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EXPONENTIAL STABILITY OF SOLUTIONS TO SEMILINEAR
PARABOLIC EQUATIONS WITH DELAYS

Cung The Anh* and Le Van Hien

Abstract. In this paper we prove the global existence and the global exponential
stability of weak solutions to a class of semilinear parabolic equations with dis-
crete and distributed time-varying delays. Moreover, the exponential stability of
stationary solutions of the equations is also studied. The obtained results can be
applied to some models in biology and physics.

1. INTRODUCTION

The study of functional differential equations is motivated by the fact that when one
wants to model some evolution phenonmena arising in physics, biology, engineering,
etc., some hereditary characteristics aftereffect, time lag and time delay can appear
in the variables. Typical example arise from the researches of material with thermal
memory, biochemical, population models, etc (see e.g. [9, 16]). One of the most
important and interesting problem in the analysis of functional differential equations is
to study the stability of solutions. This theory has been greatly developed over the last
years for ordinary differential equations (ODEs) with delays and recently for partial
differential equations (PDEs) with delays.
PDEs with delays are often considered in the model such as maturation time for

population dynamics in mathematical biology and other fields. Such equations are
natural more difficult than ODEs with delays since they are infinite dimensional both
in time and space variables. As mentioned in [10], the stability analysis of PDEs with
delays is essentially more complicated. We refer the reader to some recent works on
Lyapunov-based technique for PDEs with delays [2, 4, 5, 6, 8, 10, 11, 15].
In this paper, we study the exponential stability of solutions to the following semi-

linear parabolic equation with a mixed delay
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∂

∂t
u(t, x) +Au(t, x) + f(u(t, x)) = F (t, ut)(x) + g(x, t), x ∈ Ω, t > 0,

u(0+, x) = u0(x), x ∈ Ω,
u(θ, x) = φ(θ, x), θ ∈ (−r, 0), x ∈ Ω.

(1.1)

Here Ω is a bounded domain in R
N and other symbols satisfy the following conditions:

(H1) A is a densely-defined self-adjoint positive linear operator with domain D(A) ⊂
L2(Ω) and with compact resolvent (for example, −Δ with the homogeneous
Dirichlet condition).

(H2) f : R → R is a C1 function such that

C1|u|p − C0 ≤ f(u)u ≤ C2|u|p + C0, p ≥ 2,(1.2)

f ′(u) ≥ −�, for all u ∈ R,(1.3)

where C0, C1, C2 and � are positive constants.

(H3) The mixed delayed function F (t, ut) is in the form

(1.4) F (t, ut) = F1(t, u(t− h(t))) +
∫ t

t−τ (t)
F2(s, u(s))ds,

where h(t) and τ(t) are time-varying delay functions satisfying

sup
t≥0

h(t) = h ∈ (0,+∞), sup
t≥0

τ(t) = τ ∈ (0,+∞),

sup
t≥0

h′(t) = h∗ ∈ [0, 1), sup
t≥0

τ ′(t) = τ∗ ∈ [0, 1),
(1.5)

Fi(t, .) : L2(−r, 0;L2(Ω)) → L2(Ω), i = 1, 2, F2(t, 0) = 0 and there exist some
constants k1, k2 > 0, CF ≥ 0 such that for all u, v ∈ L2(−r, 0;L2(Ω)), where
r = max{h, τ}, one has

‖F1(t, 0)‖ ≤ CF , t ∈ [0,+∞),
‖Fi(t, u)− Fi(t, v)‖ ≤ ki‖u− v‖L2(−r,0;L2(Ω)), i = 1, 2, t ∈ [0,+∞).

(1.6)

Hereafter, we denote the norm in L2(Ω) by ‖.‖.
(H4) The external force g ∈ L2

loc(0,+∞;L2(Ω)) is given.

It follows from (H3) that, for any u ∈ L2(−r, 0;L2(Ω)), we have

‖F1(t, u)‖≤‖F1(t, u)−F1(t, 0)‖+‖F1(t, 0)‖≤k1‖u‖L2(−r,0;L2(Ω))+CF , ∀t ≥ 0,

‖F2(t, u)‖=‖F2(t, u)−F2(t, 0)‖≤k2‖u‖L2(−r,0;L2(Ω)).

Thus, F (t, .) is a bounded operator from L2(−r, 0;L2(Ω)) to L2(Ω).
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Since A : D(A) → L2(Ω) is a densely-defined self-adjoint positive linear operator
with domain D(A) ⊂ L2(Ω) and with compact resolvent, A has a discrete spectrum
that only contains positive eigenvalues {λk}∞k=1 satisfying

0 < λ1 � λ2 � . . . ., λk → ∞, as k → ∞,

and the corresponding eigenfunctions {ek}∞k=1 compose an orthonormal basis of the
Hilbert space L2(Ω) such that

(ej, ek) = δjk and Aek = λkek, j, k = 1, 2, . . .

Hence we can define the fractional power spaces and operators as follows

Xα = D(Aα) =
{
u =

∞∑
k=1

ckek ∈ H :
∞∑

k=1

c2kλ
2α
k <∞

}
,

Aαu =
∞∑

k=1

ckλ
α
kek, where u =

∞∑
k=1

ckek.

