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EXISTENCE OF PERIODIC SOLUTIONS FOR HIGHER ORDER DYNAMIC
EQUATIONS ON TIME SCALES

Sheng-Ping Wang

Abstract. In this paper, we study a sufficient condition for the existence of a
periodic solution for the nth order dynamic equations on time scales. The results
are shown by the use of coincidence degree theory. The necessary a priori bounds
are based on Wirtinger type inequality established as Lemma B.

1. INTRODUCTION

The theory of dynamic systems on time scales T(closed subsets of the reals) pro-
vides a framework for dealing with both continuous and discrete dynamic systems
simultaneously so as to bring out a new insight of subtle differences for these two
types of systems. More and more integrated results spring up in recent years, for ex-
ample, [3, 4, 10, 11, 13]. Qualitative properties including stability, oscillation theory
and asymptotic behavior of the solutions are also widely discussed.
The basic tool used in this article is the Mawhin’s coincidence degree theory [9],

which can be directly applied to study the periodic boundary value problems. Many
researchers have already focused on this topic for a long period of time and plenty of
essential papers are worked out, see [2, 7, 8, 17, 23, 24]. Recently, they are generalized
naturally on the so-called field, time scales. This consideration can be related with many
interesting biological issues including predator-prey and competition dynamic systems,
population models, or other mutualism models, for example [5, 6, 14, 25, 26, 27]. We
also refer more detailed treatment to more references [1, 12, 15, 16, 19, 20, 21, 22].
However, one can see that, until now, there are relatively few conclusions for higher
order dynamic systems.
We briefly introduce the problem considered along the article. Let T be a time

scale with period σ(T ), where 0, T ∈ T. The purpose is to consider the existence of
solutions of the nonlinear periodic boundary value problem(n ≥ 2)

(1.1) xΔn
= f(xΔn−1

, · · · , xΔ, x, t), t ∈ T,
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(1.2) xΔi
(0) = xΔi

(σ(T )), 0 ≤ i ≤ n − 1.

Throughout we assume that f is σn+1-completely delta differentiable on D := R
n ×

[0, σ(T )]T (see Definition 2, [18]), its partial derivatives fi(1 ≤ i ≤ n) are continuous
on D and f is σ(T )-periodic in t.
This paper is organized as follows. In next section, some fundamental concepts and

inequalities on time scales are exposed. Section 3 is devoted to derive the necessary a
priori bounds which are based on Wirtinger type inequality (Lemma B). In Section 4
we develop our main existence result (that is, Theorem A) of solutions for the higher
order periodic boundary value problem (1.1), (1.2).

2. PRELIMINARIES ON TIME SCALES

In this section, we give some of the basics of the time scale theory and refer to
[3, 4] for more details. Let T be a time scale which means any closed subset of R and
the interval [a, b]T = {t ∈ T : a ≤ t ≤ b}. The embedding of T in R gives rise to the
order and topological structure of the time scale in a canonical way.

Definition 1. For t ∈ T, we define the forward and backward jump operators
σ, ρ : T → T by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t}.
If t < sup T and σ(t) = t, then t is called right-dense (otherwise: right-scattered),

and if t > inf T and ρ(t) = t, then t is called left-dense (otherwise: left-scattered).
The graininess function μ : T → R

+ is defined by μ(t) = σ(t) − t. We denote
uσ(t) ≡ u(σ(t)) for t ∈ T and T

κ be the set of points of T except for a maximal
element which is also left scattered.

Definition 2. The mapping f : T → R is called rd-continuous if it is continuous
at each right-dense or maximal point t ∈ T and if the left-sided limit exists at each
left-dense points. The set of all rd-continuous functions f : T → R is denoted by
Crd = Crd(T).

Definition 3. Assume that f : T → R is a function and let t ∈ T
κ. Then we define

fΔ(t) to be the number(provided it exists) with the property that, for any given ε > 0,
there is a neighborhood U of t such that

|f(σ(t))− f(s) − fΔ(t)|σ(t)− s|| ≤ ε|σ(t) − s| for all s ∈ U.

