TAIWANESE JOURNAL OF MATHEMATICS
Vol. 16, No. 6, pp. 2153-2186, December 2012
This paper is available online at http://journal.taiwanmathsoc.org.tw

BMO SPACES FOR LAGUERRE EXPANSIONS
Li Cha and Heping Liu

Abstract. Let {¢O},en be the Laguerre functions of Hermite type with in-
dex a. These are eigenfunctions of the Laguerre differential operator L, =

1, d? 1 1
> (—@ +y?+ — (a®— Z)) We define and study a BM O-type space BMOy,_,

which is identified as the dual space of the Hardy-type space associated with L.
We characterize BM Op,, by Carlesson measures related to appropriate square
functions. Finally, we prove the boundedness on this space of the fractional
integral operator and the Riesz transform related to L.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let n € N, @ > —1. The Laguerre function of Hermite type ¢, on (0, 00) is
defined as

n 1/2 2
©o(y) = <%) eV 2y L2 (y?) (2y) Y2, y € (0, 00),

where LS (z) denotes the Laguerre polynomial of degree n and order « (see [12]). It
is well known that for every a > —1 the system {2 }2° ; forms an orthonormal basis
of L2(0, 00). Moreover, these functions are eigenfunctions of the Laguerre differential

operator
1 d? 1 1
L= -=_ 2 - 2 -
“ 2( G vt <a 4))

satisfying Loo% = (2n + a + 1)¢%. The operator L, can be extended to a positive
self-adjoint operator on L?(0, 00) by giving a suitable domain of definition (see [9]).
We also denote the extension by L,. Let {T}'};>0 be the heat-diffusion semigroup
generated by L. More precisely, for f € L?(0,00), we define
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(1.1) T f () = /0 S W) £ (y) d.

e _ 2¢t 1/2 2xye! 1/21_ 2xye!
fev =\em) \ioem) li-e=

Il+e 2, 5,
o (<3 (040,
I, is the modified Bessel function of the first kind and order .
Hardy spaces in the Laguerre setting have been studied by Dziubanski [6]. A func-
tion f € L'(0,00) is in the Hardy space Hj if and only if Tj;f = sup|T{*f| €
>0

L'(0,00). Then we set||fllg: = ITafllzr. Dziubanski proved that the spaces

H }JQ, a > —%, admit atomic decompositions, where the cancellation conditions are

only required for atoms with small supports depending on the following auxiliary func-
tion

(1.2) pL, (z) = %min(a:, 1/z), x> 0.

A measurable function b : (0, 00) — C is said to be an H}Ja-atom if there exists a
ball B, (yo) = {y > 0:|yo —y| < r} with r < pr_(yo) such that

supp b C Bi(yo),
Iblloo < |Br(y0)| ™",
if r<pr,(y0)/2, then /b(y) dy = 0.

fe H}JQ if and only if f can be decomposed as f = Zj cjaj, where a; are Hia-atoms
and ) [c;| < co. Moreover, There exists a constant C' > 0 such that

O fllyy < inf{Y" el s £ =3 cjazy < Clfly -
J J

The main result of this paper is to present a BM O-type space identified as the
dual space of the Hardy-type H ia and utilize a Carleson measure to characterize the
BMO-type space. In the Euclidean space, it is well known that BMO is the dual
space of the classical Hardy space H! and can be characterized by Carleson measures
(see [10], Theorem 3, p.159). In particular, we can choose a special Carleson measure
as follow: for f € BMO,

dhs

2
(1.3) dp = <t2d— *k f) dzdt/t, (x,t) € R x (0, 00),
S |s=¢2
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where h; is the classical heat kernel. Dziubanski et al. [7] investigated a similar result
for Schrodinger operators with potentials satisfying a reverse Holder’s inequality. They
introduce the BM O-type space associated with a Schrodinger operator which is the
dual space of the Hardy-type space. They also utilized the heat semigroups to define
appropriate square functions, and then give the Carleson measures characterizing the
BM O-type space. More precisely,

T 2
(1.4) du = <t2% 2f) dzdt/t, (z,t) € RY x (0, 00),
s=t

where {T}s~0 is the heat semigroup associated with the Schrodinger operator and
d > 3. In addition, they proved that some classical operators in Schrodinger setting (
square function, fractional integral operator, and so on) are bounded on their BM O-
type space. This kind of BM O-type space on the Heisenberg group H" for Schroinger
operator was defined and investigated in [8]. To deal with some key estimates, the
authors of [8] mainly utilized the perturbation theory for semigroups of operators and
consider the difference between the heat kernels associated with the Schrdinger operator
and the sublaplacian operator on Heisenberg group respectively. Recently, a theory of
localized BMO spaces on RD-spaces associated with an admissible function p was
investigated in [14]. The admissible function p in [14] satisfies, as same as [7] and

(81,

IO BN A CYAS
(1-5) p(z) SCO/)(y) <1+ p(y) ) '

In this paper, we use a similar way to give a Carleson measure characterizing
BMOy,, based on the heat semigroup {7} };~¢ and prove two important operators
(fractional integral operator and Riesz transform) are bounded on BMOp,,. The main
key in our paper is also to estimate the corresponding integral kernels for Laguerre
expansions. However, it is difficult to directly obtain suitable estimates for these
kernels. Note that the underlying manifold in our case is (0, c0) other than R. The
new difficulty come from the estimates near to the origin. For example, the admissible
function pr,, in (1.2) does not satisfy in (1.5). This is obvious when z tends to zero
and y = 1. In order to overcome this new difficulty and to obtain some key estimates,
we will consider the difference of the heat and Riesz kernels, which are associated with
Hermite and Laguerre operators respectively(see [1, 3]).

Now we define the BM Oy, associated with the Laguerre operator L, and state
our main theorems.

Definition 1. Let o > —%, Bs(y) be any ball in (0, co) with the center y and the
radius s and f be a locally integrable function on (0,00). We say f € BMOy,, if
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there exists a constant C' > 0 independent of s and y such that

1 .
‘Bs(yﬂ /B W) ’f - fBS(y)’ < Cu if s < (pLa(y)>,
1 :
Bl /o )\f\ <O, if s> (pragy))
S s\Y

Here, fp,(y) = m fBS(y) fdx. Welet ||fllsrmo,,, denote the smallest C' in the two
inequalities above.

It is readily seen that BM Oy, is a Banach space with norm ||| pyo,, - We will
show that BM Oy, is actually the dual space of H ia in the sense of isomorphism.
Let L], (0,00) denote the space of all locally integrable functions on (0, cc) and
L2°(0, 00) denote the space of all bounded functions with compact supports contained
in (0,00). It is clear that L3°(0,00) is a dense subspace of H} . Define a linear

mapping ® : f — & by

B(g) = /O T f@)g@)dz, € LL(0,00),g € LX(0,0).