It is known (see e.g. [7]) that if α > β, then the space D(Aα) is compactly embedded
into D(Aβ). In particular, D(A

1
2 ) ↪→ L2(Ω) ↪→ D(A− 1

2 ), where the injections are
dense and compact.
The rest of this paper is organized as follows. In Section 2, we prove the existence

and uniqueness of a weak solution to problem (1.1) by using the Galerkin method. The
global exponential stability of weak solutions is discussed in Section 3 by using the
Lyapunov-Krasovskii functional method. Section 4 is devoted to study the existence
and exponential stability of stationary solutions. In the last section, we consider some
models in physics and biology as illustrative examples of the above results.

2. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

Denote
ΩT = (0, T ]× Ω,

W = L2(0, T ;D(A
1
2 )) ∩ Lp(ΩT ),

W ∗ = L2(0, T ;D(A− 1
2 )) + Lq(ΩT ),

where q is the conjugate of p, i.e.,
1
p

+
1
q

= 1.

Definition 2.1. A function u is called a weak solution of problem (1.1) on an

interval [0, T ] if u ∈ L2(−r, T ;L2(Ω)) ∩W , du
dt

∈ W ∗, u(0) = u0, u(θ) = φ(θ) for
θ ∈ (−r, 0), and

(2.1)

∫ T

0
〈du
dt
, v〉dt+

∫ T

0
〈A 1

2u, A
1
2 v〉dt+

∫ T

0
〈f(u), v〉dt

=
∫ T

0
〈F (t, ut), v〉dt+

∫ T

0
〈g, v〉dt
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for all test functions v ∈W .

Theorem 2.1. Let conditions (H1) - (H4) hold. Then, for any initial data u0 ∈
L2(Ω) and φ ∈ L2(−r, 0;L2(Ω)) given, problem (1.1) has a unique weak solution u
on every given interval [0, T ]. Moreover, the solution u belongs to C([0, T ];L2(Ω))
and depends continuously on the initial data.

Proof. (i) Existence. Let {ek}∞k=1 be the orthonormal basis of L
2(Ω) con-

sisting of all eigenfunctions of the operator A. The subspace of L2(Ω) spanned by
e1, e1, · · · , en will be denoted by Vn. Define the projector Pn : L2(Ω) → Vn as
Pnu =

∑n
j=1〈u, ej〉ej, and consider the approximate solutions

un(t) =
n∑

j=1

unj(t)ej ,

which satisfy

(2.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un ∈ L2(−r, T ; Vn) ∩C1([0, T ]; Vn),

〈∂u
n

∂t
, ej〉 + 〈Aun, ej〉 + 〈f(un), ej〉 = 〈F (t, un

t ), ej〉 + 〈g, ej〉, ∀j = 1, n

un(0) = Pnu
0, un(θ) = Pnφ(θ), θ ∈ (−r, 0).

Observe that, for fixed n, equations (2.2) is a system of ordinary functional differential
equations in the unknown un(t) = (un1(t), un2(t), · · · , unn(t))T . We can get the
existence and uniqueness of the solution by applying the fixed point theorem since F
satisfies the local Lipschitz condition and f is a C1 function. For the detail, we refer
the reader to [3]. Suppose the local approximate solution is defined in the interval
[−r, t∗].
Now we will establish some a priori estimates for un. Multiplying (2.2) by unj(t)

and summing in j we get

(2.3)
1
2
d

dt
‖un(t)‖2 + ‖A 1

2un(t)‖2 + 〈f(un(t)), un(t)〉

= 〈F (t, un
t ), un(t)〉 + 〈g(t), un(t)〉.

Using condition (H3), we get

〈F (t, un
t ), un(t)〉 ≤

(
CF + k1‖un(t− h(t))‖

)
‖un(t)‖+ k2

∫ t

t−τ (t)
‖un(s)‖‖un(t)‖ds

≤ CF + k1‖un(t− h(t))‖2 + k2

∫ t

t−τ (t)
‖un(s)‖2ds+ k3‖un(t)‖2,

where k3 =
1
4
k1 +

1
4
τk2 +

1
4
CF . As [t− τ(t), t] ⊂ [−r, t], t > 0, we have
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〈F (t, un
t ), un(t)〉 ≤ CF + k1‖un(t− h(t))‖2 + k2

∫ 0

−r
‖un(s)‖2ds

+ k2

∫ t

0
‖un(s)‖2ds+ k3‖un(t)‖2.

Noting that∫ 0

−r
‖un(s)‖2ds =

∫ 0

−r
‖Pnφ(s)‖2ds = ‖Pnφ‖2

L2(−r,0;L2(Ω)) ≤ ‖φ‖2
L2(−r,0;L2(Ω)),

so we have

〈F (t, un
t ), un(t)〉 ≤ k1‖un(t− h(t))‖2 + k2‖φ‖2

L2(−r,0;L2(Ω)) + CF

+ k2

∫ t

0
‖un(s)‖2ds+ k3‖un(t)‖2.

Next, by condition (H4) and Cauchy’s inequality we have

|〈g(t), un(t)〉| ≤ 1
2λ1

‖g(t)‖2 +
λ1

2
‖un(t)‖2.

Putting C4 = C0|Ω|+CF + k2‖φ‖2
L2(−r,0;L2(Ω)), from (2.3) we have

1
2
d

dt
‖un(t)‖2 + ‖A 1

2un(t)‖2 + C1

∫
Ω

|un(t)|pdx

≤C4 + k1‖un(t− h(t))‖2 +
(
k3 +

λ1

2

)
‖un(t)‖2

+ k2

∫ t

0
‖un(s)‖2ds+

1
2λ1

‖g(t)‖2

≤C4 + k1‖u(t− h(t))‖2 +
(
k3 +

λ1

2

)
‖un(t)‖2

+
k2

λ1

∫ t

0
‖A 1

2un(s)‖2ds+
1

2λ1
‖g(t)‖2,

(2.4)

where we have used (1.2), Cauchy’s inequality and the fact that

‖un(t)‖2 ≤ 1
λ1

‖A 1
2un(t)‖2.

