
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 16, No. 5, pp. 1879-1909, October 2012
This paper is available online at http://journal.taiwanmathsoc.org.tw

EXISTENCE OF SOLUTIONS FOR NEUTRAL INTEGRODIFFERENTIAL
EQUATIONS WITH NONLOCAL CONDITIONS

Xianlong Fu, Yan Gao and Yu Zhang

Abstract. This paper is concerned with the existence of mild solutions, strong
solutions and strict solutions for a class of neutral integrodifferential equations
with nonlocal conditions in Banach space. Since the nonlinear terms of the systems
involve spacial derivatives, the theory of fractional power and α-norm is used to
discuss the problem. In the end an example is provided to illustrate the applications
of the obtained results.

1. INTRODUCTION

In this paper, we study the existence of solutions for semilinear neutral integrodif-
ferential equations with nonlocal conditions of the following form:

(1)

⎧⎪⎪⎨
⎪⎪⎩

d

dt

[
x(t) + F (t, x(h1(t)))

]
+ Ax(t)

=
∫ t

0
B(t − s)x(s)ds + G(t, x(h2(t))), t ∈ [0, T ], x(0)+ g(x) = x0,

where −A is the infinitesimal generater of an analytic semigroup on a Banach space
X , B(t) is a closed linear operator from Xα ( it will be defined later ) into itself, F ,
G, g, h1 and h2 are given functions to be specified later.
Integro-differential equations can be used to describe a lot of natural phenomena

arising from many fields such as electronics, fluid dynamics, biological models, and
chemical kinetics. Most of these phenomena cannot be described through classical
differential equations. That is why in recent years they have attracted more and more
attention of several mathematicians, physicists, and engineers. Some topics for this
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kind of equations, such as existence and regularity , stability, (almost) periodicity of
solutions and control problems, have been investigated by many mathematicians, see
[1]-[25], for example.
In [18, 19, 20], Grimmer et al. proved the existence of solutions of the following

integrodifferential evolution equation:

(2)

⎧⎪⎨
⎪⎩

v′(t) = Av(t) +
∫ t

0
γ(t − s)v(s)ds + g(t), for t ≥ 0,

v(0) = v0 ∈ X,

where g : R+ → X is a continuous function. The author(s) showed the existence,
uniqueness, representation of solutions via resolvent operators associated to the follow-
ing linear homogeneous equation⎧⎪⎨

⎪⎩
v′(t) = Av(t) +

∫ t

0
γ(t− s)v(s)ds, for t ≥ 0,

v(0) = v0 ∈ X.

The resolvent operator, replacing role of C0-semigroup for evolution equations, plays
an important role in solving Eq. (2) in weak and strict senses. In recent years much
work on existence problems for nonlinear integrodifferential evolution equations has
been done by many authors through applying the theory of resolvent operator. In
papers [1, 6, 7, 8, 21], the authors have discussed the (local) existence and regularity of
solutions for some partial functional differential equations with finite orinfinite delay in
Banach space. And papers [2, 12, 22] have studied the existence problems for semlinear
impulsive integrodifferential equations. Meanwhile, as the nonlocal Cauchy problem for
evolution equations initiated by Byszewski[26] have offered better effects in discussing
practical models than classical Cauchy problems, there are lots of works on various
issues of different evolution equations with nonlocal conditions, see [27, 28, 30, 31]
for differential evolution systems and [3, 13, 16, 17, 22, 23, 24] for integrodifferential
evolution equations.
Particularly, Neutral (integro)differential equations arise in many areas of applied

mathematics. For instance, the system of rigid heat conduction with finite wave speeds,
studied in [9], can be modeled in the form of integrodifferential equations of neutral
type with delay, and for this reason these equations (with initial condition or nonlocal
condition) have received much attention in the last few decades. In Paper [6], by using
Banach fixed point theorem the authors have studied the existence and regularity of
solutions for the following neutral integrodifferential equations with finite delay⎧⎪⎨

