obtain the adjusted MLEs

$$
\begin{align*}
& \hat{\theta}_{M L E}=\exp (\bar{Y}) f\left(\frac{1}{2 n} S_{Y}^{2}\right) \tag{1.2}\\
& \hat{\eta}_{M L E}^{2}=\exp (2 \bar{Y})\left\{f\left(\frac{2}{n} S_{Y}^{2}\right)-f\left(\frac{n-2}{n(n-1)} S_{Y}^{2}\right)\right\} \tag{1.3}
\end{align*}
$$

which are unbiased for θ and η^{2}, and with asymptotic variances, respectively,

$$
\begin{aligned}
\operatorname{var}\left(\hat{\theta}_{M L E}\right) \sim & \frac{1}{n}\left(\sigma^{2}+\frac{1}{2} \sigma^{4}\right) \exp \left(2 \mu+\sigma^{2}\right) \\
\operatorname{var}\left(\hat{\eta}_{M L E}^{2}\right) \sim & \frac{2 \sigma^{2}}{n} \exp \left(4 \mu+2 \sigma^{2}\right) \\
& \cdot\left\{2\left[\exp \left(\sigma^{2}\right)-1\right]^{2}+\sigma^{2}\left[2 \exp \left(\sigma^{2}\right)-1\right]^{2}\right\}
\end{aligned}
$$

By the Lehmann-Scheffé theorem, $\hat{\theta}_{M L E}$ and $\hat{\eta}_{M L E}^{2}$ are the uniformly minimum variance unbiased estimators $(U M V U E)$ of θ and η^{2}, respectively.

Remark. The conditions $\sigma^{2}<n$ and $\sigma^{2}<n / 4$ for computing $E\left(\hat{\theta}_{M L E}\right)$ and $E\left(\hat{\eta}_{M L E}^{2}\right)$ are missing in Finney (1941) and Kendall and Stuart (1979).

In this paper, we combine an orthogonal transformation and the RaoBlackwell theorem to give an alternative derivation of the $U M V U E \mathrm{~s}$ of θ and η^{2}, and also obtain $U M V U E$ s in integral forms.

2. Preliminaries

In this section, we introduce the famous Helmert orthogonal transformation and some results which are needed in the sequel.

Assume, without loss of generality, Y_{1}, \ldots, Y_{n}, are distributed as standard normal. Let $\mathbf{y}^{\prime}=\left(Y_{1}, \ldots, Y_{n}\right)$ and $\mathbf{z}^{\prime}=\left(Z_{1}, \ldots, Z_{n}\right)$ be $n \times 1$ vectors. Define the orthogonal transformation by $\mathbf{z}=\Gamma \mathbf{y}$ where

$$
\Gamma=\left[\begin{array}{cccccc}
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\
\frac{1}{\sqrt{1 \cdot 2}} & \frac{-1}{\sqrt{1 \cdot 2}} & 0 & 0 & \cdots & 0 \\
\frac{1}{\sqrt{2 \cdot 3}} & \frac{1}{\sqrt{2 \cdot 3}} & \frac{-2}{\sqrt{2 \cdot 3}} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
\frac{1}{\sqrt{(n-1) n}} & \frac{1}{\sqrt{(n-1) n}} & \frac{1}{\sqrt{(n-1) n}} & \frac{1}{\sqrt{(n-1) n}} & \cdots & \frac{-(n-1)}{\sqrt{(n-1) n}}
\end{array}\right]
$$

is $n \times n$ Helmert orthogonal matrix and the absolute value of the Jacobian of the transformation is one. Since $\mathbf{z} \mathbf{z}=\mathbf{y}^{\prime} \mathbf{y}$, the joint pdf of Z_{1}, \ldots, Z_{n} is $f\left(Z_{1}\right.$, $\left.\ldots, Z_{n}\right)=(2 \pi)^{-n / 2} \exp \left\{-\mathbf{z}^{\prime} \mathbf{z} / 2\right\}$. Therefore, Z_{1}, \ldots, Z_{n} are iid $N(0,1)$.