Integrating both sides of (2.4) from 0 to t, we obtain
1
2
‖un(t)‖2 +

∫ t

0
‖A 1

2un(s)‖2ds+C1

∫ t

0

∫
Ω
|un(s)|pdxds

≤ 1
2
‖u0‖2 + C4t+ k1

∫ t

0
‖un(s− h(s)‖2ds+

(
k3 +

λ1

2

)∫ t

0
‖un(s)‖2ds

+
k2

λ1

∫ t

0

∫ s

0
‖A 1

2un(θ)‖2dθds +
1

2λ1

∫ t

0
‖g(s)‖2ds.

(2.5)
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Denote ρ(t) = t − h(t). Taking into account the properties of function h(t), we
deduce that, ρ(t) is continuous and strictly increasing in [0,+∞). Therefore, there
exists the inverse function ρ−1(t) which is also continuous and strictly increasing in
[−h(0),+∞) and ρ−1(t) ≤ t + h for all t ∈ [−h(0),+∞). Thus, by the change of
variable η = ρ(s) = s− h(s), we have∫ t

0

‖un(s− h(s))‖2ds =
∫ t−h(t)

−h(0)

‖un(η)‖2 1
ρ′(ρ−1(η))

dη

≤ 1
1 − h∗

∫ t

−h
‖un(η)‖2dη

≤ 1
1 − h∗

(
‖φ‖2

L2(−r,0;L2(Ω)) +
∫ t

0
‖un(η)‖2dη

)
.

(2.6)

Putting

μ(t) =
1
2
‖un(t)‖2 +

∫ t

0

‖A 1
2un(s)‖2ds+C1

∫ t

0

∫
Ω

|un(s)|pdxds.
Combining the estimates (2.5) and (2.6) we get

(2.7) μ(t) ≤ C4t+C5 +C6

∫ t

0
μ(s)ds+

1
2λ1

∫ t

0
‖g(s)‖2ds,

where

C5 =
1
2
‖u0‖2 +

k1

1 − h∗
‖φ‖2

L2(−r,0;L2(Ω)),

C6 = max
{
k2

λ1
,

2k1

1− h∗
+ 2k3 + λ1

}
.

Applying generalized Gronwall’s inequality [12] we deduce that

μ(t) ≤ C5e
C6t +

∫ t

0

(
C4 +

1
2λ1

‖g(s)‖2

)
eC6(t−s)ds

≤ eC6t

[
C5 +

C4

C6

(
1− e−C6t

)
+

1
2λ1

∫ t

0
‖g(s)‖2e−C6sds

]
.

(2.8)

By condition (H4), ∫ t

0
‖g(s)‖2e−C6sds ≤

∫ t∗

0
‖g(s)‖2ds <∞.

Finally, for all t ∈ [0, t∗], we get
(2.9) μ(t) ≤ C7(t∗)eC6t∗ ,

where C7 =
(
C5 +

C4

C6
+

1
2λ1

∫ t∗
0 ‖g(s)‖2ds

)
. From (2.9) we also get the continua-

tion of un(t) on any interval, so (2.9) holds for t ∈ [0, T ].
Estimate (2.9) gives that the family of approximate solutions {un} satisfies
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• {un} is bounded in the space L∞(0, T ;L2(Ω));
• {un} is bounded in the space L2(0, T ;D(A

1
2 ));

• {un} is bounded in the space Lp(ΩT ).

Since {un} is bounded in Lp(ΩT ), one can easily check that {f(un)} is bounded in
Lq(ΩT ), where q is the conjugate of p.
Next, since

dun

dt
= −Aun − f(un) + F (t, un

t ) + g,

{dun

dt } is bounded inW ∗ = L2(0, T ;D(A− 1
2 ))+Lq(ΩT ). Combining with the fact that

L2(0, T ;D(A− 1
2 )) and Lq(ΩT ) are continuously embedded into Lq(0, T ;D(A− 1

2 ) +
Lq(Ω)) we obtain that {dun

dt } is bounded in the space Lq(0, T ;D(A− 1
2 ) + Lq(Ω)).

Because every bounded sequence in a reflexive Banach space has a weakly con-
vergent subsequence, there exists a subsequence (still denoted by {un}) such that

• un ⇀ u in L2(0, T ;D(A
1
2 ));

• un ⇀ u in Lp(ΩT );

• ∂un

∂t
⇀

∂u

∂t
in W ∗;

• f(un) ⇀ χ in Lq(ΩT ).

Since {un} is bounded in L2(0, T ;D(A
1
2 )) and {dun

dt } is bounded in Lq(0, T ;
D(A− 1

2 ) + Lq(Ω)), it follows from the Aubin-Lions lemma [13] that, there exists a
subsequence (still denoted by {un}) such that
(2.10) un → u strong in L2(0, T ;L2(Ω)).

Thus, we have un → u a.e. in ΩT , up to a subsequence. It follows from the conti-
nuity of the function f that f(un) → f(u) a.e. in ΩT . In view of the boundedness of
{f(un)} in Lq(ΩT ) and Lemma 1.3 in [13], we have f(un) ⇀ f(u) a.e. in Lq(ΩT ),
and taking into account the uniqueness of a weak limit, we get χ = f(u).
We define a function û : (−r, T ] → L2(Ω) as follows

û(t) =

{
u(t), t ∈ [0, T ],
φ(t), t ∈ (−r, 0).

