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MATRICES WITH MAXIMUM UPPER MULTIEXPONENTS
IN THE CLASS OF PRIMITIVE,

NEARLY REDUCIBLE MATRICES

Zhou Bo

Abstract. B. Liu has recently obtained the maximum value for the kth
upper multiexponents of primitive, nearly reducible matrices of order
n with 1 ≤ k ≤ n. In this paper primitive, nearly reducible matrices
whose kth upper multiexponents attain the maximum value are com-
pletely characterized.

1. Introduction

A square Boolean matrix A is primitive if one of its powers, Ak, is the
matrix J of all 1’s for some integer k ≥ 1. The smallest such k is called the
primitive exponent of A. The matrix A is reducible if there is a permutation
matrix P such that

P tAP =

[
A1 0
X A2

]
,

where A1 and A2 are square and nonvacuous; otherwise A is irreducible. The
matrix A is nearly reducible if A is irreducible but each matrix obtained from
A by replacing any nonzero entry by zero is reducible.

It is well known that there is an obvious one-to-one correspondence between
the set Bn of n by n Boolean matrices and the set of digraphs on n vertices.
Given A = (aij) ∈ Bn, the associated digraph D(A) has vertex set V (D(A)) =
{1, 2, . . . , n}, and arc set E(D(A)) = {(i, j) : aij = 1}. A is primitive if and
only if D(A) is strongly connected and the greatest common divisor (gcd for
short) of all the distinct cycle lengths of D(A) is 1, and A is nearly reducible if
and only if D(A) is a minimally strongly connected digraph. We say a digraph
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is primitive with primitive exponent γ if it is the associated digraph of some
primitive matrix with primitive exponent γ.

Now we give the definition of the upper multiexponent for a primitive
digraph, which was introduced by R. A. Brualdi and B. Liu [1].

Let D be a primitive digraph on n vertices. The exponent of a subset
X ⊆ V (D) is the smallest integer p such that for each vertex i of D there
exists a walk from at least one vertex in X to i of length p (and of course
every length greater than p, since D is strongly connected). We denote it by
expD(X). The number

F (D, k) = max{expD(X) : X ⊆ V (D), |X| = k}

is called the kth upper multiexponent of D.
Clearly F (D, 1) is the primitive exponent of D. Hence the kth upper mul-

tiexponent of a primitive digraph is a generalization of its primitive exponent.
Let A be an n×n primitive matrix, and let k be an integer with 1 ≤ k ≤ n.

The kth upper multiexponent of A is the kth upper multiexponent of D(A),
denoted by F (A, k). Thus F (A, k) = F (D(A), k). Clearly F (A, k) is the
smallest power of A for which no set of k rows has a column consisting of all
zeros.

In [2] B. Liu obtained the maximum value for the kth upper multiexpo-
nents of primitive, nearly reducible matrices of order n with 1 ≤ k ≤ n. In
this paper, we provide a complete characterization of matrices in the class of
n×n primitive, nearly reducible matrices whose kth upper multiexponents for
1 ≤ k ≤ n attain the maximum value.

Using the correspondence between matrices and digraphs, we express the
results in the digraph version.

2. Main Results

We first give several lemmas that will be used.

Lemma 1. [3]. Let D be a primitive digraph on n vertices, 1 ≤ k ≤ n−1,
and let h be the length of the shortest cycle of D. Then

F (D, k) ≤ n+ h(n− k − 1).

Let

F (n, k) =

{
n2 − 4n+ 6, k = 1;
(n− 1)2 − k(n− 2), 2 ≤ k ≤ n.

The following lemma has been proved in [2] for n ≥ 5. For n = 4 it can be
checked readily.
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Lemma 2. [2]. F (Dn−2, k) = F (n, k), n ≥ 4, where Dn−2 is the digraph
given by Fig. 1.

Lemma 3. [1]. Let D be a primitive digraph with n vertices and let h and
t be respectively the smallest and the largest cycle lengths of D. Then

F (D,n− 1) ≤ max{n− h, t}.

Let PMDn be the set of all primitive, minimally strongly connected di-
graphs with n vertices. The following theorem has recently been proved by B.
Liu.

Theorem 1. [2]. Max{F (D, k) : D ∈ PMDn} = F (n, k), 1 ≤ k ≤ n.

