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FEEDBACK VERTEX SET ON PLANAR GRAPHS

Hong-Bin Chen, Hung-Lin Fu and Chie-Huai Shih

Abstract. A feedback vertex set of a graph is a set of vertices whose removal
results an acyclic graph. This paper shows that for every planar graph the min-
imum cardinality of a feedback vertex set is at most three times the maximum
number of vertex disjoint cycles in the graph.

1. INTRODUCTION

A feedback vertex set of a graph is a set of vertices whose removal results an
acyclic graph. In other words, each feedback vertex set contains at least one vertex
of any cycle in the graph. The feedback vertex set problem plays an important role
in the study of deadlock recovery in operating systems [16] where each directed cycle
corresponds to a deadlock situation. Indeed, a deadlock is a situation wherein two or
more competing processes are each waiting for the other to finish, and thus neither ever
does. To resolve all deadlocks, some blocked processes have to be aborted. Therefore,
a minimum feedback vertex set corresponds to the least processes needed to be aborted
to resolve all deadlocks.
The feedback vertex set problem, as well as its undirected or weighted version,

has been extensively studied. In fact, it is one of the first NP-complete problems
shown by Richard Karp in 1972 [11]. In contrast, the problem of finding a minimum
edge set containing at least one edge of any cycle is equivalent to finding a spanning
tree, which has been shown solvable in polynomial time. A vast amount of algorithmic
results on the feedback vertex set problem have been proposed, including approximation
algorithms [1, 2, 4, 10], APX-completeness [5], exact algorithms [8, 9, 13, 15] and
enumeration algorithms [8]. Readers are referred to the survey [7] for an overview.
Throughout this paper, we consider finite and undirected graphs G with vertex

set V (G) and edge set E(G) without loops or multiple edges. The feedback number
of a graph G, denoted as τc(G), is the minimum size of a feedback vertex set of
G. Clearly, τc(G) ≥ νc(G) for every graph G, where νc(G) is the cycle packing
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number of G, i.e., the maximum size of a set of vertex disjoint cycles in G. Dirac
and Gallai wondered if there is any inverse relation between τc(G) and νc(G). Define
τc(k) = max{τc(G)|νc(G) ≤ k}. Bollobás [3] proved that τc(1) ≤ 3 and the complete
graph of five vertices shows that this bound is sharp. Later, Voss [17] showed that
τc(2) = 6 and 9 ≤ τc(3) ≤ 12. Erdös and Pósa [6] proved that c1νc(k) logνc(k) ≤
τc(k) ≤ c2νc(k) logνc(k) by a probabilistic argument, where c1 and c2 are constants.
This paper mainly focuses on such a relation between τc(G) and νc(G) for planar

graphs. Kloks, Lee and Liu [12] noticed that τc(W ) = 2νc(W ) for every wheel W ,
which is a special case of planar graphs, and conjectured the following.

Conjecture 1. (Kloks-Lee-Liu [12]). For every planar graph G, τc(G) ≤ 2νc(G).

They also verified the conjecture for the special case of outerplanar graphs and
proved a general result that τc(G) ≤ 5νc(G) for every planar graph G by using a
constructive algorithm. The present paper modifies Kloks-Lee-Liu’s constructive algo-
rithm and improves upon their result. More precisely, we prove that τc(G) ≤ 3νc(G)
for every planar graph G. Instrumental to the main results is a theoretical result on
planar graphs proved by using the discharging method.

2. MAIN RESULTS

This section starts with some definitions and notations used later. Readers are
referred to the book [18] for graph terminologies. The degree of a vertex v in G,
denoted as dv, is the number of edges incident to v. For the sake of brevity, a vertex
of degree d is denoted by a d-vertex. A cycle in G is a connected subgraph of G in
which all vertices have degree 2. Let Ck denote a cycle of length k, i.e., a cycle with
k edges. A graph is called triangle-free if it contains no C3 as its subgraph. A plane
graph is a planar graph embedded in the plane without crossing edges. A face f of
a plane graph is a circuit that surrounds a region bounded by edges; let �f denote the
length of f , i.e., the number of surrounding edges. For a plane graph G, let F (G) be
the set of faces of the embedding. Euler’s formula states that for every plane graph G,

|V (G)| − |E(G)|+ |F (G)| = 2.

We now prove a theoretical result of graph theory, which is an essential instrument
of our algorithm.