Lemma 2.1. Let X and Y be two independent random variables distributed as standard normal and chi-squared with $k(\geq 1)$ d.f., respectively. Define $V=X / \sqrt{X^{2}+Y}$. Then the pdf of V is

$$
f(v)=\left[B\left(\frac{1}{2}, \frac{k}{2}\right)\right]^{-1}\left(1-v^{2}\right)^{(k-2) / 2}, \quad-1<v<1 ;
$$

and $E\left(V^{2 m+1}\right)=0, m=0,1,2, \ldots$.
Proof. The joint pdf of X and Y is

$$
f(x, y)=c \exp \left\{-x^{2} / 2\right\} y^{(k-2) / 2} \exp \{-y / 2\}
$$

where $c=\left[\sqrt{\pi}(\sqrt{2})^{k+1} \Gamma\left(\frac{k}{2}\right)\right]^{-1}$. Define $V=X / \sqrt{X^{2}+Y}$ and $W=Y$. Then the Jacobian of the transformation is $w^{1 / 2}\left(1-v^{2}\right)^{-3 / 2}$. Hence, the joint pdf of V and W is

$$
f(v, w)=c\left(1-v^{2}\right)^{-3 / 2} \exp \left\{-\frac{1}{2} \frac{w}{1-v^{2}}\right\} w^{(k-1) / 2} .
$$

Therefore, the marginal pdf of V is

$$
\begin{aligned}
& f(v)=c\left(1-v^{2}\right)^{-3 / 2} \int_{0}^{\infty} \exp \left\{-\frac{1}{2} \frac{w}{1-v^{2}}\right\} w^{(k-1) / 2} d w \\
& =c^{*}\left(1-v^{2}\right)^{(k-2) / 2}, \quad-1<v<1,
\end{aligned}
$$

where $c^{*}=\Gamma\left(\frac{k+1}{2}\right) / \sqrt{\pi} \Gamma\left(\frac{k}{2}\right)$. Furthermore,

$$
E\left(V^{2 m+1}\right)=c^{*} \int_{-1}^{1} v^{2 m+1}\left(1-v^{2}\right)^{(k-2) / 2} d v=0
$$

for $m=0,1,2, \ldots$, since the integrand is an odd function.

3. UMVUE of θ

Since \bar{Y} and S_{Y}^{2} are jointly sufficient and complete for μ and σ^{2}, and $\exp \left(Y_{n}\right)$ is an unbiased estimator of θ, then by the Rao-Blackwell theorem, $E\left\{\exp \left(Y_{n}\right) \mid \bar{Y}, S_{Y}^{2}\right\}$ is the $U M V U E$ of θ.

Note that $z_{1}^{2}=n(\bar{Y})^{2}, S_{Y}^{2}=\sum_{2}^{n} z_{i}^{2}$ and $Y_{n}-\bar{Y}=-\sqrt{\frac{n-1}{n}} z_{n}$. Then

$$
\frac{Y_{n}-\bar{Y}}{S_{Y}}=-\sqrt{\frac{n-1}{n}} z_{n} /\left(\sum_{i=2}^{n} z_{i}^{2}\right)^{1 / 2}=-\sqrt{\frac{n-1}{n}} U
$$

where $U=z_{n} /\left(\sum_{2}^{n} z_{i}^{2}\right)^{1 / 2}=z_{n} /\left(z_{n}^{2}+\sum_{i=2}^{n-1} z_{i}^{2}\right)^{1 / 2}$ and, by Lemma 2.1, the pdf of U is

$$
\begin{equation*}
f(u)=\left[B\left(\frac{1}{2}, \frac{n-2}{2}\right)\right]^{-1}\left(1-u^{2}\right)^{(n-4) / 2}, \quad-1<u<1 . \tag{3.1}
\end{equation*}
$$