A problem that deserves investigation is to characterize the extreme di-
graphs, or the digraphs in PMDn whose kth upper multiexponents assume
the maximum value F (n, k).

Obviously, for any D ∈ PMDn, F (D,n) = F (n, n) = 1. We are going to
consider the case 1 ≤ k ≤ n− 1.

Theorem 2. Let D ∈ PMDn, 1 ≤ k ≤ n − 1, n ≥ 4. Then for 1 ≤ k ≤
n− 2, F (D, k) = F (n, k) if and only if D ∼= Dn−2, where Dn−2 is the digraph
given by Fig. 1; F (D,n − 1) = F (n, n − 1) = n − 1 if and only if D ∼= Dn,s

with 1 ≤ s ≤ n− 3 and gcd(n− 1, s+ 1) = 1, where Dn,s is the digraph given
by Fig. 2.

FIG. 1.
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FIG. 2.

Remark. When s = n− 3, Dn,s is the digraph Dn−2 for n ≥ 4.

Proof. We begin the proof with the case k = n− 1 first.
Suppose D ∼= Dn,s. For i = 2, 3, . . . , s(s > 1), any walk from the vertex i to

the vertex n−1 has a length of the form n−1−i+a(n−1)+b(s+1), where a and
b are non-negative integers. Consider the equation n−1−i+a(n−1)+b(s+1) =
n− 2, i.e., a(n− 1) + b(s+ 1) = i− 1. Since i ≤ s ≤ −3, we have a = 0, b = 0,
which is imposssible. Hence there is no walk of length n− 2 from the vertex i
to the vertex n− 1 for i = 2, 3, . . . , s. For i = s+ 1, . . . , n− 1(s ≥ 1), we have
the same conclusion as above. Also it is easy to see that there is no walk of
length n−2 from the vertex n to the vertex n−1. Now take X0 = V (D)\{1}.
There does not exist any walk from a vertex in X0 to the vertex n−1 of length
n − 2. Hence expDn,s(X0) ≥ n − 1. By the definition of the (n − 1)th upper
multiexponent and Theorem 1 it follows that

F (D,n− 1) = F (Dn,s, n− 1) = n− 1.

Conversely, suppose F (D,n− 1) = n− 1. Let h and t be respectively the
smallest and the largest cycle lengths of D. D cannot have a cycle of length
n, because, if so, the digraph is still strongly connected after the removal of
any arc lying outside such cycle, contradicting the fact that D is minimally
strongly connected. Similarly, we can show that D has no loops. So we have
2 ≤ h ≤ n− 2, t ≤ n− 1. By Lemma 3 we obtain

n− 1 = F (D,n− 1) ≤ max{n− h, t},

which implies t = n−1. Suppose D contains a cycle of length n−1 whose arcs
are (i, i+1) for i = 1, 2, . . . , n−2, and (n−1, 1). By the strong connectedness
of D there exist u and v (u and v may be equal) in {1, 2, . . . , n− 1} such that
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(u, n) and (n, v) are arcs in D. Without loss of generality we assume that
v = 1. Thus D contains a subdigraph Dn,u with 1 ≤ u ≤ n− 3.

Since D is minimally strong, it is easy to see that D has no arcs other than
those in Dn,u. It follows from the primitivity of D that gcd(n− 1, u+ 1) = 1.

Now we turn to the case 1 ≤ k ≤ n − 2. The case k = 1 is proved in [4].
Suppose 2 ≤ k ≤ n−2. If D ∼= Dn−2, by Lemma 2 we have F (D, k) = F (n, k).
Conversely, suppose F (D, k) = F (n, k) and let h be the length of the shortest
cycle in D. Since D is primitive, it has at least two different cycle lengths.
In addition, D has no cycles of length n, being a minimally strong connected
digraph of order n. It follows that h ≤ n− 2.

If h = n−2, then the set of all distinct cycle lengths of D is {n−2, n−1}.
By the minimally strong connectedness of D, it follows that D ∼= Dn−2. We
are going to show that it is impossible to have h ≤ n − 3. We divide our
argument into two cases.

Case 1: 2 ≤ k < n− 2.
If h ≤ n− 3, applying Lemma 1 we have

F (D, k)≤ n+ h(n− k − 1)
≤ n+ (n− 3)(n− k − 1)
= (n− 1)2 − k(n− 2)− (n− k − 2)
< (n− 1)2 − k(n− 2) = F (n, k),

a contradiction.