Theorem 1. @ is a linear isomorphism between BM Oy, and (H }JQ)*

We will show a characterization of BM Oy, in terms of Carleson measures. More
precisely, let

_ 2 a1y

Qtf(x) ds

f(z), (z,t) € (0,00) x (0,00).

We define a Carleson measure on (0, 00) x (0,00) by duy = |Q¢f(x)|* dzdt/t, and
the Carleson norm is given by
p (B (x) x (0,7))

1.6 dugllc = sup < 0.
(1.6) lduslle = s 1Bl

Theorem 2. Let o > —1/2.
1. If f € BMOy,, then duy is a Calerson measure.

2. Conversely, suppose that f satisfies

> f(=@)|
/0 L+ a2 dx < 00,

and dpy = |Q.f (z)|* dzdt/t satisfies (1.6); then f is in BMOyp,,. Moreover,
there exists C > 0 such that

1
6HfHQBMOLQ < |lduglle < Cllflsmo,,



BMO Spaces for Laguerre Expansions 2157

Then, we consider the mapping properties of the fractional integral operator and
the Riesz transform associated with L, on BMOyp,, .

By spectral decomposition and functional calculus of the operator L, we introduce
the fractional integral operator:

o
(1.7) T, =L;"% = / etete/27gt 0<o <1,
0

Theorem 3. Let o > —1/2, 0 < 0 < 1 and o < 2(a+ 3). There exists a constant
C > 0 such that

1Zs fllBaro,, < ClifllL-

Recall that the operator L, can be “factorized” as
1 *
L, = §DaDa+a—|—1
where D, is the derivative associated with L, given by

= — 4z
dx x

1/2
D, d+ a+1/

and D7 represents its (formal) adjoint operator on L?(0, 0o). Formally, the Riesz trans-
forms are defined by
Ro = DoL7'2,

where L,, is considered on C.(R ) as a nature domain. Actually, Nowak and Stempak
[9] showed that R, is a principal value integral operator associated with a kernel

*° 1

. = D. W& —dt.
(1.8) Ru(z.y) /O W ) S
Also, the authors proved that, for « > —1/2, R, can be extended uniquely to bounded
linear operators on LP(0, c0) when 1 < p < oo and are of weak type(1,1). Moreover,
recently, Betancor et al. [2] proved Riesz transform characterization for Hardy space
H ia. In the present paper, we will discuss the mapping property of R, on BMOyp,,.
More precisely, we shall prove the following theorem.

Theorem 4. Let oo > —1/2. There exists a constant C > 0 such that

|RafllBMmoO,, < CllfllBMO,,-

Recently a similar result for Riesz transforms associated with Schrodinger operators
with potentials belonging to a reverse Holder class was investigated in [5], in which
an estimate for difference between the Riesz kernel of Schrodinger operator and the
usual Riesz kernel was utilized to handle the situation of the balls with small radius
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in the definition of BM Oy, . In our present setting, we need to utilize the difference
between the present Riesz kernel and the Riesz kernel related to Hermite operator to
obtain some critical estimates.

Throughout this paper by C' we always denote a positive constant that may vary
at each occurrence; B, (yo) stands for a ball with center yy and radius r; B* denotes
Bay(y0) N (0,00); A~ B means 3A < B < CA and the notation X <Y is used to
indicate that X < C'Y with a positive constant C' independent of significant quantities;

| fll denotes the norm ([~ | f(z)|? da:)%

2. PRELIMINARIES

For further references, we figure out some properties of the Bessel function I, (see

[12]):

(2.1) In(2) ~ 2% z—0,
(2.2) AL () = 1%63(1 + oé)), 2o oo,
(2.3) d%(z_o‘la(z)) (), 2 € (0,00).

Set r = e~2, It is known (cf. §2 of [7] ) that the heat kernel W (x, %) can be
decomposed as

(2.4) W (x,y) = H(r,z,y)¥(r, z,y)Pu(r, z,y),

where

(1+7)/2 11+
H(r,z,y) RS A _r\x—y\Q ;

V2rt/4 < 1—7r );

T2\ Tar

1/2
2r1/2xy / 2r1/2xy 2r1/2xy
@a(r,x,y) = 1_r €xXp { — 1—r I, 1—r .

From (2.1),(2.2), (2.4) it easily follows that there exist constants C, cg, c1,co > 0
so that for ¢ > 1 we have

U(r,z,y)

(2.5) W (x,y) < Ce 1o exp (—co\a: — y\2) )
and for 0 < ¢t <1 we have
2
(2.6) W (x,y) < ct /2 exp <—01 M) exp (—catzy) .

Now we give the following covering lemma for (0, co) which will be used frequently
below. The proof is trivial and left to the reader.
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Lemma 1. Let z9 = 1, xj = zj_1 + pr.(zj—1) for j > 1, and x; = xj41 —
pro(zjq1) for j < 0. We define the family of “critical balls” of B = {Bj} - _o
where By, : = {z € (0,00) : |z — x| < pr.(xk)}. Then we have

(@) U B =1(0,00).
k=—00

(b) For every k € Z, By N Bj = () provided that j ¢ {k —1,k, k+ 1}.

(¢) For any yo € (0,00), at most three balls in B have nonempty intersection with
B(yo, pro(%0))-

We deduce the following two corollaries which will be used frequently throughout
this paper.

Corollary 1. There exists a constant C' > 0 such that for every Br(x) C (0, c0)
with R > pr,,(z) , we have

| Br(z)| < > | Bi| < C|Br(2)|.
{BkEB:BkﬂBR(JZ)?é(D}

Corollary 2. There exists a constant C such that for f € BMOy,_, we have

IfllBaros, < Csup(lfla, + [ fllsaoesy):

where, for any ball B, the norm ||.| pyros) is given by

f = sup f =18 @)ldy
H HBMO(B) Bo(x)CB ‘B ([BM B (x) ‘ By ( )‘
1
sup inf ———— |f — | dy.

By (z)cBc€C \B ()| JB,(2)
Let H be the Hermite operator

1,
=gt

We consider the heat diffusion semigroup {W,};~( associated with H and defined by,
for every f € L?(R),

W f (o /thy y)dy, xeR,

where for each z,y € R and ¢ > 0,

et 1/2 11+e2 et
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(see [13]). The Hermite operator can be factorized:

3 ) G E)]

Motivated by the factorization, formally, the Riesz transform is defined by
RH — (% /2
(o + ) H 2,
where H is considered on C.(R). Using the formula H~1/2 = [ W;t~1/2dt, the
Riesz transform R can be represented as a principle integral operator of the form

R f(z) = lim R (z,y)f(y) dy,

e—0 |ly—zx|>€
with the kernel given by

(28) R = [ (o) witen
’ 0 dx UV
(see [11]).

Harmonic analysis in the Hermite context has been developed over the past few
years. Recently, Betancor et al. ([1, 3]) established the transference between Laguerre
and Hermite settings and investigated the Lusin area function associated with Hermite
and Laguerre operators. Of particularly interesting in these papers are the differences
of heat kernels and Riesz transforms in two settings which are useful in the present
paper.