Furthermore, by Basu's theorem (Lehmann, 1983), $\left(Y_{n}-\bar{Y}\right) / S_{Y}$ is independent of \bar{Y} and S_{Y}. Now consider

$$
\begin{align*}
& E\left\{\exp \left(Y_{n}\right) \mid \bar{Y}, S_{Y}^{2}\right\} \\
& =E\left\{\left.\exp \left(\bar{Y}+\frac{Y_{n}-\bar{Y}}{S_{Y}} S_{Y}\right) \right\rvert\, \bar{Y}, S_{Y}^{2}\right\} \\
& =E\left\{\exp (\bar{Y}) \mid \bar{Y}, S_{Y}^{2}\right\} E\left\{\left.\exp \left(-\sqrt{\frac{n-1}{n}} S_{Y} U\right) \right\rvert\, \bar{Y}, S_{Y}^{2}\right\} \tag{3.2}\\
& =\exp (\bar{Y}) E\left\{\exp \left(-\sqrt{\frac{n-1}{n}} S_{Y} U\right)\right\}
\end{align*}
$$

Since the expectation in (3.2) is conditional on S_{Y}, we have, by expanding $E\left\{\exp \left(-\sqrt{\frac{n-1}{n}} S_{Y} U\right)\right\}$ in infinite series and applying the second part of Lemma 2.1,

$$
\begin{aligned}
E\left\{\exp \left(-\sqrt{\frac{n-1}{n}} S_{Y} U\right)\right\} & =\sum_{m=0}^{\infty} \frac{\left(-\sqrt{\frac{n-1}{n}} S_{Y}\right)^{2 m}}{(2 m)!} E\left(U^{2 m}\right) \\
& =\frac{\Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi}} \sum_{m=0}^{\infty} \frac{\left(\frac{n-1}{n} S_{Y}^{2}\right)^{m}}{(2 m)!} \frac{\Gamma\left(\frac{1}{2}+m\right)}{\Gamma\left(\frac{n-1}{2}+m\right)}
\end{aligned}
$$

since U^{2} is distributed as $\operatorname{Beta}\left(\frac{1}{2}, \frac{n-2}{2}\right)$. Note that

$$
\begin{aligned}
\frac{\Gamma\left(\frac{2 m+1}{2}\right)}{\sqrt{\pi}(2 m)!} & =\left(m!2^{2 m}\right)^{-1} \\
\frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n-1}{2}+m\right)} & =\frac{2^{m}}{(n-1)(n+1)(n+3) \cdots(n-1+2 m-2)} \\
\left(\frac{n-1}{n} S_{Y}^{2}\right)^{m} & =\left(\frac{1}{2 n} S_{Y}^{2}\right)^{m} 2^{m}(n-1)^{m}
\end{aligned}
$$

and thus

$$
\begin{aligned}
& E\left\{\exp \left(-\sqrt{\frac{n-1}{n}} S_{Y} U\right)\right\} \\
& =1+\sum_{m=1}^{\infty} \frac{\Gamma\left(\frac{n-1}{2}\right)\left(\frac{n-1}{n} S_{Y}^{2}\right)^{m} \Gamma\left(\frac{1}{2}+m\right)}{\sqrt{\pi}(2 m)!\Gamma\left(\frac{n-1}{2}+m\right)} \\
& =1+\sum_{m=1}^{\infty} \frac{\Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{2 m+1}{2}\right)\left(\frac{1}{2 n} S_{Y}^{2}\right)^{m} 2^{m}(n-1)^{m}}{\Gamma\left(\frac{n-1}{2}+m\right) \sqrt{\pi}(2 m)!} \\
& =1+\sum_{m=1}^{\infty}\left(\frac{1}{2 n} S_{Y}^{2}\right)^{m} \frac{1}{m!} \frac{(n-1)^{m}}{(n-1)(n+1) \cdots(n+2 m-3)} \\
& =f\left(\frac{1}{2 n} S_{Y}^{2}\right),
\end{aligned}
$$

where f is as in (1.1). Hence, the $U M V U E$ of θ derived by using the RaoBlackwell theorem is indeed identical to $\hat{\theta}_{M L E}$ in (1.2).