Case 2: k = n− 2.
If h ≤ n− 4, by Lemma 1,

F (D, k)≤ n+ h(n− k − 1)
≤ n+ (n− 4)(n− k − 1)
= 2n− 4 < 2n− 3 = F (n, k),

a contradiction.
If h = n − 3, observing that D cannot have loops, we have h ≥ 2 and

n ≥ 5. If n = 5, then h = 2. Since D cannot have a cycle of length 5 and
D is primitive, D must have a cycle of length 3. It follows from the fact that
D is minimally strongly connected that D is isomorphic with D1 or D2 or
D3 as displayed in Fig. 3. In all such cases, it is easy to verify that we have
F (D, 1) ≤ 6. Hence F (D,n − 2) = F (D, 3) ≤ F (D, 1) ≤ 6 < 7 = F (5, 3),
which is a contradiction.

Now suppose h = n− 3 and n > 5. Since D cannot have a cycle of length
n, by the primitivity of D,D must contain a cycle of length of n− 2 or n− 1.
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FIG. 3.
If there is a walk of length t from vertex j to vertex i, we say that j is a

t-in vertex of i. And the set of all t-in vertices of i in D is denoted by RD(t, i).

Case 2.1: D has no cycles of length n− 1. Then D must have a cycle of
length n− 2. Take a cycle C of D of length n− 2. Then D has precisely two
vertices, say, x, y, lying outside C. We divide this situation into the following
two subcases.

(1) D contains one of the arcs (x, y) or (y, x). Say, D contains the arc
(x, y). Then (y, x) cannot be an arc of D; otherwise, n − 3 = h = 2 and so
n = 5, which is a contradiction. By the strong connectedness of D, there must
exist vertices u, v of C (the cycle of length n − 2) such that (u, x) and (y, v)
are both arcs of D. If u = v, then n − 3 = h = 3, so we have n = 6 and
D is the digraph D1

6−3. If u 6= v, then since D has precisely two cycles, of
lengths n − 2 and n − 3 respectively, it will follow that D is isomorphic with
D1
n−3(n ≥ 7). D1

n−3(n ≥ 6) is given by Fig. 4. Suppose D = D1
n−3.

For n ≥ 6, we describe RD(2n− 5, i) explicitly:

RD(2n− 5, 1) = {n, 1, 2},
RD(2n− 5, i) = {i− 1, i, i+ 1}, i = 2, 3, . . . , n− 4,
RD(2n− 5, n− 3) = {n− 4, n− 3, n− 2, n− 1},
RD(2n− 5, n− 2) = {n− 2, n− 1, n, 1},
RD(2n− 5, n− 1) = {n− 4, n− 3, n− 2, n− 1},
RD(2n− 5, n) = {n− 2, n− 1, n, 1}.
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FIG. 4.

It is clear that each vertex has at least three (2n− 5)-in vertices in D, and
so expD(X) ≤ 2n−5 for any set of n−2 vertices. It follows from the definition
of the (n − 2)th upper multiexponent that F (D,n − 2) ≤ 2n − 5 < 2n − 3 =
F (D,n− 2), which is a contradiction.

(2) Neither (x, y) nor (y, x) is an arc of D. By the strong connectedness of
D, there must exist vertices u, v, u′ and v′ of C such that (u, x), (x, v), (u′, y)
and (y, v′) are arcs of D. We have u 6= v and u′ 6= v′; otherwise, n−3 = h = 2
and so n = 5, which is a contradiction. Also neither (u, v) nor (u′, v′) is an
arc of C; otherwise D has a cycle of length n − 1, which is a contradiction.
Suppose that uu1u2 · · ·urv and u′v1v2 · · · vtv′ are two paths of C, of lengths
r + 1 and t + 1 respectively, where r ≥ 1 and t ≥ 1. If r = t = 1, then by
the minimally strong connectedness of D,D has no cycles of length h = n− 3,
which is a contradiction. If r ≥ 3 or t ≥ 3, then there is a cycle with length
less than h = n − 3, which is also a contradiction. Hence we have r = 2
or t = 2. So D contains a subdigraph which is isomorphic with D(n−1)−2
(see Fig. 1 for Dn−2). Assume D(n−1)−2 is a subdigraph of D. Note that
V (D(n−1)−2) = {1, 2, . . . , n − 1}. By the strong connectedness of D, there
exists a vertex j ∈ {1, 2, . . . , n− 1} such that (j, n) is an arc of D.