We call fΔ(t) the delta derivative of f at t. If FΔ = f , then we define the Cauchy
integral by ∫ s

r
f(τ)Δτ = F (s) − F (r) for r, s ∈ T.
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Lemma 1. If t ∈ T
κ and f : T → R is delta differentiable at t, then

fσ(t) = f(t) + μ(t)fΔ(t).

Lemma 2. If f ∈ Crd and t ∈ T
κ, then

∫ σ(t)
t f(s)Δs = μ(t)f(t).

Lemma 3. If f, g : T → R are delta differentiable at t ∈ T
κ, then

(fg)Δ(t) = fΔ(t)g(t) + fσ(t)gΔ(t) = f(t)gΔ(t) + fΔ(t)gσ(t).

Lemma 4. Every rd-continuous function has an antiderivative. In particular, if
t0 ∈ T, then F defined by F (t) :=

∫ t
t0

f(τ)Δτ for all t ∈ T is an antiderivative of f ,
that is, FΔ = f .

Definition 4. Let ω > 0. A time scale T is called ω-periodic if t+ω ∈ T whenever
t ∈ T. A function p is said to be ω-periodic on T if p(t + ω) = p(t) for all t ∈ T.

Next, two well-known conclusions, the Cauchy-Schwarz inequality and one type
of Wirtinger’s inequality are stated.

Theorem 1. Let a, b ∈ T. For rd-continuous f, g : [a, b]T → R we have

∫ b

a
|f(t)g(t)|Δt ≤

√{∫ b

a
|f(t)|2Δt

}{∫ b

a
|g(t)|2Δt

}
.

Theorem 2. Let M be positive and strictly monotone such that M ∈ C1
rd. Then

we have ∫ b

a
|MΔ(t)|(yσ(t))2Δt ≤ Ψ

∫ b

a

M(t)Mσ(t)
|MΔ(t)| (yΔ(t))2Δt

for any y ∈ C1
rd with y(a) = y(b) = 0, where

Ψ =
{√

sup
t∈[a,b]T

M(t)
Mσ(t)

+

√
sup

t∈[a,b]T

μ(t)|MΔ(t)|
Mσ(t)

+ sup
t∈[a,b]T

M(t)
Mσ(t)

}2
.

3. A PRIORI ESTIMATES

In this section, let x(t) be a σ(T )-periodic solution of the problem (1.1), (1.2)
and we shall get the priori bounds for the derivatives of x(t) up to (n − 1)th order
by imposing certain conditions on the partial derivatives of f . Such priori estimates
will be used to construct a bounded open set in the next section. Firstly, we need two
crucial lemmas showed as follows:
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Lemma A. Let M be positive and strictly monotone such that M ∈ C1
rd. Then

we have ∫ b

a

|MΔ(t)|(y(t))2Δt ≤ Φ
∫ b

a

Mσ(t)
|MΔ(t)|(y

Δ(t))2Δt

for any y ∈ C1
rd with y(a) = y(b) = 0, where

Φ =
{√

sup
t∈[a,b]T

Mσ(t) +
√

sup
t∈[a,b]T

μ(t)|MΔ(t)|+ sup
t∈[a,b]T

Mσ(t)
}2

.

Proof. We follow the steps of the proof of Theorem 2. For convenience we omit
the argument (t) in the following arguments. Let

J =
∫ b

a
MΔy2Δt, V =

∫ b

a

Mσ

|MΔ| (y
Δ)2Δt,

α =
√

sup
[a,b]T

Mσ , β = sup
[a,b]T

μ|MΔ|.