Since u ∈ L2(0, T ;L2(Ω)) and φ ∈ L2(−r, 0;L2(Ω)), we have û ∈ L2(−r, T ;L2(Ω)).
From now on, we write u(t) instead of û(t) for each t ∈ (−r, T ], and we will show
that u(t) is a weak solution of (1.1).
Let us show that F (t, un

t ) → F (t, ut) in L2(Ω). Indeed, since un = Pnφ in
(−r, 0), we have

lim
n→∞ ‖un(θ) − φ(θ)‖ = 0, for a.e. θ ∈ (−r, 0).
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On the other hand,

‖un(θ) − φ(θ)‖2 ≤ ‖φ(θ)‖2, for all n ≥ 1, θ ∈ (−r, 0).

Therefore, by the Lebesgue Dominated Convergence Theorem we get

(2.11) lim
n→∞

∫ 0

−r
‖un(θ) − φ(θ)‖2dθ = 0.

We have for t ∈ [0, T ],∫ 0

−r
‖un

t (s) − ut(s)‖2ds =
∫ 0

−r
‖un(t+ s) − u(t+ s)‖2ds =

∫ t

t−r
‖un(s)− u(s)‖2ds

≤
∫ 0

−r
‖un(s)− φ(s)‖2ds+

∫ T

0
‖un(s) − u(s)‖2ds.

Thus, from (2.10) and (2.11), we conclude that un
t → ut in L2(−r, 0;L2(Ω)). By

(1.6), F (t, un
t ) → F (t, ut) in L2(Ω).

To prove that u is a weak solution to (1.1), it remains to be shown that u(0) = u0.
Choosing some test function v ∈W with v(T ) = 0 and integrating by parts in t in the
approximate equations, we have∫ T

0
−〈un, v′〉dt+

∫ T

0

(
〈A 1

2un, A
1
2 v〉

+〈f(un), v〉 − 〈F (t, un
t ), v〉 − 〈g, v〉

)
dt=〈un(0), v(0)〉.

Taking limits as n→ ∞, we obtain

(2.12)

∫ T

0
−〈u, v′〉dt+

∫ T

0

(
〈A 1

2u, A
1
2 v〉

+〈f(u), v〉 − 〈F (t, ut), v〉 − 〈g, v〉
)
dt = 〈u0, v(0)〉

since un(0) → u0. On the other hand, for the “limiting equation”, we have

(2.13)

∫ T

0

−〈u, v′〉dt+
∫ T

0

(
〈A 1

2u, A
1
2 v〉

+〈f(u), v〉 − 〈F (t, ut), v〉 − 〈g, v〉
)
dt = 〈u(0), v(0)〉.

Comparing (2.12) with (2.13) we get u(0) = u0.
(ii) Uniqueness and continuous dependence. Let u, v be two solutions of problem

(1.1) with initial data (u0, φ), (v0, ψ) ∈ L2(Ω)× L2(−r, 0;L2(Ω)). Then w = u− v
satisfies

∂w

∂t
+ Aw + f(u) − f(v) = F (t, ut)− F (t, vt) in W ∗.
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Multiplying this equation by w and then integrating over Ω, we obtain

1
2
d

dt
‖w(t)‖2 + ‖A 1

2w(t)‖2 +
∫

Ω
[f(u(t))− f(v(t))][u(t)− v(t)]dx

= 〈F (t, ut) − F (t, vt), w(t)〉.
From condition (1.3), we have∫

Ω
[f(u(t))− f(v(t))][u(t)− v(t)]dx ≥ −�‖u(t) − v(t)‖2 = −�‖w(t)‖2.

By the Cauchy inequality, we get

〈F (t, ut)− F (t, vt), w(t)〉
= 〈F1(t, u(t− h(t))) − F1(t, v(t− h(t))), w(t)〉

+
∫ t

t−τ (t)
〈F2(s, u(s))− F2(s, v(s)), w(t)〉ds

≤ ‖F1(t, u(t− h(t))) − F1(t, v(t− h(t)))‖‖w(t)‖

+
∫ t

t−τ (t)
‖F2(s, u(s))− F2(s, v(s))‖‖w(t)‖ds

≤ k2
1

2λ1
‖w(t− h(t))‖2 +

k2
2

2λ1

∫ t

t−τ (t)
‖w(s)‖2ds+

λ1(1 + τ)
2

‖w(t)‖2.

Using the fact that λ1‖w(t)‖2 ≤ ‖A 1
2w(t)‖2, we obtain

d

dt
‖w(t)‖2 + λ1‖w(t)‖2 ≤ k2

1

λ1
‖w(t− h(t))‖2 +

k2
2

λ1

∫ t

t−τ (t)
‖w(s)‖2ds

+ (τλ1 + 2�)‖w(t)‖2

≤ k2
1

λ1
‖w(t− h(t))‖2 +

k2
2

λ1

∫ 0

−τ
‖w(s)‖2ds

+
k2

2

λ1

∫ t

0
‖w(s)‖2ds+ (τλ1 + 2�)‖w(t)‖2.

(2.14)

We rewrite the estimate (2.14) as follows

d

dt

(
‖w(t)‖2 + λ1

∫ t

0
‖w(s)‖2ds

)
≤ k2

2

λ1

∫ 0

−τ
‖w(s)‖2ds+

k2
1

λ1
‖w(t− h(t))‖2

+ (τλ1 + 2�)‖w(t)‖2 +
k2

2

λ1

∫ t

0
‖w(s)‖2ds.