Let X ⊆ V (D) with |X| = n− 2. For each vertex 1, 2, . . . , n− 1, there is a
walk to the vertex from a vertex in X \{n} of length expD(n−1)−2

(X \{n}) (and
hence also every length greater). This is because, each such vertex belongs to
the subgraph D(n−1)−2. Note that

expD(n−1)−2
(X \ {n}) ≤

{
F (D(n−1)−2, n− 2) = n− 2, n 6∈ X;
F (D(n−1)−2, n− 3) = 2n− 5, n ∈ X.
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So expD(n−1)−2
(X \ {n}) ≤ 2n − 5 whether n ∈ X or n 6∈ X. Thus for every

integer t ≥ 2n − 5, and for each vertex 1, 2, . . . , n − 1, there is a walk to the
vertex from a vertex in X \ {n} of length t. Since j ∈ {1, 2, . . . , n − 1} and
(j, n) is an arc of D, it follows that there is a walk to the vertex n from a
vertex in X \ {n} of length t + 1 for every integer t ≥ 2n − 5. So we have
proved that there is a walk to each vertex of D from a vertex in X \ {n} of
length t+ 1 for every integer t ≥ 2n− 5. This implies that

expD(X) ≤ expD(X \ {n}) ≤ 2n− 4 < 2n− 3.

By the definition of the (n−2)th upper multiexponent, we have F (D,n−2) <
2n− 3 = F (n, n− 2), which is a contradiction.

Case 2.2: D has a cycle of length of n − 1. Since h = n − 3, D also has
a cycle of length n− 3. By the minimally strong connectedness of D, one can
readily show that in this case D is composed of precisely two cycles, of lengths
n− 1 and n− 3 respectively. But gcd{n− 1, n− 3} = 1, so n is even, and D
must be isomorphic with D2

n−3(n ≥ 6), where D2
n−3 is given by Fig. 5.

Suppose D = D2
n−3. We have

RD(2n− 4, 1) = {n, 1, 3},
RD(2n− 4, 2) = {2, 4, n− 3, n− 1},
RD(2n− 4, 3) = {n, 1, 3, 5},
RD(2n− 4, i) = {i− 2, i, i+ 2}, i = 4, . . . , n− 3,
RD(2n− 4, n− 2) = {n− 4, n− 3, n− 2, 1},
RD(2n− 4, n− 1) = {n− 3, n− 1, 2},
RD(2n− 4, n) = {n− 4, n, 1}.

By similar arguments as for the case D ∼= D1
n−3, we get F (D,n − 2) ≤

2n− 4 < 2n− 3 = F (n, n− 2), which is also a contradiction.
Now we have proved that it is impossible to have h ≤ n − 3. Thus the

proof of the theorem is completed.

Theorem 2 gives complete characterizations of the extreme digraphs in the
class of primitive, minimally strong digraphs of order n whose kth (1 ≤ k ≤
n− 1) upper multiexponents assume the maximum value.

Note that there is not any digraph D in PMDn with F (D, 1) = m if
n2 − 5n+ 9 < m < F (n, 1), or n2 − 6n+ 12 < m < n2 − 5n+ 9 for n ≥ 4 (see
[4] ).

As a by-product of the proof of Theorem 2 we have a similar result.

Corollary 1. Let k and n be integers. If 2 ≤ k ≤ n − 3, then for any
integer m satisfying n+ (n− 3)(n− k− 1) < m < F (n, k), there is no digraph
D ∈ PMDn such that F (D, k) = m.
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FIG. 5. D2
n−3 (n is even, n ≥ 6).

This corollary tells us that there are gaps in the set of kth upper multiex-
ponents of digraphs in PMDn(1 ≤ k ≤ n− 3).

Corollary 2. The number of non-isomorphic extreme digraphs in PMDn

with the (n− 1)th upper multiexponent equal to n− 1(n ≥ 4) is φ(n− 1)− 1,
where φ is Euler’s totient function.

Finally, we point out that the maximum value for the k-exponents of primi-
tive, nearly reducible matrices is also obtained in [2], and we have characterized
the corresponding extreme matrices in another paper.
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