Now we consider estimates for the integral kernels of the operators Q; :

oW (x,y)
— t2 s )
Qt(xa y) s 8:t27
and similarly consider the integral kernel in the Hermite setting
OWs(z,y)
P =P
t(xa y) s g2
Proposition 1. (see [3], (3.4) and (3.6)). Let o > —%. There exists C > 0 such

that

2
(a) For every t,x,y € (0,00) such that = Czy <1,

1—e—2t2
g el
Qi y)l < CF (wy)™ 2™ S5 s

2
et Ty
1—e—2t?

(b) For every t,z,y € (0, 00) such that > 1,

(22 et?/2

2 —
‘Qt(xay>_Pt(xay>‘ SCt e 22 xy(l_e—t2>1/2'
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Proposition 2. For any large enough N > 0, there exist C' and Cy so that
(a) For0 <z <1, |[% Piz,y) dy’ < Ct?, C is independent of x.

(b) For x >1,
(¢) Fort>0and z,y € (0,00), we have

_@y? /2
‘Pt(xﬂ y)‘ S Ct2€ 162 W

75 Pz, y) dy’ < C’N(lti C is independent of x.

+l’2t2) N>

Proof. (c) is contained in [3] (see (2.3)). We only show (a) and (b). Let
on(y) = ¢(2), ¢(y) is a smooth function satisfying A¢(y) < 1, ¢(y) = 1 for
ly] <1 and ¢(y) = 0 for |y| > 2. Recall (2.7), for fixed s and z, a straightforward
manipulation shows that

/+°° ’8WS(IB, y)

d .
J2 0y < oo

—00

Hence, we have

< OW(x,y) .  OWs(x,y)
/_oo 2 dy’ = nh—>nolo /_oo 05 bn(y) dy
_ nnfolo/ Ws(a:,y)Hqﬁn(y)dy’
<

C/ W (z,y)y* dy.

Using (2.7) again,

> OW(x,y)
I = — 17 d
/_oo ds y’
oo ,—s/4 ( _aN\2,—s 2 2 _ ,—85)\2
e z—y)et + (@7 +y )1 —e )7\ o
< — dy.
—C/_oo NE eXp( 21— e ) s
If z < 1, then

oo ,—s/4 _ 2
ISC'/_Oo e\/g exp(—cow)deng,

which implies ’ [ Pi(z,y) dy’ < 2. If 2 > 1, then

oo ,—s/4 ‘ _ ‘2 1
€ r—1Yy 2
I<C — d
- /_oo Vs exp( 0 )y (1+225)N Y

< Oy L =t exp | —co [(y —2)* 22| dy
T 42N e Vs

2
x
<Cn

(1+ z25)N”

|z — y|?
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which shows (b). ]
Combining Proposition 1 and (c) of Proposition 2, we have the following corollary.

Corollary 3. There exist ¢, C > 0 such that

lz—y?

(2.9) Qula,y)] < O

3. PrOOF OF THEOREM 1

Now we shall give a proof of Theorem 1. Let L?(B) denote the space of all square
integrable functions supported in B and B** denote the ball with the same center as
B and four times the radius of B.

Lemma 2. For any ball B = B,(yo) in (0, 00) with pr,(v0)/2 < r < pr.(v0),
L*(B) is contained in H}JQ. Moreover, there is a constant C' > 0 such that

lgllzry < CIBIY?llgllz2m). ¥ € L*(B).

Proof. We obviously observe that
1TagllLi s+ < CIBI" I Thgl 12(0,00) < CIBIYl9ll 2(5).

So it suffices to prove that ||T7ig||11((p)e) < C|B|"?||gllr2(5). By Lemma 2.2 in
[6], we get

[ szl s [ [ sw W) delgtlay
0<t<1 o<t<1
{z>0:2¢B**} B {z>0:x¢B**}}

< C/\g(y)\dy

< C|BI"?||gll 12y

Again, using (2.5), we also have

[ swimgis < [ [ e (e y)lotw)] ey
{z>0:xgB**} B (0,00)

< C|B|'?||gll t2(m)- u

Lemma 3. Let H' be the classical Hardy space. If f € H' and suppf C (0, 00),
then [ flly < ClI Sl
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Proof.  Since f € H! and suppf C (0, o0), it is well known in [4] that f can be
written as ) ; = Aja;, where a; are H L_atoms supported in (0, 00). So it suffices to
show that, for any H!'-atom a supported in (0, c0), lallg < C.

First assume suppa C B,(yo) C (0,00) and r < pr_(yo), then a also is an
Hj _-atom, and hence [|al|;;1 < C.

Second assume r > pLa(yg) Recall Corollary 1, there exist two integers iy and

jo such that B,(yo) C U By and |B,(yo)| < Z |Br| < C|By(yo)|- Thus we can

k=ig k=ig
write
a= i Mbe, = L@ gy, - Bro)l
k—io | Br(y0)] PLa (Xk)
where,

gy 2 +pr, (21))> if k> 0;
G:D U = Wy, (w0 ) if k<0;
a']lBku if k=0.

1 is the characteristic function of E. It is easy to check that each by is an H }JQ-
atom, so we get

lall s <C’Z Ak <C’Z

k=ig
[
Proof of Theorem 1. Assume f € BMOyp,, and a is an H ia-atom supported in
B = B, (yo). If r < pr,(v0)/2, using the cancellation condition, we have

’/f(a:)a(a:) de| = ’/ (z) da

S g / |f = feldz < | fllBmoy,, -
1Bl Jp
If pr,(v0)/2 <7 < pr,(y0), then

/f 2 di <®/ F(@)] dz < | fl5aros,

Thus, we have seen that each f € BMO gives a bounded linear functional on the
dense subspace of finite linear combinations of H ia -atoms, and hence on H }JQ.

Throughout this proof we always assume B = B,.(yp). Now we come to prove the
converse. Let ® € (H }JQ)* By Lemma 2 with By, in Lemma 1, there exists a unique
f& such that kaHLQ(Bk) < C‘Bk‘lﬂHi)H, and
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®(g) = ; fe(@)g(x)dx, Vg e L*(By).

By Lemma 1, only Bj_; and By, intersect with By. Since L?(Br N By_1) C
L?*(By) C Hia, we have f, = fr_1, for a.e. © € By N By_1. Similarly, fx = fri1,
for a.e. * € By N Bg11. Again by (a) of Lemma 1, we define a unique locally square-
integrable function f in (0, 00) so that f = fi, for a.e. x € Bj. Consider any ball
B, (yo) with pr.(y0)/2 <r < pr,.(Y0). By (c) of Lemma 1, we also have

g) = / Fe)g(@) de. g€ L3(B), and
1Lz < CIBI? @]

7 /. \f(xﬂdxs‘m%ﬂ(/ \f(w>\2dw)l/QSCH<I>H-

For 7 < pr.(v0)/2, let L% 7,0 denote the closed subspace of L?(B) of functions with

zero integral and H'(0, 00) denote all functions of H' supported in (0, 00). Notice
that LQB70 C Hj NH'Y0,00) and [|g]|z < C|B|'/?||g|| 2. Applying Lemma 3, for
any g € L%, we have

[2(9) < 1@ lllglley < CIRMBIY gl -
By the Riesz representation theorem, there exists an element h € L2B,0 so that
1/2
1Pl , < ClI@NIBIS,

and
<I>(g)=<h g>:<fg>

here f = h + Cp, indeed, Cp = 5] BI f B x) dx. Hence, one easily observes that
5 [ 17@) = Caldo < s lbl2 < Ol
(Bl J5 T T \B\W e

This completes the proof.