By the same estimate used in (2.6) we have
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∫ t

0
‖w(s− h(s))‖2ds ≤ 1

1 − h∗

[∫ 0

−h
‖w(η)‖2dη +

∫ t

0
‖w(η)‖2dη

]
.

Put
Z(t) ≡ ‖w(t)‖2 + λ1

∫ t

0
‖w(s)‖2ds

and note that Z(0) = w(0), we have

(2.15) Z(t) ≤ Cw +Dwt+C8

∫ t

0
Z(s)ds,

where

Cw = w(0) +
k2

1

λ1(1− h∗)

∫ 0

−h

‖w(s)‖2ds, Dw =
k2

2

λ1

∫ 0

−τ

‖w(s)‖2ds,

C8 = max
{

k2
1

λ1(1 − h∗)
+ (τλ1 + 2�),

k2
2

λ1

}
.

Applying generalized Gronwall’s lemma once again, we obtain

Z(t) ≤ Cwe
C8t +

Dw

C8

(
eC8t − 1

)
.

We have ‖w(t)‖2 ≤ Z(t), so that

‖w(t)‖2 ≤
(
Cw +

Dw

C8

)
eC8t.

Hence

(2.16) ‖u(t) − v(t)‖2 ≤
(
‖u0 − v0‖2 +C9‖φ− ψ‖2

L2(−r,0;L2(Ω))

)
eC8t.

This implies the uniqueness (if u0 = v0 and φ = ψ) and the continuous dependence of
the solution with respect to the initial data.
Finally, consider the difference of two Galerkin approximate solutions uk and um,

we can easily get the estimate similar to (2.16),

max
[0,T ]

‖uk(t) − um(t)‖2 ≤
(
‖(Pk − Pm)u0‖2 + C9‖(Pk − Pm)φ‖2

L2(−r,0;L2(Ω))

)
eC8t.

The property that Pn → I as n → ∞ gives that {um}∞m=1 is a Cauchy sequence in
C([0, T ];L2(Ω)), which implies that u ∈ C([0, T ];L2(Ω)).

3. GLOBAL EXPONENTIAL STABILITY OF WEAK SOLUTIONS

By Theorem 2.1, for any (u0, φ) ∈ L2(Ω)×L2(−r, 0;L2(Ω)) be given, there exists
a unique global weak solution of (1.1) with the initial datum (u0, φ). In this section,
we will prove the global exponential stability of any weak solution of problem (1.1) by
using the Lyapunov-Krasovskii functional method.
Let u∗(t) be any fixed solution of problem (1.1) on [0,+∞) with the initial datum

(u0∗, φ∗). First, we recall the following definition.
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Definition 3.1. Given α > 0, the solution u∗(t) is said to be globally exponentially
stable with decay rate α if there exists a positive constant C such that

‖u(t) − u∗(t)‖ ≤ C
(
‖u0 − u0

∗‖2 + ‖φ− φ∗‖2
L2(−r,0;L2(Ω))

) 1
2
e−αt, t ≥ 0,

where u(t) is a solution of (1.1) with initial datum (u0, φ).

If u(t) is another weak solution of problem (1.1), then w(t) = u(t) − u∗(t) is a
weak solution of the following problem

∂w

∂t
+Aw + f(u)− f(u∗) = F (t, ut) − F (t, u∗t), x ∈ Ω, t > 0,

w(0) = u0 − u0
∗, x ∈ Ω,

w(θ) = φ(θ) − φ∗(θ), θ ∈ (−r, 0), x ∈ Ω.

(3.1)

We need the following lemma whose proof is straightforward.

Lemma 3.1. Given α > 0. Assume that there exists a functional V (t, wt) such
that the following conditions hold for some positive constants β1, β2:

(3.2)
β1‖w(t)‖2 ≤ V (t, wt) ≤ β2

(
‖w(t)‖2 + ‖wt‖2

L2(−r,0;L2(Ω))

)
,

d

dt
V (t, wt) + 2αV (t, wt) ≤ 0, t ≥ 0.

Then the solution w(t) of problem (3.2) satisfies the following inequality

(3.3) ‖w(t)‖ ≤
√
β2

β1

(
‖w(0)‖2 + ‖w0‖2

L2(−r,0;L2(Ω))

) 1
2
e−αt, t ≥ 0.

where w0(θ) = φ(θ) − φ∗(θ), θ ∈ (−r, 0).

Our main result in this section is the following

Theorem 3.1. Under the assumptions of Theorem 2.1, if

(3.4) λ1 − � >

√(
k1 + τk2

)(
k1

1 − h∗
+

τk2

1 − τ∗

)
,

then every solution u∗(t) of problem (1.1) is globally exponentially stable with decay
rate α ∈ (0, α∗), where α∗ is the unique positive solution of the following equation

(3.5) α +

√(
k1

1 − h∗
+

τk2

1 − τ∗

)(
k1e2αh + τk2e2ατ

)
= λ1 − �.