Furthermore, we may use (3.1) to compute the expectation on the right hand side of (3.2) and then obtain an $U M V U E$ of θ in an integral form as

$$
\begin{aligned}
& \hat{\theta}_{U M V U E}^{*}=E\left\{\exp \left(Y_{n}\right) \mid \bar{Y}, S_{Y}^{2}\right\}=\exp (\bar{Y}) E\left\{\exp \left(-\sqrt{\frac{n-1}{n}} S_{Y} U\right)\right\} \\
& =\exp (\bar{Y})\left[B\left(\frac{1}{2}, \frac{n-2}{2}\right)\right]^{-1} \int_{-1}^{1} \exp \left(-\sqrt{\frac{n-1}{n}} S_{Y} u\right)\left(1-u^{2}\right)^{(n-4) / 2} d u .
\end{aligned}
$$

4. UMVUE OF η^{2}

Since $\exp \left(2 Y_{n}\right)-\exp \left(Y_{n}+Y_{n-1}\right)$ is an unbiased estimator of η^{2}, so by the Rao-Blackwell theorem, $E\left\{\exp \left(2 Y_{n}\right)-\exp \left(Y_{n}+Y_{n-1}\right) \mid \bar{Y}, S_{Y}^{2}\right\}$ is an $U M V U E$ of η^{2}. Now we use the same idea as in the previous section to obtain the $U M V U E$ of η^{2}. Clearly

$$
\begin{align*}
& E\left\{\exp \left(2 Y_{n}\right) \mid \bar{Y}, S_{Y}^{2}\right\} \\
& = \\
& =E\left\{\left.\exp \left(2 \bar{Y}-2 \sqrt{\frac{n-1}{n}} S_{Y} U\right) \right\rvert\, \bar{Y}, S_{Y}^{2}\right\} \tag{4.1}\\
& = \\
& \exp (2 \bar{Y}) E\left\{\exp \left(-2 \sqrt{\frac{n-1}{n}} S_{Y} U\right)\right\} \\
& =\exp (2 \bar{Y}) \frac{\Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi}} \sum_{m=0}^{\infty} \frac{\left(4 \frac{n-1}{n} S_{Y}^{2}\right)^{m}}{(2 m)!} \frac{\Gamma\left(\frac{1}{2}+m\right)}{\Gamma\left(\frac{n-1}{2}+m\right)} \tag{4.2}\\
& = \\
& \quad \exp (2 \bar{Y})\left[B\left(\frac{1}{2}, \frac{n-2}{2}\right)\right]^{-1} \\
& \\
& \quad \cdot \int_{-1}^{1} \exp \left(-2 \sqrt{\frac{n-1}{n}} S_{Y} u\right)\left(1-u^{2}\right)^{(n-4) / 2} d u .
\end{align*}
$$

For the second term, note that

$$
\begin{aligned}
Y_{n}+Y_{n-1}-2 \bar{Y} & =\frac{-(n-2)}{\sqrt{n(n-1)}} Z_{n}-\sqrt{\frac{n-2}{n-1}} Z_{n-1} \\
& =a Z_{n}+b Z_{n-1}
\end{aligned}
$$

where $a=\frac{-(n-2)}{\sqrt{n(n-1)}}$ and $b=-\sqrt{\frac{n-2}{n-1}}$, and let

$$
V=\left(Y_{n}+Y_{n-1}-2 \bar{Y}\right) / S_{Y}=\left(a Z_{n}+b Z_{n-1}\right) / S_{Y} .
$$

Then, by Basu's theorem, V is independent of \bar{Y} and S_{Y}. Hence, we have

$$
\begin{equation*}
E\left\{\exp \left(Y_{n}+Y_{n-1}\right) \mid \bar{Y}, S_{Y}^{2}\right\}=\exp (2 \bar{Y}) E\left\{\exp \left(S_{Y} V\right) \mid \bar{Y}, S_{Y}^{2}\right\} \tag{4.3}
\end{equation*}
$$