Corollary 4. Let B = B,(yg) C (0,00). There exists C > 0 such that, for all
f € BMOy,, we have

1/2
(V) I > pr.(w)/2 then (ihy [ ()2 de) " < Cllflmaro,

1/2
(2) f 1 < pra(w)/2 then (b [ 1 (x) = fal*dz) " < Cllflpaoy,
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Proof.  Combining the previous proof and Lemma 1, one easily gets (1). For
f € BMOy,, let fy denote the odd extension of f to R. Then it is also easy to see
that || follzrvro < 2|/ fllBmo,, - Therefore, the John-Nirenberg inequality implies

1 ) 1/2
<@/B\f(a:) — /Bl da:) < | follBaro < Cll fllBaroy, -

4. PROOF OF THEOREM 2

The proof of the next lemma is absolutely same with that of Lemma 3 in [7].

Lemma 4. For f € L?(0,00), let sqf = (fooo 1Q:f (2)]2 %)1/2. Then we have
Isqfll2 = %Hng Moreover,

1 in L%(0, 00).
f(z) = 6_}()1}\;1_)00/ Qf(x) —, in L*(0, o0)
Remark 1. The above lemma also holds in the Hermite setting.

Lemma 5. For all f € BMOy, and B,(yo) with v < pr,(yo). There exists

C > 0 so that
PL. (Y0)
| fB E— )

The proof is trivial, the reader can refer to [10], p. 141.

< C(1+log I fllBrmoy,,-

4.1. Proof of part 1 of Theorem 2

First of all, because of the kernel decay in Corollary 3 and the integrability of
(1+ [2])72f(2) (see [10], p.141),

Quf(a /thy y) dy

is a well defined absolutely convergent integral for all (z,t) € (0,00) x (0, 00). For
any ball B = B,.(yp) C (0, 00), we need to show that for f € BMOy,,,

d d
(4.2). . / /Qt "= < Clf Pamion,,

We write

f=(f—fe) e+ (f = fB)L(B)en(0,00) + [B*L(0,00)
= fi+ fo+f3
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Treating f7 first, we note that

L 2 dedt _ 1 )
\B\/o /BQtfl(x) ;S ‘B‘/B\SQJH(HJ)\ dx
C

@/B*\f—fB*

< Clflismo,,

here the second inequality follows from the L?-boundedness of s in Lemma 4 and the
last inequality follows from Corollary 4.

In the following process, we will frequently discuss two cases. For the sake of
brevity we introduce the additional notations:

2 dx

IN

—2
e "y

Xi(@) = {y € (0,00 : 5 <1},
e_t2a:y

Xi(z) = {y € (0,00) : P > 1}.

Now we start with estimating (4.2) for fo.

@m@ﬂsﬂﬁﬂﬁ@wmam@+/t

1 2

| | f2()]|Q¢(, y) — Pe(z,y)| dy

+/ )| P ) dy
X% (x)

= Ii(z) + L(z) + ().

For x € B, using (a) and (b) in Proposition 1, we have

t t 1 ly — | -
te <[ 5 (1) s

t
sc/ )y,
(B (t+ |y — yol)”

*\C t < t
and when y € (B*)¢ and t < r, we have ol = ot We recall the

elementary inequality

AQg—g&ur+mwﬂdxscwmmMa

here By = B(0). Let fp denote the odd extension of f to R. Since the BMO space
and its norm are translation and dilation invariant, we easily get

AE————me@sA(————am—@ww

r+ |y — yol r+ |y — yol)
< ClifollBmo < CliflBmo,, -
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Inserting this in the above gives us that
dzdt
2 dxat

<o [ 1,

5 | [+ B

2167

dzxdt

flBro,,

t

To estimate I%(x), using (c) of Proposition 2 and repeating the above proof, we also

“ 5 | [ e

Now it remains to show (4.2) holds for the constant term f3
proved in several steps. The first step is the case of r > 1.

dzxdt
t

< Cllflbao,, -

da:dt

t

2
dxdt
(y)dy —
2 00 2
* dxdt
_\/z / Qi(x,y)dy| ——
Bl Jo JB1Jo
| f5+|? / / 2 dadt
< -
ATl
x,y)dy
1B 000y 50 2T

=11 + I.

It is easy to check, by Lemma 4, that

L <C

|t —y| >rand r > 1. So

|/ ?

I <2
| Bl

The second step is the case of r < pr,, yO)

/ Qi(, y)dy

|fp-]?
| Bl

& ‘f\g\ /O/B

\fB*
B

= J1 + Jo.

| [ |2
B

|1B*| < Cll o,

. dt
B / P < Ol o,

I,

Qi(z,y)dy
Xi(z

Qt z,y)dy
Xt

2 dedt

t
da:dt

t

da:dt

To estimate I, by Corollary 3, we see that [Q;(z,y)| < CyL3(1+ lz—yl

. This part will be
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Notice that x ~ yo and pr,(v0) ~ pr,(z) when z € B,(yp), and y < Qot—2 when

2
e—t

m < 1andt¢ < 1. Then by an application of (a) of Proposition 1 it follows that

2

B L G e

1
ol [ ¢ oo

9 2
PL. (Y0) r
S HfH2BMOLQ <1 +log r ) <PL (yo))

< Ifl3mro,..-

J1

2/\

AN

here the third inequality follows from Lemma 5. To estimate .J5, we split it into two

parts,
2
dzxdt
J2§ \B\ // /Xt (Qe(z,y) — Pz, y))dy| ——
AP L[ raal
= Jo1 + Joo.

212y 2
In order to estimate .Joo, by the simple fact that % S $whent <r < pr(yo)
and x € B, we use Proposition 2 to get

2 2
(1—6_2t )et

o x 1 (95 y)
S Py(z,y) dy| + ;e 1612 dy
—00 —00

2,2
(1—e= 2%t

/ Py(z,y) dy
XQ(Q,’)

ot - 1,2 1242
< e 16° dz t2 —
—e—2 et2 22
< (T e i + 2+ ta
(1 + $2t2>N

A
/?
~—

[}

_l’_
o~

o}
_l’_
o~

o}
8

[}

A
T~
s
h
Q
oS Sl
<
~

[}

Hence,
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2/(: <PL:(ZUO>)2 %

) 2
PLa (Yo "
< Ifllaron,, (Hlog ( >) <pL <yo>)

Joo < | B

Now we deal with Jo1. Let Hy(z,y) = Qi(x,y)— Pi(z, y). Recalling (b) of Proposition
1, we have

@=y)? et’/2
(4.3) |Hy(z,y)| < Ct?e” o

Tyt
We will consider two cases.