⎪⎩
d

dt
D(t, xt) = AD(t, xt) +

∫ t

0
B(t − s)D(t, xt)ds + f(t, xt), t ≥ 0,

x0 = φ ∈ C([−r, 0], X),
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where A is the generator of a C0-semigroup. See [27, 3, 7, 25] for more relative works.
The purpose of this work is to study existence of mild solutions, strong solutions

and strict solutions for nonlocal system (1) by using the theory of resolvent operators
and fixed point theorems. As a motivation example for this class of equations we
consider the following boundary value problem with nonlocal condition

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
z(t, x) + f

(
t, z(t, x),

∂

∂x
z(t, x)

)]

=
∂2

∂x2
z(t, x) +

∫ t

0
b(t − s)

∂2

∂x2
z(s, x)ds

+ g

(
t, z(t, x),

∂

∂x
z(t, x)

)
, 0 ≤ x ≤ π, 0 ≤ t ≤ T,

z(t, 0) = z(t, π) = 0, t ∈ [0, T ],

z(0, x) +
p∑

i=1

ki(x)z(ti, x) = z0(x), 0 ≤ x ≤ π,

This system can also be written into an abstract neutral equation as mentioned above.
However, the results established in related papers as [3] become invalid for this situ-
ation, since the functions f, g in (3) involve spatial derivatives. As one will see in
Section 6, if take X = L2([0, π]), then the third variables of f and g are defined on
X 1

2
and so the solutions can not be discussed on X like in the appeared references. In

this paper, inspired by the work of [32],[33] and [30], we shall discuss this problem
by using fractional power operators theory and α−norm. That is, we are to restrict
this equation in a Banach space Xα(⊂ X) and investigate the existence and regularity
of mild solutions for Eq. (1). It means that the obtained theorems have more general
application than the existed results. On the other hand, we don’t need the compactness
of the function g in the nonlocal condition. we do not require the function g in the
nonlocal condition satisfy the compactness condition or Lipschitz condition, instead, it
is continuous and is completely determined on [τ, T ] for some small τ > 0. The com-
pactness condition or Lipschitz condition for g appear, respectively, in almost all the
above-stated papers on the topics of nonlocal problem of integrodifferential equations.
The paper is organized as follows: in Section 2 we recall some concepts, hypotheses

and basic results about resolvent operator. Particularly, we verify in this section the
uniform continuity of analytic resolvent for our discussion. It is worthy to mention that
compactness of resolvent operator does not imply the uniform continuity. In Section 3,
we study the existence of mild solutions for Eq.(1) using Sadovskii fixed point principle.
it can be seen that our discussion is quite different from the works of [2, 3, 6, 7, 8, 22]
and other existed papers. The existence of strong solutions is discussed in Section 4. To
obtain the existence of strong solutions we only require that F and G satisfy Lipschitz
conditions which are very weak. Then the existence of strict solutions is studied
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in Section 5 with Gronwall inequality applied. Finally, in Section 6, an example is
provided to illustrate the applications of the obtained results.

2. PRELIMINARIES

Let X be a Banach space, throughout this paper, we always assume that −A :
D(A) ⊆ X → X is the infinitesimal generater of a compact analytic semigroup
(S(t))t≥0. Y is the Banach space formed from D(A) with the graph norm ‖y‖Y =
‖Ay‖ + ‖y‖, for y ∈ D(A). Let 0 ∈ ρ(A), the resolvent set of operator A, then
it is possible to define the fractional power Aα, for 0 < α ≤ 1, as a closed linear
operator on its domain D(Aα). Furthermore, the subspace D(Aα) is dense in X and
the expression

‖x‖α = ‖Aαx‖, x ∈ D(Aα),

defines a norm on D(Aα). Denote the space (D(Aα), ‖ · ‖α) by Xα, then it is well
known that for each 0 < α ≤ 1, Xα is a Banach space, Xα ↪→ Xβ for 0 < β <
α ≤ 1 and the imbedding is compact whenever R(λ, A), the resolvent operator of A,
is compact. Let ‖A−β‖ ≤ M0, with M0 a positive constant. Hereafter we denote by
C([0, T ], Xα) the Banach space of continuous functions from [0, T ] to Xα with the
norm

‖x‖C = sup
0≤t≤T

‖Aαx(t)‖, x ∈ C([0, T ], Xα).