More precisely, for any solution u(t) of problem (1.1), the following estimate holds

(3.6) ‖u(t) − u∗(t)‖ ≤ C
(
‖u0 − u0

∗‖2 + ‖φ− φ∗‖2
L2(−r,0;L2(Ω))

) 1
2
e−αt, t ≥ 0,

where C =
√

1 + λ1 − �.
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Proof. Denote

ρ(α) = α+

√(
k1

1 − h∗
+

τk2

1 − τ∗

)(
k1e2αh + τk2e2ατ

)
,

then ρ(α) is continuous and strictly increasing in [0,+∞). From (3.4) we have ρ(0) <
λ1 − � and lim

α→+∞ ρ(α) = +∞. Thus, there exists a unique positive solution α∗ of
equation (3.5) and ρ(α) < λ1 − � for all α ∈ (0, α∗).
Consider the following Lyapunov-Krasovskii functional

V (t, wt) = ‖w(t)‖2 +
εk1

1− h∗

∫ t

t−h(t)
e2α(s−t)‖w(s)‖2ds

+
εk2

1 − τ∗

∫ t

t−τ (t)

∫ t

s
e2α(θ−t)‖w(θ)‖2dθds,

(3.7)

where ε > 0 is chosen later. It is easy to see that

(3.8) ‖w(t)‖2 ≤ V (t, wt) ≤ ‖w(t)‖2 + ε

(
k1

1 − h∗
+

τk2

1− τ∗

)
‖wt‖2

L2(−r,0;L2(Ω)).

For problem (3.2), we have

d

dt
V (t, wt) + 2αV (t, wt)

= 2α‖w(t)‖2 − 2‖A 1
2w(t)‖2 − 2〈f(u(t))− f(u∗(t)), w(t)〉

+ 2〈F1(t, u(t− h(t))) − F1(t, u∗(t− h(t))), w(t)〉

+ 2
∫ t

t−τ (t)
〈F2(s, u(s))− F2(s, u∗(s)), w(t)〉ds

+
εk1

1 − h∗
‖w(t)‖2 − εk1

1− h∗
(1− h′(t))e−2αh(t)‖w(t− h(t))‖2

+
ετk2

1 − τ∗
‖w(t)‖2 − ετk2

1 − τ∗
(1 − τ ′(t))

∫ t

t−τ (t)

e2α(θ−t)‖w(θ)‖2dθ

≤
(

2α− 2λ1 + 2�+
εk1

1 − h∗
+

ετk2

1− τ∗

)
‖w(t)‖2

+ 2k1‖w(t− h(t))‖‖w(t)‖ − εk1e
−2αh‖w(t− h(t))‖2

+ 2k2

∫ t

t−τ (t)
‖w(s)‖‖w(t)‖ds− ετk2e

−2ατ

∫ t

t−τ (t)
‖w(θ)‖2dθ.

(3.9)

Using Cauchy’s inequality we have
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(3.10) 2k1‖w(t− h(t))‖‖w(t)‖ ≤ k1

(
e2αh

ε
‖w(t)‖2 + εe−2αh‖w(t− h(t))‖2

)
,

and

2k2

∫ t

t−τ (t)
‖w(s)‖‖w(t)‖ds

≤ k2

∫ t

t−τ (t)

(
e2ατ

ε
‖w(t)‖2 + εe−2ατ‖w(s)‖2

)
ds

≤ τk2e
2ατ

ε
‖w(t)‖2 + εk2e

−2ατ

∫ t

t−τ (t)
‖w(s)‖2ds.

(3.11)

Combining the inequalities (3.9) - (3.11) we get

(3.12)
d

dt
V (t, wt) + 2αV (t, wt) ≤

[
−2λ1 + 2�+ 2α+

(
εa +

b

ε

)]
‖w(t)‖2,

where a =
k1

1 − h∗
+

τk2

1 − τ∗
, b = k1e

2αh + τk2e
2ατ . To minimize the expression

εa+
b

ε
, we choose ε =

√
b

a
then from (3.12) we have

d

dt
V (t, wt) + 2αV (t, wt) ≤ −2 [(λ1 − �) − ρ(α)] ‖w(t)‖2, t ≥ 0.

Since α ∈ (0, α∗) so ρ(α) < λ1 − � and hence it follows that

(3.13)
d

dt
V (t, wt) + 2αV (t, wt) ≤ 0, t ≥ 0.

Taking (3.8) into account we obtain

‖w(t)‖2 ≤ V (t, wt) ≤ β
(
‖w(t)‖2 + ‖wt‖2

L2(−r,0;L2(Ω))

)
,

where

β = 1 + ε

(
k1

1 − h∗
+

τk2

1 − τ∗

)
= 1 + εa = 1 +

√
ab

< 1 + ρ(α) < 1 + λ1 − �.

Finally, from (3.8), (3.13) and using Lemma 3.1, we deduce that

‖w(t)‖ ≤
√

1 + λ1 − �
(
‖w(0)‖2 + ‖w0‖2

L2(−r,0;L2(Ω))

) 1
2
e−αt, t ≥ 0,

which completes the proof of Theorem 3.1.
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Remark 3.1. In Theorem 3.1, the decay rate α and the stability factor C are
independent of solutions. Therefore, Theorem 3.1 gives conditions to get uniformly
exponential estimate of any two solutions of problem (1.1).

Remark 3.2. Theorem 3.1 gives sufficient conditions for the exponential stability
of solutions for a class of semilinear parabolic equations with discrete and distributed
time-varying delays which contain the class of delays considered in [4, 5, 8, 10]. In
particular, when f(u) ≡ 0 and F2(t, u) ≡ 0, condition (3.4) is reduced to

λ1 >
k1√

1 − h∗
,

which is exactly the corresponding one of Theorem 2.1 in [5].
On the other hand, when F1(t, u(t− h(t))) = A1u(t− h(t)), where A1 is a linear

bounded operator in L2(Ω), and F2(t, u) ≡ 0, condition (1.6) is obviously satisfied and
one can apply the result of Theorem 3.1 for this case. Comparing with the conditions
in [10], it is noticed that our conditions for the exponential stability are easier to check,
because the conditions in [10] were derived in the form of Linear Operator Inequalities
in Hilbert spaces, which seem to be difficult to verify in general.
It is also worth noticing that the condition (3.4) seems to be optimal in some cases

(see examples in Section 5 below).