Case 1. yo > 1. Notice that pr_ (o) = %y% and y > C();j—z when y € XI(z).

2

T > dxdt

< H dul  2Fat
Y0
< Mol /1 Hi( Qd’”’dtﬂfB*Q/r/ywH( Jay| 2t
< @ — z,y)dy| ——
|B| B Cg—f ! 13 |Bl Jo Jeti !

= Jo11 + Jo12.

Applying (4.3) and the simple fact | f5~

<C (1 + log 2& T(y°)> I fllBroy,, in Lemma

5, we get
2
1,2
t“11 dzxdt
< L
2~ |B| Cot2 xyt Y t
T2 2 1% at
Sl [ 5 loglao)| T
0 Y%
PL.L\Y0
< <1+log#> 1/2HfHBMOL
< 11000,
and
°°t2 o2 1 |* dadt
Ja12 S ty - a:T
dt
S | fBs /(-) :
o \%0 t
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Case 2. yg < 1. Similar to case 1, we also split Jo1 into two terms:

| fB+|? ? dwdt

Ty = dy| 5

211 \B\ 33 y) Y P

| fB+|? / / / 2 dxdt

Jo12 = Hi(z,y)dy| ——
IBl Jo JBl|/)2 t(@,9) 13

For Jy1 we can repeat the previous proof in case 1 to obtain Ja1o < C|| fll%y0, -
To deal with J217 we need some further decompositions:

fB* 8 yO dxdt
J. dy| ——
211 S \B\ 33 y) Y ;
\fB* / / ? dwdt
Hy(z,y)dy| ——
‘B‘ Ly t

A new use of (4.3) and Lemma 5 show that the first term is controlled by

s%0 dxdt coy
—— < . 270
Il ] s [

Yo
Furthermore, combining (4.3) and the simple fact that y — x ~ y when y > I—E?y(), the

second term is bounded by
f5+|? ? dvdt " /1 8
! ay| == sl |- (5 0
104, vy t o |yo \2 10y

B
/ et

~ HfHBMOLa

2 dt

t

S HfHBMOLa

2t
¢

S /B

Now we consider the final case, that is, pr,(y0) < r < 1. From Lemma 1 we

. Jo Jo
choose a family of critical balls {B;};2, so that B C (J B, and - [B)| ~ |B|.

I=io I=io
Then the left of (4.2) with f3 is bounded by
Fel? Jo dedt foe|? ]0 PLq (1) 2 da:dt

\fB*

2 Jo / ’ 0,1 gda:dt
‘B‘ pLa t O OO t *
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Using the argument in the second step and |fp-
right is controlled by

< | fllBmo,, » the first term of the

1 Jo
= > Bl fllzaro,, S 1m0, -
‘B‘ « «

l=ig

C

So it remains to show that
T o dxdt
(4.4) Qe (0,00))| 5 < C|Bl.
PLo(x1) /By

In the subsequent proof, we will slightly modify the argument in the second step. In
the beginning, we also divide (0, c0) into two domains X?(x) and Xi(z) and break
the left of (4.4) into two parts H; and H,. According to Proposition 1, it follows that
H, < C|B| for z; > 1 by a similar proof for .J;. For z; < 1,

2

2

o< C/r / /%8;— 1 <$>a+1/2 <y>a+1/2 _ac2+2y2d dxdt

L < i el z e st Yy —
pLo (z1) /By [J0 A t t

2a+1 (¢t
%) Yo oB.

< OB ' ( ;<

PLo (T1)

In order to deal with Ho, like treating Jo we make difference between Q¢(x,y) and
P,(z,y) to split Hy as:

e[|
pPLo(x1) J By
H22=/ / / Py(z,y) dy

pLo (1) Y B |/ X2()

For Hyo, if 2; > 1, using the same way to estimate ’fXQ(I) P(z,y) dy’ in treating Joo,
then

2
dxdt

t

/X @)~ R0 dy

and 2
dxdt

t

T t 2 dt
Hy < |B| <7) —
oo () \PLa(Y0) t

< 1By

If @ < 1, then pr, (2;) <t <r < 1andx pr,(2;) give that £ < L. So, using part
(c) of Proposition 2 we get

| pewal< [ Lo g
— 16t
o TED WIS [ ann 7 y

1 (1—6_2t2)€t2 x ’
> _1,2 B
< e 16° dz < (Ce .
( =

1—e_2t2)et2 z
T t
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Hence,
T x? 1
Hyy < \Bl\/ t—é;dt.
PLo (1)
S |Bila} (pro(z) ™2 —r7%) S |Byl.

Finally, we estimate Ho; to complete our proof. To do this, again making use of (4.3),
if ; < 1, repeating the argument for Hao in the case of z; < 1, we have Ho1 < |Byl.
If x; > 1, using (4.3) again, we obtain

2
T 00 (z—1)2 t2/2
Hoy S/ / /2t26_2t—g6 dy drdt
oLy (21) <ot zyt t

2
t dxdt " , e |* dadt
5 y — + t 2t2 dy -
pLo (@) JBy |/ 0= T PLo (x1) Y By 11 t
< |Bil |pLa(x1) log(pr, (1) ] tdt+ |By|

PLo (T

S Bl
Thus we finish the whole proof.

4.2. Proof of part 2 of Theorem 2

Define 1/2
g xTr) = )
() {AA\QﬂM }

where I'; () = {(y,t) € (0,00) x (0,00) : |z — y| < t}, for every z € (0, c0).
Lemma 6. ([3], Theorem 1.5). Let @ > —1/2. If f € H}JQ(O, o0), then there

exists C > 0 such that
16Dl 0,000 < Cllf 3, -

1/2
dydt
ﬂﬂm:mﬁ%wﬁm/“ [ st ) ,

where r(B) denotes the radius of B.
The following lemma is a slightly modified version of Proposition in [10], p.162.
We omit the details of proof.