Without loss of generality we assume that MΔ is of positive sign. Then we apply the
Cauchy-Schwarz inequality(Theorem 1), Lemma 1, 3 and y(a) = y(b) = 0 to estimate

J =
∫ b

a
MΔy2Δt

=
∫ b

a
(My2)ΔΔt −

∫ b

a
MσyΔ(y + yσ)Δt

= −
∫ b

a

MσyΔ(y + yσ)Δt

≤
∫ b

a
Mσ|yΔ||2y + μyΔ|Δt

≤ 2
∫ b

a
Mσ |yΔ||y|Δt +

∫ b

a
μMσ(yΔ)2Δt

= 2
∫ b

a

√
Mσ

|MΔ| |y
Δ|

√
Mσ|MΔ||y|Δt +

∫ b

a

μMΔMσ

|MΔ| (yΔ)2Δt

≤ 2
{∫ b

a

Mσ

|MΔ| |y
Δ|2Δt

} 1
2
{∫ b

a
Mσ |MΔ||y|2Δt

} 1
2 + βV

≤ 2α
√

JV + βV.

Therefore, by denoting H =
√

J
V , we find that H2 − 2αH − β ≤ 0, and solving for

H ≥ 0 we obtain
J

V
= H2 ≤ (α +

√
α2 + β)2 = Φ
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so that the proof is complete.

Lemma B. For any y ∈ C1
rd with y(a) = y(b), yΔ(a) = yΔ(b) and

∫ b
a y(t)Δt = 0,

we have ∫ b

a
(y(t))2Δt ≤ K2

∫ b

a
(yΔ(t))2Δt,

where
K := σ(b)− a +

√
(σ(b)− a)2 + (σ(b)− a) sup

t∈[a,b]T

μ(t).

Proof. Let f(t) =
∫ t
a yΔ(s)Δs, t ∈ [a, b]T, then f(a) = f(b) = 0. Choose

M(t) = t − a and apply Lemma A to f(t), then we can conclude this lemma.

In what follows, let T be a σ(T )-periodic time scale containing {0, T} and de-
note [0, σ(T )]T ≡ I . If h is a real-valued function which is bounded on the set
W , we put |h|W = supz∈W |h(z)|. If h is square integrable over I , we denote

||h|| =
√∫ σ(T )

0 |h(z)|2Δz. Let

Z = {z ∈ C(T) : z is σ(T )-periodic}
with norm |z|Z = maxt∈I |z(t)| and

X = {x ∈ CΔn−1
(T) : x is σ(T )-periodic with xΔi

(0) = xΔi
(σ(T )), 0 ≤ i ≤ n − 1}

with norm |x|X = Σn−1
i=0 maxt∈I |xΔi

(t)|. We see that Z andX are real Banach spaces.
Our useful estimates are immediately listed as follows:

Lemma C. Let

C = σ2(T ) +
√

[σ2(T )]2 + σ2(T ) sup
t∈I

μ(t).

When n ≥ 3, we assume that there exists a constant η > 0 such that

(3.1) f2 ≥ −η > − 1
CC1

on D,

(3.2)
n−1∑

i=1,i�=n−2

Cn−i−1C1|fn−i|D + Cn−2C1|fn|Dσ(T ) < 1− ηCC1,

where C1 = C + supt∈I μ(t), are satisfied; when n = 2, assume that there exists a
constant ζ < 1

σ(T )2
such that

(3.3) f2 ≥ −ζ on D,
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(3.4) |f1|D <
1

σ(T )
− ζσ(T ).

If there exists R > 0 such that

(3.5)
∫ σ(T )

0
f(xΔn−1

(t), · · · , x(t), t)Δt �= 0

for each x ∈ X such that

(3.6) inf
t∈T

|x(t)| ≥ R.

Then there is a positive constant B such that

(3.7) ||xΔi || ≤ Mi, 0 ≤ i ≤ n − 1,

and

(3.8) |xΔi
(t)| ≤ { 1√

σ(T )
+

2
√

σ(T )
C

}
Mi, 0 ≤ i ≤ n − 2,

where
Mi = Cn−1−iB, for 1 ≤ i ≤ n − 2,

M0 =
√

σ(T ){R + Cn−2B
√

σ(T )}.
Furthermore, there exists a constant L such that

(3.9) |xΔn−1
(t)| ≤ N ∗,

here N ∗ = 2
√

σ(T )L + B√
σ(T )

, L is given as in (3.26).