Now, consider the orthogonal transformation such that $Z_{2}^{*}=\left(a Z_{n}+b Z_{n-1}\right) /$ $\sqrt{a^{2}+b^{2}}$ and $\sum_{2}^{n} Z_{i}^{2}=\sum_{2}^{n} Z_{i}^{* 2}$. Hence, $Z_{2}^{*}, \ldots, Z_{n}^{*}$ are iid $N(0,1)$. Then $V=\sqrt{a^{2}+b^{2}} Z_{2}^{*} /\left(\sum_{2}^{n} Z_{i}^{* 2}\right)^{1 / 2}$ and, similarly, we have

$$
\begin{align*}
& E\left\{\exp \left(S_{Y} V\right) \mid \bar{Y}, S_{Y}^{2}\right\}=E\left\{\exp \left(S_{Y} V\right)\right\} \\
& =\frac{\Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi}} \sum_{m=0}^{\infty} \frac{\left(2 \frac{n-2}{n} S_{Y}^{2}\right)^{m}}{(2 m)!} \frac{\Gamma\left(\frac{1}{2}+m\right)}{\Gamma\left(\frac{n-1}{2}+m\right)} \tag{4.4}
\end{align*}
$$

$$
\begin{equation*}
=\left[B\left(\frac{1}{2}, \frac{n-2}{2}\right)\right]^{-1} \int_{-1}^{1} \exp \left(\sqrt{\frac{2(n-2)}{n}} S_{Y} v\right)\left(1-v^{2}\right)^{(n-4) / 2} d v . \tag{4.5}
\end{equation*}
$$

Finally, combining (4.1), (4.3), (4.4) and similar equalities used in deriving $\hat{\theta}_{U M V U E}$, we get the $U M V U E$ of η^{2} in the form of an infinite series as

$$
\begin{aligned}
& \hat{\eta}_{U M V U E}^{2 *}=E\left\{\exp \left(2 Y_{n}\right)-\exp \left(Y_{n}+Y_{n-1}\right) \mid \bar{Y}, S_{Y}^{2}\right\} \\
& =\exp (2 \bar{Y}) \frac{\Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi}} \sum_{m=0}^{\infty} \frac{\left(\frac{2}{n} S_{Y}^{2}\right)^{m}}{(2 m)!} \frac{\Gamma\left(\frac{1}{2}+m\right)}{\Gamma\left(\frac{n-1}{2}+m\right)}\left[(2 n-2)^{m}-(n-2)^{m}\right] \\
& =\exp (2 \bar{Y})\left\{f\left(\frac{2}{n} S_{Y}^{2}\right)-f\left(\frac{n-2}{n(n-1)} S_{Y}^{2}\right)\right\},
\end{aligned}
$$

where f is as in (1.1). Hence, the $U M V U E$ of η^{2} derived by using the RaoBlackwell theorem is indeed identical to $\hat{\eta}_{M L E}^{2}$ in (1.3). Or, combining (4.2), (4.3) and (4.5), we have the $U M V U E$ of η^{2} in an integral form as

$$
\begin{aligned}
\hat{\eta}_{U M V U E}^{2 *}= & \exp (2 \bar{Y})\left[B\left(\frac{1}{2}, \frac{n-2}{2}\right)\right]^{-1} \\
& \cdot \int_{-1}^{1}\left[\exp \left(-2 \sqrt{\frac{n-1}{n}} S_{Y} v\right)\right. \\
& \left.-\exp \left(\sqrt{\frac{2(n-2)}{n}} S_{Y} v\right)\right]\left(1-v^{2}\right)^{(n-4) / 2} d v .
\end{aligned}
$$

Acknowledgment

My sincere thanks are due to Professor Bimal Kumar Sinha for suggesting this problem and the referee for his constructive comments.

References

1. G. Casella and R. L. Berger, Statistical Inference, Wadsworth, Belmont, 1990.
2. D. J. Finney, On the distribution of a variate whose logarithm is normally distributed, J. Roy. Statist. Soc. Ser. B, 7 (1941), 155-161.
3. N. L. Johnson and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions II, John Wiley and Sons, New York, 1970.
4. M. Kendall and A. Stuart, The Advanced Theory of Statistics, 4th Ed., Vol. 2, MacMillan, New York, 1979.
5. E. L. Lehmann, Theory of Point Estimation, John Wiley and Sons, New York, 1983.

Department of Statistics, Tunghai University
Taichung, Taiwan