4. EXPONENTIAL STABILITY OF STATIONARY SOLUTIONS

In this section, we study the existence, uniqueness and exponential stability of
stationary solutions of problem (1.1), with some suitable changes on the conditions of
the delay F (t, ut) and the external force g. More precisely, we assume that:
(H5) The memory term F (ut) is of the form

F (ut) = F1(u(t− h(t))) +
∫ 0

−τ
F2(s, ut(s))ds,

where h(t) satisfies (1.5), F1(0) = 0, F2(s, 0) ≡ 0 and there exist k1, k2 > 0
such that for all u, v ∈ L2(−r, 0;L2(Ω)) we have

‖F1(u) − F1(v)‖ ≤ k1‖u− v‖L2(−r,0;L2(Ω),

‖F2(s, u)− F2(s, v)‖ ≤ k2‖u− v‖L2(−r,0;L2(Ω);

(H6) g = g(x) ∈ L2(Ω).

Note that all conditions of Theorem 2.1 are fulfilled, so we obtain the global
existence and uniqueness of a weak solution to problem (1.1). The aim of this section
is to prove that problem (1.1) has a unique stationary solution and every weak solution
of problem (1.1) converges exponentially to the stationary solution as t goes to +∞.
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Definition 4.1. A function u∞ is called a stationary solution of problem (1.1) if
u∞ ∈ D(A

1
2 ) ∩ Lp(Ω) satisfies

〈A 1
2u∞, A

1
2 v〉 + 〈f(u∞), v〉 = 〈F (u∞), v〉+ 〈g, v〉,

for all test functions v ∈ D(A
1
2 ) ∩ Lp(Ω).

Our aim in this section is to prove the following

Theorem 4.1. Under assumptions (H1), (H2), (H5) and (H6), problem (1.1) has
a unique stationary solution u∞. If

(4.1) λ1 − � >

√
(k1 + τk2)

( k1

1 − h∗
+ τk2

)
,

then every weak solution u(t) of problem (1.1) converges exponentially to u∞ as
t→ +∞. More precisely, there exist two positive constants C and α such that for any
u0 ∈ L2(Ω), φ ∈ L2(−r, 0;L2(Ω)), the corresponding solution u(t) of problem (1.1)
satisfies

(4.2) ‖u(t) − u∞‖ ≤ C
(
‖u0 − u∞‖2 + ‖φ− u∞‖2

L2(−r,0;L2(Ω))

) 1
2
e−αt, t ≥ 0.

Proof. We will prove the existence of a stationary solution by using the Galerkin
method. Let {ek}∞k=1 be the orthonormal basis of L

2(Ω) consisting of all eigenfunctions
of the operator A. Consider the approximate solutions

un =
n∑

j=1

cnjej ,

which satisfy

〈Aun
∞, ej〉 + 〈f(un

∞), ej〉 = 〈F (un
∞), ej〉+ 〈g, ej〉, ∀j = 1, n.

Multiplying this equation by cnj , summing from 1 to n, then integrating over Ω, we
get

‖A 1
2un

∞‖2 +
∫

Ω
f(un

∞)un
∞dx =

∫
Ω
F (un

∞)un
∞dx+

∫
Ω
gun

∞dx = 0.

Using the conditions (H2), (H5) and (H6), Cauchy’s inequality and the fact that
‖A 1

2un∞‖2 ≥ λ1‖un∞‖2, we obtain that

�‖A 1
2un

∞‖2 + (λ1 − �− k1 − τk2 − ε)‖un
∞‖2 +C1‖un

∞‖p
Lp(Ω)

≤ 1
4ε

‖g‖2 +C0|Ω|,
where ε is chosen small enough such that λ1 − �− k1 − τk2 − ε > 0 (this can be done

because λ1 − � >

√
(k1 + τk2)

( k1

1 − h∗
+ τk2

)
≥ k1 + τk2). Hence it follows that
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• {un∞} is bounded in the space D(A
1
2 );

• {un∞} is bounded in the space Lp(Ω).

Since {un} is bounded in Lp(Ω), one can easily check that {f(un)} is bounded in
Lq(Ω), where q is the conjugate of p. Therefore, we have

un
∞ ⇀ u∞ in D(A

1
2 ),

f(un
∞) ⇀ χ in Lq(Ω).

On the other hand, since the embeddingD(A
1
2 ) ↪→ L2(Ω) is compact, one can assume

that un∞ → u∞ strongly in L2(Ω). Hence, F (un∞) → F (u∞) strongly in L2(Ω), and
un∞ → u∞ a.e. in Ω, up to a subsequence. Since f is continuous, f(un∞) → f(u∞)
a.e. in Ω. By Lemma 1.3 in [13], we get that f(un∞) ⇀ f(u∞) in Lq(Ω). From the
above arguments, we conclude that u∞ is a stationary solution of problem (1.1).
Assume v∞ is also a stationary solution of problem (1.1). Then w∞ = u∞ − v∞

satisfies the following equation in D(A− 1
2 ) + Lq(Ω),

Aw∞ + f(u∞)− f(v∞) = F (u∞) − F (v∞).