Proof. Since f is σn+1-completely delta differentiable on D := R
n × I , according

to Theorem 9 [18], we rewrite (1.1) in the form

(3.10) xΔn
=

n−1∑
i=0

xΔi
Fn−i(xΔn−1

, · · · , xΔ, x, t) + g(t)

where

Fn−i(xΔn−1
, · · · , xΔ, x, t) =

∫ 1

0
fn−i(ξxΔn−1

, · · · , ξx, t)dξ,

g(t) = f(0, 0, · · · , 0, t).
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Multiplying by xΔn−2σ on both sides of (3.10) and integrating from 0 to σ(T ), we
have

(3.11)

∫ σ(T )

0

[xΔn−1
]2Δt = −

n−1∑
i=0

∫ σ(T )

0

xΔn−2
∑

xΔi
Fn−i(xΔn−1

, · · · , x, t)Δt

−
∫ σ(T )

0
xΔn−2σ(t)g(t)Δt.

Note that we also have

(3.12)
−

∫ σ(T )

0
xΔn−2σ(t)x(t)Fn(xΔn−1

, · · · , x, t)Δt

≤ |Fn|D|x|I
√

σ(T )||xΔn−2σ ||, when n ≥ 3

≤ ζ|x|2Iσ(T ), when n = 2.

By integrating (1.1) over σ(T ) period, we then obtain
∫ σ(T )

0
f(xΔn−1

(t), · · · , x(t), t)Δt = 0,

when x(t) is a possible σ(T )-periodic solution of (1.1). Hence, by means of (3.5),
(3.6), this implies that there exists ξ ∈ I such that |x(ξ)| < R. For t ∈ I , we have

|x(t)− x(ξ)| ≤
∫ t

ξ
|xΔ(s)|Δs ≤

∫ σ(T )

0
|xΔ(s)|Δs ≤ ||xΔ||

√
σ(T ).

Therefore, it follows from the above inequality and Lemma B(setting b = σ(T ), a = 0)
that

|x|I ≤ R + ||xΔ||
√

σ(T ), when n = 2,(3.13)

≤ R + Cn−2 ||xΔn−1||
√

σ(T ), when n ≥ 3.(3.14)

For the case n = 2, from (3.11), (3.12), we have

||xΔ||2 ≤ ζ|x|2I + |F1|D|x|I||xΔ||
√

σ(T ) + |x|I||g||
√

σ(T ).

Using (3.13), we obtain
a||xΔ||2 − b||xΔ|| − c ≤ 0,

where
a := 1 − ζσ(T )2 − |F1|Dσ(T ) > 0 by (3.4),

b := 2ζRσ(T )
3
2 + |F1|DR

√
σ(T ) + ||g||σ(T ),
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c := ζR2σ(T ) + R||g||
√

σ(T ).

Hence, we have

(3.15) ||xΔ|| ≤ S,

here

S =
b +

√
b2 + 4ac

2a
.

For the case n ≥ 3, from (3.11), using (3.1), the Schwarz inequality (Theorem 1) and
Wirtinger type inequality (Lemma B) established, we get

||xΔn−1||2 ≤−
∫ σ(T )

0
xΔn−2σxFn(xΔn−1

, · · · , x, t)Δt

+
n−1∑

i=1,i�=n−2

{Cn−i + Cn−i−1 sup
t∈I

μ(t)}||xΔn−1||2|Fn−i|D

+ η{C2 + C sup
t∈I

μ(t)}||xΔn−1||2 + ||g||{C + sup
t∈I

μ(t)}||xΔn−1||.