Lemma 7. If G(g)(z) € L'(0,00) and Z(f)(x) € L>(0,00), then, there exists a
C > 0 so that

/ @@ 0 < ¢ [ 260 s
(0,00) x(0,00)
< 1T @) 1=000) 150V ) 300

Set



BMO Spaces for Laguerre Expansions 2173

We need the following identity to finish our proof.

|f(x )\

dxr < oo and g is an H}J -atom. Then
x [e3

/ f(2)g(a) da = / Quf () Qug ) 22
(0,00) x(0,00)

Indeed, observe that || dullc = | Z(f)(z)||Lo(0,00)- Thus, we have

Lemma 8. Suppose fo

da:dt

g(x)dz| < CIT(F) (@)l 120,00 1G(9) | £1(0,00)

< Clidullellgllmy -

Proof of Lemma 8. From Lemma 6 and 7, by the dominated convergence theorem one
easily observes that

———dxdt . da:dt
I:/(o,oo)x(Ooo) Qif () Qg (x ) = lim / / Qi f (2)Qrg(z)——

Next, we shall show that, for fixed ¢,

/ Quf (@) Org(@)da — / / Qul, 1) f () dyQug (@) dc
f(y)Q?g(y)dy,

and

r= g [ o) g
- [ me Q| i
/ e

In order to justify the absolute integrability in the above integrals, by the hypothesis
fooo %% dx < oo and the kernel decay in Corollary 3, we only need to show that, for
any H} -atom g,

(4.5) Mgg(x) = ?:qu) 1Qig ()| < Cpor (1+2)72, x>0,
>
and
(4.6) Mqgg(x) = sup / Qlg(x ’ < Cyor (14272, 2>0.
€,N>0
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In fact, without loss of generality we assume g supported in B = B, (yp) with r <
PL.(Yo), first using (a) of Proposition 1 one easily observes

[~ s >dy]<c/ exp(—cole — y)g(w)| dy < Coorg(1 + )2

sup
t>1

If t <1 and z ¢ B*, then for y € B, |z — y| ~ |z — yo|, applying Corollary 3,
2
T —Yo
/ Qi(x,y)g )dy’ < CNHng—eXP< %)

< Cyovg‘x - yO‘_2~

Finally, if x € B*, also by Corollary 3, we have

[ @tegm o] < Clali,
which establishes (4.5). Moreover, using (2.1)-(2.4) we also get
(4.7) sup [W'g ()] < Cyo,r (1 + z)7?.

t>

Combining (4.5) and (4.7), we obtain
N dt L/ .
| @ ] (Wsa9(2) = Quag(@)) = 5 (Waag(a) - ng<x>)]

2
which establishes (4.6) and hence complete the proof.

S Cyoﬂ“ (1 +x>_ ’

5. PROOF OF THEOREM 3

By the definition of BM Oy, and Corollary 2 it suffices to prove the followings:
for every fixed “critical ball” By, € B (see Lemma 1) we have

1) 15 Jp, 1 Zoflde < C| fll1;
(2) HIofHBMO(B;;) < CHfH%
Let us treat (1) first. Split
1 00
Lf(@) = [ Tepae e [T = 1 () + B (),
0 1
By (2.5) one easily gets

1 1 1 7
7 o, r@lds < o (] i ac)
1 00 -\
<O ( Al exp (~cole — ) £0) da:>

< Cllf /o
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To deal with I; f(x), first we consider the case of 2, > 1. We use (2.6) to obtain

[11.f ()]
! 1/2 |z —yl? o/2—1
< / / t7/“exp —Co—F )P (—catzy) | f(y)| dyt dt
0

1 2

e[ [ e (<l e eaten) 7] e
0
{y>0,ly—=zx|>1/2}

1
< Mf() /0 exp(—car2t)7/2 L dt + | s
< MA@ (@) + 1f]l1)er

where M is the classical Hardy-Littlewood operator and f can be seen as the function
defined on R. Then it follows that

1

I doe < C——

Mf(x)(pra(zr)” de + | flli/e < Cllfll1/0-
\B | /B,

Next, we treat the case that x; < 1. In this case, pr, (%) ~ zx. Repeating a part
of the argument above, it is easy to check that

1t -
a L W )] dydot”> 1 < Cl o
|Bel Jo /B, Jiy0.ly-anl>13

Now, observe that

1 1 n
B—/ / / Wz, y)| f(y)| dydat®/> dt
‘ k‘ 0 By, J {y>0,ly—zp | <1}
1 1 $k+2pLQ(l’k) .
- —/ / / Sz, y) | f(y)| dydat® == dt
| Br| Jo B, Jo %%

ik 1 xp+27 o (2k)
1 K PLo (Tg e
2 By / / / W, y)| ()| dydrtodt

k29 pr, (T1)

Jj=ko

=Jy+ Z Jj,
j=1

where 20+ p; (21,) ~ 1. Using (2.6), Jy is bounded by
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1 PLa (Tk)? Tp+2pL, (k) /2—1
1Byl / / / Wz, y)| f(y)| dydxt® =" dt
‘Bk‘ 0 By

1 Tk 2010 (k) .
+\Bk\/ ( /B / W (x, y)| f(y)| dydat® =~ dt
PLa (Tk) k

1
< 2 Mp@)dzpp, (@) + /

~ ‘Bk‘ By,

0Tk

L /0 F()] dy

PLo (k)2
oz

<M flhy+ 2l /0 £ @) dy < 1 f 1l

In order to analyze J; , similarly we split .J; as

2 pLa (@) o+ 27 prg () /2-1
= / / / Wi (@, y)| f(y)| dydat” dt
\Bk\ 5, Jo

k+27prg, (T1)

Tp+27 T pp (@)
N Wi (o )| (0)| dydat®/ e
‘Bk‘ 2ppg (xr)? /By Jx

27 pL, (k)
Ji1 + Jjo.

Applying (2.6) again, we have

2],0La(l’k Ik+2]+1pL (l’k /2 L
1S dydzt® = dt
Jj | B, ‘/ QJPLQ 75) /Bk/a: |f(y)| dy

k+2]pLa(ﬂfk
a:k+2j+1pLa (zg)

— |f(y)| dy
(QJPLa(ka))( o) /33k+2j.0La(37k)

[

G (2/pL. (21)?)

<t
~ (QJPLa(a?k
S @) 72l

For Jjg, since § — a — % < 0, combining (2.1) and (2.4) we obtain

_ 1 1 1 xp+27 T pp  (2)
w5 Lo o]
! ‘Bk‘ 2ija(l’k)2 Bk 2]pLa (f]:k) l’k+2ija(l’k)

97 2.2 a+1/2
ol dyd (275) e

; a+1/2 ; oc/2—a—1/2
2723) 2 (@ pr, (20)?) T 1Ay

< %(
~ (27pr,(7k))
< @)l

Combing these estimates we finish the proof of (1).
Now we pass to prove the assertion (2). As before, we only need to show that

1
’ / T f ()t > L dt

0

<ClIfl-
BMO(B;) i



BMO Spaces for Laguerre Expansions 2177

Let B = B, (o) C Bj. Split
2

1 r 1
/ T f ()72 dt :/ Ttaf(a:)t"/Q_ldt—ir/ TEf ()72~ dt = Jy + Js.
0 0 2

T

For J;, Holder’s and Minkowski’s inequalities give

1/Jd<1</J%d)U

i X X

B Sy = 1B Uy

1

o | s

To deal with J5, we split J5 into two terms by decomposing f = Ip«f + (]1(0700) —
1p5+)f. Using (2.6) and Holder’s inequality we have

1 1
| 1] = / Tt‘)‘llB*ft"/Q‘ldt’ <C / f(y) dyt?*71 12 dt
r2 J B*

r2

< clfl.