Lemma 2. Every 2-edge-connected triangle-free planar graph G with minimum
degree at least three has either a C4 containing a 3-vertex or a C5 containing at least
four 3-vertices.

Proof. Let G be embedded in the plane. We charge each vertex v of degree dv by
4−dv and each face f of length �f by 4− �f . The total charge, by Euler’s formula, is
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∑

v∈V (G)

(4 − dv) +
∑

f∈F (G)

(4− �f) = 4|V (G)| − 2|E(G)|+ 4|F (G)| − 2|E(G)| = 8.

Discharge every 3-vertex equally to its incident faces. Note that each 3-vertex in
a 2-edge-connected plane graph must be exactly incident to 3 faces. According to the
discharging rule, each 3-vertex gives a charge of

1
3
to each of three faces incident to it.

Thus, each 3-vertex has a final charge 0. As a result, every vertex has a non-positive
charge after discharging. This implies some face f must have a positive charge after
discharging since the initial total charge is positive. Thus, we have

4 − �f +
1
3
k > 0,

where k is the number of 3-vertices in the face f . The above inequality holds only
when �f ≤ 5 since k ≤ �f . It is easily verified that satisfaction of the inequality when
�f = 4, 5 would lead to the conclusion of this lemma.

Everything now is prepared to find a feedback vertex set on a given planar graph.
Our algorithm starts with an empty set F and goes step by step as follows.
A. Remove all vertices and edges not lying on any cycle. Notice that the resulting
graph will be 2-edge-connected. Once no vertex exists, then the process stops
and outputs F .

B. Repeatedly remove from the resulting graph 2-vertices (vertices of degree 2) that
have nonadjacent neighbors and connect an edge between these two neighbors.
Go to the next step.

C. If there is a C3, then take these three vertices into F and remove them from the
remaining graph, and go back step A. Otherwise, do the next step.

D. Remark that the process enters this step only when all vertices are of degree at
least 3 and no C3 exists. By Lemma 2, there must be either a C4 containing a
3-vertex or a C5 containing at least four 3-vertices. In the former case, take the
three vertices other than the 3-vertex into F and remove them, then go back step
A. In the later case, there must be at least two 3-vertices that are nonadjacent in
the C5. Take the other three vertices into F and remove them, then go back step
A.

Theorem 3. For every planar graph G, τc(G) ≤ 3νc(G).

Proof. The proof is based on the above algorithm. We first show that the output
F is a feedback vertex set of G. Note that steps A and B do not affect the result since
any feedback vertex set of the remaining graph is a feedback vertex set of G. Hence,
once the algorithm terminates, F is a feedback vertex set since all cycles are broken
when F is removed from G. Consequently, τc(G) ≤ |F|.
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It then suffices to show that |F | ≤ 3νc(G). Notice that the algorithm collects at
most 3 vertices a time as long as it finds a cycle satisfying the requirement in steps
C or D. Moreover, these cycles are mutually vertex disjoint because all vertices on
such a cycle are removed from G once the cycle is found. Though step D leaves some
3-vertices behind, they do not lie on any other cycles discovered later because two
neighbors of each of them are removed. According to the discussion above, F contains
at most 3 times the maximum number of vertex disjoint cycles of G.

3. CONCLUSION

The algorithm presented in this paper strengthens and improves the algorithm in
[12]. Instead of removing all vertices on each discovered small cycle, our algorithm
collects only part of vertices on each discovered cycle according to the observation
that every 3-vertex which has two neighbors collected in a feedback vertex set is
redundant and unnecessary for the feedback vertex set. However, this algorithmic
approach seems difficult to be further improved to match the conclusion of the Kloks-
Lee-Liu’s Conjecture, which we believe to be affirmative. The main reason is that little
is known about whether vertices on a discovered cycle left behind after removing at
most 2 vertices from it are no longer lying on any cycle.
The most interesting idea in this paper is to exploit the discharging method, which

was most well-known for its central role in the proof of the four color theorem [14].
We believe that the result presented in this paper does not leverage full potential of the
method due to the limitation of the proposed algorithmic approach. A possible research
direction for further improvement is to design creative discharging rules to prove the
Kloks-Lee-Liu’s Conjecture directly. For example, one may derive a contradiction to
minimal counterexamples in terms of reducible configurations which are formulated by
the discharging method.
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