Since, by (3.14),

−
∫ σ(T )

0

xΔn−2σxFn(xΔn−1
, · · · , x, t)Δt

≤ {R + Cn−2||xΔn−1||
√

σ(T )}|Fn|D{C + sup
t∈I

μ(t)}||xΔn−1||
√

σ(T ),

one can immediately get

||xΔn−1||2 ≤Cn−2C1||xΔn−1 ||2|Fn|Dσ(T ) +
n−1∑

i=1,i�=n−2

Cn−i−1C1||xΔn−1 ||2|Fn−i|D

+ ηCC1||xΔn−1||2 + C1{||g||+ R|Fn|D
√

σ(T )}||xΔn−1||,
that is,[

1−
n−1∑

i=1,i�=n−2

Cn−i−1C1|Fn−i|D − Cn−2C1|Fn|Dσ(T )− ηCC1

]
||xΔn−1||

≤ C1{||g||+ R|Fn|D
√

σ(T )}.
Note that the term in the bracket of the above inequality is positive by the hypothesis
(3.2). Thus we have

(3.16) ||xΔn−1|| ≤ K{||g||+ R|Fn|D
√

σ(T )},
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where

K =
{
C−1

1 −
n−1∑

i=1,i�=n−2

Cn−i−1 |Fn−i|D − Cn−2 |Fn|Dσ(T )− ηC
}−1

.

Combing (3.15) and (3.16), we have for n ≥ 2, we have

(3.17) ||xΔn−1|| ≤ B,

where
B = max{S, K[||g||+ R|Fn|D

√
σ(T )]}.

By (3.17) and the Wirtinger type inequality (Lemma B) again, we have

(3.18) ||xΔi|| ≤ Cn−1−i ||xΔn−1|| ≤ Mi

for 1 ≤ i ≤ n − 1 and by (3.13), (3.14), ||x|| ≤ M0. Also, (3.8) can derived from
(3.18). For t ∈ I , 0 ≤ i ≤ n − 2, we have

(3.19) |xΔi
(t) − xΔi

(0)| ≤
∫ t

0
|xΔi+1

(s)|Δs ≤ ||xΔi+1 ||
√

σ(T ) ≤ C−1
√

σ(T )Mi.

From the inequality (3.19), we have for 0 ≤ i ≤ n − 2,

(3.20) |xΔi
(t)| ≤ |xΔi

(0)|+ C−1
√

σ(T )Mi,

and

(3.21) |xΔi
(t)| ≥ |xΔi

(0)| − C−1
√

σ(T )Mi.

If |xΔi
(0)| − C−1

√
σ(T )Mi ≤ 0, it follows immediately that

(3.22) |xΔi | ≤ 2C−1
√

σ(T )Mi on I.

If |xΔi
(0)| − C−1

√
σ(T )Mi > 0, we integrate (3.21) on both sides from 0 to σ(T )

and get

(3.23) ||xΔi || ≥ {|xΔi
(0)| − C−1

√
σ(T )Mi}

√
σ(T ).

From (3.18) and (3.23), we have

(3.24) |xΔi
(0)| ≤

{
1√
σ(T )

+

√
σ(T )
C

}
Mi.
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Hence, it follows from (3.20) that

(3.25) |xΔi
(t)| ≤ { 1√

σ(T )
+

2
√

σ(T )
C

}
Mi, t ∈ I.

Combining (3.22) and (3.25), we obtain (3.8). On the other hand, rewrite (1.1) in the
alternative form

xΔn
=

n−1∑
i=0

xΔi
Gn−i(xΔn−1

, · · · , xΔ, x, t) + g(t),

where for 0 ≤ i ≤ n − 1,

Gn−i(xΔn−1
, · · · , xΔ, x, t) =

∫ 1

0
fn−i(0, · · · , 0, ξxΔi

, xΔi−1
, · · · , x, t)dξ.

Note that for any t1, t2 ∈ I , we have

|xΔn−1
(t1)−xΔn−1

(t2)| ≤
∫ t2

t1

|xΔn
(s)|Δs

≤
n−1∑
i=0

∫ t2

t1

|xΔi
Gn−i(xΔn−1

, · · · , xΔ, x, t)|Δt+
∫ t2

t1

|g(t)|Δt.