To complete our proof, by the definition BAMO(B};), we only need to find a suitable
constant Cg such that

Ta ]1(0 00) — ﬂB*)f(a:)t"/Q_l dt — Cg| dx < CHle/o

We set Cp = fr2 Tta(l — 1g=) f(x0)t?/?>~1 dt. Using (2.4), we get

1
/ TP (Lo,00) — L) f(2)t7/>  dt — Cp| < Hy + Ho + Hs,
7“2

where

1
m:// H (2, 5, (2, y, )Pz, y, 1)
r2 J(B*)*N(0,00)
—H (20, y,t)¥(z, y, t)@alz, y, t)| | f () [t7/* dydt;

1
m=[ [ [H (0., ¥ (@, 5. 1) ®a(r, 5. 1)
r2 J(B*)¢n(0,00)
—H([B(), Y, t>\Il<x07 Y, ) ([B Y, )‘ ‘f( )‘t0/2_1dydt;

1
HS — / / ‘H([BO,y,t>qj<xﬂay7t>¢)a(‘xayut>
72 J(B*)eN(0,00)

—H([B(), Y, t>\Il<x07 Y, t)‘I)a([BO, Y, t)‘ ‘f(y>‘to—/2_1dydt

Before estimating H;, H2 and H3, we first give a preliminary inequality: For € B,
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o [ [ e [t < ey

Indeed, notice that |x — x¢| < r, then

! r—xg| 1 y — xo|? o

/2 /(B*)CO(O )‘ \[0\\[ < CO%)W‘UWW e
' |z — x| 1 ly — @of? g
< — —cp——— dyt>~dt
~ /7“2 Z/y>0:|y—a:0|~2jr} \/Z \/Eexp < 0 ) ‘f( >‘ Y
T—2x 1 (2Jr)2 o_
</, Z‘ = / 1)yt
{y>0:|y—zo|~27r}

Mo —ao] 1 |~ (2r)7 | &
LA v ke M
r2 \/_ \/_ Z( 2\/§>N 7

S |z — o / =5t f
r2 o
< Hin,

1 o
where we use the simple fact Z % <ctz72.
J=1

Now, we treat H; first. Using the mean value theorem and (2.1), (2.2) and (2.4),
we have

1 xr—x9| 1 2 o
H1§/2 /(B*)CO(O )‘ xfo‘\fe p( u)w ldytr=d,

and hence (5.1) gives our aim.
For Hs, we use the mean value theorem for ¥ and get

Hy < /1/ |lx — azg\ytL exp <—0M) |f(y)|dyt>Ldt
™ Jr2 J(eyen(0,00) vt t

Furthermore, we write

1
Hy < // dydt—i—// ...dydt
Cﬂ{O<y<m1n{a:0+1 2&:0}} y>min{zo+1, 2&:0}
L ()
 pr@0) Vi
+/ / e_%'y‘“'?\f(y)\dyt%‘ldt
r2 JO

< 1l

|f )|yt dt
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the last inequality follows from the proof of (5.1) and Hoélder’s inequality.
Finally, it remains to analyze Hs. We start with computing the partial derivative in

x of ®4(x,y,t). Using the formula (2.3) and taking s = 2i oY we obtain
d®,(z,y,t 2ety [1 _ 1
a(da: ) =1 o2 | 5% /2 exp(—s)I4(s) + as™2 exp(—s)Io(s)

+exp(—5)s 2 (Tng1(s) — In(s)).

We keep in mind that x ~ zo when z € B. If %/ < 1, applying (2.1) and the mean
value theorem for ®,, the inner of the integration in H3 is controlled by

B e S s LT

On the other hand, if %Y > 1, using (2.2), the inner function is bounded by

11

53 Clo—nl (2) " L em-al =2 s

It is clear that (5.2) and (5.3) are bounded by

|z — xo| 1

(5.4) O oxpl(- o =20 .

o

If x9 > 1, applying (5.1) and (5.4) one easily obtains the desired result. If x¢ < 1,
we will split Hs into the sum of several integrals. we first consider

PLq (%0)?
/ L dt
7"2

o) |z — o] 1 ly — xo]? o
S —exXp(—cp———— tg—ld dt
/7“2 /(B*)Cﬂ(() oo) i) \/E ( 0 t )‘f(yﬂ y

PLa (T0)? 2
< = 2ol v gy 1, < 11
r2 pLa(x())

here we used the proof in (5.1). Next, we analyze the integral I = fplL ()2
which is decomposed as ’

1 1
15/ / ~~~dydt+/ / coe dydt
PLo (w0)? J(B*)N{y>0,5>1} PLa (20)2 J(B*)en{y>0,%¢ <1}

=1 + Is.

- dt,

Estimating I; we use (5.3)and (5.1) together with ¢ > pr_(x0)? to obtain
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1 ly— )
y—xo|+z0 1 ly—xo o 4
ns [ / g o H T L oo <—00 ()5 dyae
PLo(T0)? 13 Vi

2
/( / xo\\[\[exp( lu)w J[t5 1 dyat
S Il

The final step is to estimate I». Applying (5.2) and the proof of (5.1) gives that

I < / / 33—330\ <\y—$0\$0)
pLQ(l’o

_ 2
exp( OM) F)lE5 " dydt

/</ ‘x_%%) e (=) L1 dya

She-wml [ s,
PLa (0)?

1
Ho—aoladt [ e E ey S 1)y
p

Lo (To
Thus we finish the proof.
6. PROOF OF THEOREM 4
Lemma 9. Let o > —1/2, R, (x,y) in (1.8) and Ry (x,y) in (2.8). Then:

(1) Rl )] < Cyo#1/2=0=52 0 <y < 5.
(2) |Ra(z,y)| < Caot3/2y=a=5/2 " 95 <y,

/
(3) [Ra(z,9) = Ru(e, )] < C5 (1+20), $ <y <20

o —y| /2

(4> ‘Ra(xay> - RH(xayM < Ci (1 + W) , % <y < 2.