Multiplying this equation by w∞, then integrating over Ω, we get

‖A 1
2w∞‖2+

∫
Ω
(f(u∞)−f(v∞))(u∞−v∞)dx =

∫
Ω

(
F (u∞)−F (v∞)

)(
u∞−v∞

)
dx.

Using (H2) and (H5), one gets

�‖A 1
2w∞‖2 + (λ1 − �− k1 − τk2)‖w∞‖2 ≤ 0.

Since λ1 − �− k1 − τk2 > 0, the last inequality implies that w∞ ≡ 0.
We now prove the stability of the stationary solution. Let u∞ be the stationary

solution of problem (1.1) and u(t) be any weak solution of (1.1) with the initial datum
u0 ∈ L2(Ω), φ ∈ L2(−r, 0;L2(Ω)). Then u∗(t) ≡ u∞ is a solution of problem (1.1)
with initial datum u∞. Applying Theorem 3.1, we have

‖u(t) − u∞‖ ≤ C
(
‖u0 − u∞‖+ ‖φ− u∞‖2

L2(−r,0;L2(Ω))

) 1
2
e−αt,

which completes the proof of Theorem 4.1.

5. EXAMPLES

In this section, we consider some models in biology and physics for which the
above results can be applied to study the exponential stability of solutions.

Example 5.1. Consider the Cauchy problem for a linear ordinary differential system
without delay
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dx

dt
+Ax(t) = f(t), x(0) = x0 ∈ R

N ,

where A is a real symmetric matrix of order N ×N , f is a continuous function. The
matrix A has N real eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λN .

Then the stability condition (3.4) turns to be λ1 > 0, that is, all eigenvalues of the
matrix A are positive. As we know, this is the optimal condition (when A is symmetric)
for the stability of solutions of the above problem.

Example 5.2. Consider the following Nicholson’s blowflies equation with time-
varying delay

(5.1)
dN

dt
= Pb(N (t− h(t)))− λN (t),

where N (t) is the size of the population at time t, P > 0 is the impact constant related
to the birth rate, λ > 0 is the dead rate of the population and b(N (t− h(t))) is the
birth rate function and in this example, we consider the birth rate function of Ricker’s
type, i.e.,

b(N (t− h(t))) = N (t− h(t)) exp(−δN (t− h(t))),
and 1

δ > 0 is the size at which the population reproduces at its maximum rate.
The theory of the Nicholson’s blowflies equation has made a remarkable progress

in the past forty years with main results scattered in numerous research papers (see the
survey article [1] and references therein). By Theorem 4.1, if

P√
1 − h∗

< λ

then equation (5.1) has a unique equilibrium point N0 = 0 and all solutions N (t) goes
exponentially with rate of α ∈ (0, α∗) to the equilibrium N0, where α∗ is the unique
positive solution of the equation

α+
Peαh

√
1 − h∗

= λ.

Moreover, the following estimate holds

N (t) ≤ √
1 + λN (t0)e−α(t−t0), t ≥ t0.

In particular, when h(t) = τ for all t, the above condition becomes λ > P , and
we thus recover a result in [14]. Moreover, when λ < P it is shown in [14] that there
is no nontrivial solution N (t) of (5.1) such that limt→∞N (t) = 0.

Example 5.3. Consider the heat equation

(5.2) ut(x, t) = auxx(x, t)− a0u(x, t) + F (u(x, t− h(t))), t > 0, 0 < x < π,
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with the Dirichlet boundary condition

(5.3) u(0, t) = u(π, t) = 0, t ≥ 0,

and with the initial condition

(5.4) u(x, 0) = u0(x), u(x, θ) = φ(x, θ), for all θ ∈ (−r, 0), x ∈ (0, π).

Here a and a0 are positive constants, F is a Lipschitz continuous scalar-valued function
on the scalar field with the Lipschitz constant k, and the time-varying delay h(t)
satisfies (1.5).
The boundary-value problem (5.2)-(5.4) describes the propagation of heat in a

homogeneous one dimension rod with a fixed temperature at the ends in the case of
delayed (possibly, due to action) heat exchange with the surroundings. Here u(x, t) is
the value of the temperature field of the plant at time moment t and location x along
the rod.
The boundary-value problem (5.2)-(5.4) can be rewritten as the differential equation

(1.1) in the space L2(0, π), where A = −a ∂2

∂x2 with the dense domain D(A) =
H2(0, π) ∩ H1

0 (0, π). The first eigenvalue of the operator A is λ1 =
√
a. Thus,

by the results in Sections 2 and 3, we deduce that for any (u0, φ) ∈ L2(0, π) ×
L2(−r, 0;L2(0, π)) given, problem (5.2)-(5.4) has a unique global solution u; moreover,
if

λ1 + a0 =
√
a+ a0 >

k√
1 − h∗

,

then all solutions of problem (5.2)-(5.4) are exponentially stable and converge expo-
nentially to the equilibrium point u∞ = 0. In particular, when a = 1 and h(t) = h, the
problem is exponentially stable if 1 > −a0 + k, and we thus improve a result obtained
in [15], where an additional condition rk < 1 is needed.
It is noticing that condition (3.4) seems to be optimal in the case without delay.

Indeed, when a0 = 0, F ≡ 0, u0 = sinx, one can easily find the unique solution of
problem (5.2)-(5.4) is u(x, t) = e−at sinx. This solution is (exponential) stable if and
only if a > 0.
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