By the Schwarz inequality we have, for n = 2,

|xΔn−1
(t1) − xΔn−1

(t2)| ≤
√

t1 − t2{|f1|DM1 + M0|f2|E + ||g||}.

or for n ≥ 3,

|xΔn−1
(t1) − xΔn−1

(t2)|

≤ √
t1 − t2{

n−1∑
i=1,i�=n−2

|fn−i|DMi + Mn−2|f2|E + |fn|DM0 + ||g||},

that is,
|xΔn−1

(t1) − xΔn−1
(t2)| ≤ L

√
t1 − t2,

where

(3.26)
L = max

{
(1 − ζ)Cn−2B + |f2|E

[
R

√
σ(T ) + Cn−2Bσ(T )

]
+ ||g||,

(
1
C1

− ηC)B + |f2|ECB + |fn|D
[
R

√
σ(T ) + Cn−2Bσ(T )

]
+ ||g||}
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and

E = {0}×Πn−2
i=0

[−(
1√
σ(T )

+
2
√

σ(T )
C

)Mn−2−i, (
1√
σ(T )

+
2
√

σ(T )
C

)Mn−2−i

]×I.

In particular, for t ∈ I , we obtain

|xΔn−1
(t) − xΔn−1

(0)| ≤ L
√

σ(T ).

Following the calculations as we did from (3.19)− (3.25), we get

|xΔn−1
(t)| ≤ N ∗.

4. EXISTENCE THEOREM

In this section we are going to show the existence of periodic solutions for the
problem (1.1), (1.2) via coincidence degree theory associated with Lemma C. Our
proof utilizes a continuation theorem of Mawhin [9] which we state here for the reader’s
convenience.
Let X and Z be real Banach spaces and let

L : domL ⊂ X → Z

be a linear Fredholm mapping, that is, imL(the range of L) is closed and the dimension
of kerL(the kernel of L) and codimension of imL are finite. Let Ω be a bounded open
subset of X and let

N : Ω̄ ⊂ X → Z

be a (not necessarily linear) mapping which is L-compact on Ω̄, that is, if P : X → X
and Q : Z → Z denote bounded linear projections such that imP = kerL, imL =
kerQ and if

KP.Q = (L | kerP ∩ domL)−1(I − Q),

where I is the identity map on Z, thenQN : Ω̄ → Z is continuous,QN (Ω̄) is bounded
and KP,QN : Ω̄ → X is completely continuous. The following continuation theorem
has been established.

Theorem 3. Let the above assumptions hold and let indL(= dim kerL −
codim imL) = 0. Further assume

(1) for each λ ∈ (0, 1) and each x ∈ domL ∩ ∂Ω, Lx �= λNx,
(2) for each x ∈ kerL ∩ ∂Ω, Nx /∈ imL, that is, QNx �= 0,
(3) dB(JQN | kerL, Ω∩ kerL, 0) �= 0, where dB denotes the Brouwer degree and

J : imQ → kerL is any isomorphism.
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Then there exists at least one x ∈ domL ∩ Ω̄ such that Lx = Nx.

With the aid of Theorem 3, we shall now construct our main result as follows.

Theorem A. Suppose that (3.1) − (3.2) (or (3.3) − (3.4) as n = 2) and (3.5)
hold. Assume that

(4.1)
∫ σ(T )

0

f(0, · · · , 0, R0, t)Δt

∫ σ(T )

0

f(0, · · · , 0,−R0, t)Δt < 0,

where R0 = { 1√
σ(T )

+ 2
√

σ(T )

C }M0 + 1. Then the problem (1.1), (1.2) has a σ(T )-
periodic solution.

Proof. Define L : domL ⊂ X → Z by Lx = xΔn , where domL = {x ∈ X :
x ∈ CΔn

(T)}. Define N : X → Z by Nx(t) = f(xΔn−1
(t), · · · , xΔ(t), x(t), t).