Proof. (1), (2) and (3) are the contents of Lemma 2.13 in [1]. We only need to
prove (4). For x,y > 0,

& 1
Ry(z,y) — Ry(z,y)| < DY (x,y)| —dt
Role.9) = B < | 1D o)
1
where D¢ (x,y) = (% +x— a+—2> W (z,y) — (% + 2)Wi(z,y).
It is proved in [1] that, for = t_2t <1,
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1 1
D (z,y)| —=dt < C-,
Joer,_ 1Dl < O

1_e—2t >

and while for fe_t

Y > 1, we have

‘D?([B,yﬂ SC Wt(fl?,y>,

1—e 2

and 1
‘D?((B, y)‘ < C_Wt(xa y)

Setet = IT The proof of Lemma 2.13 in [1] shows that

1
T 1
—W ds < C-.
/1/2 1 _ €_2t t(x7 y) S —_ y

It suffices to show that

1/2 4 1 1
—Wi(x,y)ds < ————F——.
[ < Y=

Indeed, by (2.7),

1/2 1 1 1/2 o2
/ _Wt(xay> ds S C—/ 3_1 _%—6081@/ dS
0 Y Yy Jo

which implies the proof. ]

Lemma 10. ([11], Proposition 3.1). Ry (z,y) is Calderon-Zygmund kernel which
satisfies

(6.1) |Rp(z,y)| < C‘ —

and, if |x —y

(6.2) |Ru(z,y) = Ru(2,y)| < C“i - ;‘/2‘7
while, if |x —y| > 2|y — v/

03 Rate.0) ~ (o)) < o2

Notice that

< d dt
Ry(z, :/ —Wa: / aWy(z,y) = R (z,y) + R (z,y).
H(T,Yy) ) t(z,y) \[ t \[ 1 ( ) 2 ( )
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Lemma 11. ([2], (51)and(55)). Let py(x) = (1 + |z|)™ . If |x —y| > Cpu(x),
for large enough N > 0, we have

(6.4) IRY (2.)| < Oxlelpm ()™ [z~ ol
and
(6.5 Rl o)l < Co (2 1ol o) = i

Proof of Theorem 4. In a similar way as in the proof of Theorem 3, first we shall
show that, for By, € B in Lemma 1,

1
(6.6) L / [Rof|dz < C| {50, -
‘Bk‘ By,

In order to prove (6.6), we will consider two cases. In the first case of x; < 1, Lemma
9, Corollary 4 and L?-boundedness of R, lead to

1

.| ‘Ra.ﬂ dx
‘Bk‘ By,
< —— (z,y)f(y) dy| dx + —— / / y) dy| dx
2a:k
\Bk\/ / o(@,9)f () dy| d=
2n+1 Ty
1 3 1 2
S 1B / / f@)ldy————a®" 2 de+ — |~ |f(y)|dy
kl J By, 2y, (ank> ) zr Jo
1/2
\Bk\l/Q </ ’R Uy, /2,20 f (% )’ )
o0 1 1 2, , 1/2
< - -

S Wfllsmoy, -

In the second case of x; > 1, as in the first case we make the same splitting for the
left of (6.6), and the first two parts can be treated similarly. We only need to show

(6.) B /

To do this, we make the difference between R, (z,y) and Ry(x,y) and use L2-
boundedness of R, to get

2a:k

) f(y) dy

dz < C||fllBmoy,, -
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‘Bk‘ By, /_& QIk]/B* (@, y)f(y) dy| dx
\Bk\ 5, /;R (2,9)f(y) dy| do

=L+ L+ |fllmo,,-

For I;, using (4) of Lemma 9, we obtain

1 2xp,
I $ — lf(y)| dy+ — /
Tk S /2 xk [3k 224]/ By Y

On the other hand, noticing that pr_(x) ~ pg(x) when z > 1 and x; ~ = when
x € B}, by Lemma 11, we have

‘\f( Yl dy < | flsaoy,,-

I

S /
Ik 2xy]/B;

2

PR (2xk + y — ax)pu(ap) pH(Tk)
ly—ak|~29pr, (w5) (27 p (wk)) (27 p (wk))

i (00" v+ ( ) oo ool )

N

)\f( )| dy

j*O

S Z S flBymoy, S IfllBroy, -

Next, we turn to proving that
(6.8) |RafllBrosy S IfllBMOL,-
Set B = B,(x0) C Bj and write

= Npagooy T S10000/9 T 1,

= fi+fo+ 3+ fa

(5 200)/B5, () @0) fis,, o (a0) 0

From the above, whenever zg > 1 or zg < 1,

[Rafilloo + 1 Rafalleo S [ fllBATOL, -

From Iy and I, if ¢ > 1, then

(6.9) [Rafs = Ruf3lloo S N fllBMOL,



2184 Li Cha and Heping Liu

and
(6.10) 1Rm fslloe S |IfllBMOL, -
While, if zg < 1, using (3) of Lemma 9 and Lemma 10 we get
2x0

610 IRafs = Rufile S oo [ @IS ISl
and

2a:0
(0.12) Rifille < oo [ SIS 1o,

Taking into account (6.9),(6.10),(6.11) and (6.12), we get || Ro f3]loo < |1fllBMO,,, -
It remains to show that there exists a constant C'g such that

1
(0.13 o [ IRafu(@) = Cal dz S | fsaron,.
|B| /B
The left side of (6.13) is bounded by
1 1
o [ Rafu(@) = Rufu(@)] da + i [ |Rufio) - Cal do
|B| JB |B| JB
Let 2 € B and By = Byz-k); (20)(2), k=0,1.... It is clear that
| 1f@da < ClBesl (4 Dl fllmavon..
z,k
(see [10], P.141). Using (3) in Lemma 9, we get

[Rafa(x) = R fa(z)] S [Ra(2,y) = Ru(z,y)|f(y)] dy

(ﬁo)(mo)

m\

*

A
Mg

i

|Ra(2,y) — Ru(z, y)||f(y)] dy
0
1

/ac k/Bac k+1
(2

1/2
D e /| @l

(2 (k4 Dl flavo,

A
M8

il
o

A
NE

il
— O

S

|BMO,, -

It remains to show that

1
& /B Rirfu(x) — Ci| dz < |1l aro,
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Let B,E = B21_kaa(Io)(a:0), k=0,1,..., ko, where kg satisfies 27%0~1p; (zq) <
r <27k pr (x0). Set

fa— fBz’iO = (fa— fBgo)]lBgo + (fa— fB£0>lBg/B£0 - fBﬁo]l(BS)c
= fa1 + fao + fa3.

Since Ry is bounded on L?(R), by Corollary 4, we have
5 [ VB fu(o) d <<1/\Rf(>\2d)%
= HJ41\T T3S | 757 HJa1(x X
|B| /B |B| /B

1 2
<\B \/k T = I, dx)

0

=

AN

S fllBmoy, -

We pass to treat f2. Using (6.2) and the basic fact | f5: — fp: | < Clko—Fkll| fllBmo,,,
k k *
for x € B, we have ’

ko—1

|Rp fa2(x) — Ru faz(zo)| S Z/ |Ru(z,y)—Ru(zo, y)| | fa(y)— fge |d
k/ k+1 ko

ko=l ok—ko

< _

ST (]f — ft| 1 fBgo\) dy
ko—1

S (ko —k+ 1255 flsumo,,
k=0

< | fllBmoy,, -

Finally, for the third term, using Lemma 10, we get
R faz(x) = Rz faz(zo)| S |fpe ‘/(Bﬂ) |Ru(x,y) — Ru(zo,y)| dy
0 c
0

< (ko + )27 fllpmo,,

S N fllBmoy, -

The proof of Theorem 4 is completed.
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