We see that x ∈ kerL if and only if x(t) = x(0) for all t ∈ I if and only if
x(t) = 1

σ(T )

∫ σ(T )
0 x(s)Δs, for all t ∈ I . Hence dim kerL = 1. And we also note that

z ∈ Z is in imL if and only if there exists a solution x ∈ X satisfying xΔn
= z(t) if

and only if
∫ σ(T )
0 z(s)Δs = 0. Thus we have imL = {z ∈ Z :

∫ σ(T )
0 z(s)Δs = 0}. It

is obvious that imL is closed in Z.
Note that dim(cokerL) = dim(Z/imL) = 1. Indeed, let [z1] and [z2] be two

equivalent classes in cokerL other than imL; then
∫ σ(T )
0 zi(s)Δs �= 0, i = 1, 2. Hence

there exists a real constant c �= 0 such that z1 − cz2 ∈ imL. Thus dim(Z/imL) = 1.
Therefore, indL = 0. Define

Ω = {x ∈ X : |xΔi |I <
Mi√
σ(T )

+
2
√

σ(T )Mi

C
+ 1,

0 ≤ i ≤ n − 2, |xΔn−1 |I < N ∗ + 1},

where Mi and N ∗ are given in the Lemma C. Then Ω is a bounded open subset of X
such that Ω̄∩domL �= ∅. Note that N is continuous on Ω̄ and N (Ω̄) is bounded in Z.
DefineQ : Z → Z byQx = 1

σ(T )

∫ σ(T )
0 x(s)Δs. ThenQ is a continuous projection

with imL = im(I−Q), imQ = kerL. Define T : imL → X to be a right inverse of L
so that LTz = z for every z ∈ imL and PT = 0, where P : X → X is some projection
with imP = kerL. By Arzela-Ascoli theorem, we see that KP,QN ≡ T (I − Q)N is
completely continuous on Ω̄.
Next we claim that Lx �= λNx for every x ∈ ∂Ω∩domL and λ ∈ (0, 1). Suppose

not; then there exists a function x(t) satisfying xΔn
= λf(xΔn−1

, · · · , xΔ, x, t) with
xΔi

(0) = xΔi
(σ(T )), 0 ≤ i ≤ n − 1 for some λ ∈ (0, 1) and (xΔn−1

(t), · · · , xΔ(t),
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x(t), t) ∈ G, where

G = {(xΔn−1
, · · · , xΔ, x, t) : |xΔi |I ≤ Mi√

σ(T )
+

2
√

σ(T )Mi

C
+ 1,

0 ≤ i ≤ n − 2, |xΔn−1 |I ≤ N ∗ + 1, t ∈ I}

and (xΔn−1
(t0), · · · , xΔ(t0), x(t0), t0) ∈ ∂G for some t0 ∈ I . This is impossible,

since by arguments similar to those in the Lemma C, one can see that |xΔi |I ≤
Mi√
σ(T )

+ 2
√

σ(T )Mi

C , 0 ≤ i ≤ n − 2 and |xΔn−1|I ≤ N ∗.

We also see that QNa �= 0 for every a ∈ ∂Ω ∩ kerL. Indeed, a(t) = ±( Mi√
σ(T )

+

2
√

σ(T )Mi

C + 1) = ±R0 and by the hypothesis (4.1),

QNa =
1

σ(T )

∫ σ(T )

0
f(0, · · · , 0,±R0, t)Δt �= 0.

Finally we claim dB(JQN | kerL, Ω ∩ kerL, 0) �= 0. Here we take J to be an
identity operator in Z since imQ = kerL. From the hypothesis (4.1) we see that

dB(QN | kerL,Ω ∩ kerL, 0)

= dB

(
1

σ(T )

∫ σ(T )

0
f(0, · · · , 0, •, t)Δt, (−R0, R0), 0

)
�= 0.

By Theorem 3, Lx = Nx has at least one solution x ∈ Ω̄. Therefore the problem
(1.1), (1.2) has a periodic solution.
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