For the theory of operator semigroup we refer to [34] and [35].
The theory of resolvent operator plays an essential role in investigating the existence

of solutions of Eq.(1). Next we collect the definition and basic results about this theory,
see [18, 19, 20] for more details.

Definition 2.1. A family of bounded linear operators R(t) ∈ L(X) for t ∈ [0, T ]
is called resolvent operators for

(4)

⎧⎨
⎩

d

dt
x(t) = −Ax(t) +

∫ t

0

B(t − s)x(s)ds,

x(0) = x0 ∈ X,

if

(i) R(0) = I and ‖R(t)‖ ≤ N1e
ωt for some N1 > 0, ω ∈ R

(ii) for all x ∈ X , R(t)x is continuous for t ∈ [0, T ].

(iii) R(t) ∈ L(Y ), for t ∈ [0, T ]. For x ∈ Y , R(t)x ∈ C1([0, T ], X)∩ C([0, T ], Y )
and for t ≥ 0 such that
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(5)
R′(t)x = −AR(t)x +

∫ t

0
B(t − s)R(s)xds

= −R(t)Ax +
∫ t

0
R(t − s)B(s)xds.

We shall always assume the following hypotheses on the operators A and B(·):
(V1) A generates an analytic semigroup on X . B(t) is a closed operator on X with

domain at least D(A) a.e. t ≥ 0 with B(t)x strongly measurable for each
x ∈ D(A) and ‖B(t)‖1,0 ≤ b(t), b ∈ L1(0,∞) with b∗(λ) absolutely convergent
for Reλ > 0, where b∗(λ) denotes the Laplace transform of b(t).

(V2) ρ(λ) := (λI − A0 − B∗(λ))−1 exists as a bounded operator on X which is
analytic for λ in the region Λ = {λ ∈ C : |argλ| < π

2 + δ}, where 0 < δ < π
2 .

In Λ if |λ| ≥ ε > 0 there exists a constant M = M(ε)>0 so that ‖ρ(λ)‖≤ M
|λ| .

(V3) Aρ(λ) ∈ L(X) for λ ∈ Λ and are analytic on Λ into L(X). B∗(λ) ∈ L(Y, X)
and B∗(λ)ρ(λ) ∈ L(Y, X) for λ ∈ Λ. Given ε > 0, there existsM = M(ε) > 0
so that for λ ∈ Λ with |λ| ≥ ε, ‖Aρ(λ)‖1,0 + ‖B∗(λ)ρ(λ)‖1,0 ≤ M

|λ| , and
‖B∗(λ)‖1,0 → 0 as |λ| → ∞ in Λ. In addition, ‖Aρ(λ)‖ ≤ M

|λ|n for some
n > 0, λ ∈ Λ with |λ| ≥ ε. Further, there exists D ⊂ D(A2) which is dense
in Y such that A0(D) and B∗(λ)(D) are contained in Y and ‖B∗(λ)x‖1 is
bounded for each x ∈ D, λ ∈ Λ, |λ| ≥ ε.

Then, it follows from [20] that, under these conditions, there is a resolvent operator
R(t) for linear system (4) defined by

R(0) = I

and
R(t)x =

1
2πi

∫
Γ

eλt(λI − A − B∗(λ))−1xdλ, t > 0,

or equivalently, using the notation of (V2),

(6) R(t)x =
1

2πi

∫
Γ

eλtρ(λ)xdλ, t > 0,

where Γ is a contour of the type used to obtain an analytic semigroup. We can select
contour Γ, included in the region Λ, consisting of Γ1, Γ2, and Γ3, where

Γ1 = {reiφ : r ≥ 1}, Γ3 = {re−iφ : r ≥ 1}, π

2
< φ <

π

2
+ δ,

Γ2 = {eiθ : −φ ≤ θ ≤ φ},
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oriented so that Im(λ) is increasing on Γ1 and Γ2. Moreover, R(t) is also analytic and
there exist N, Cα > 0 such that

(7) ‖R(t)‖ ≤ N and ‖AαR(t)‖ ≤ Cα

tα
, 0 < t ≤ T, 0 ≤ α ≤ 1.

For the resolvent operator R(t) we can further prove the following property:

Lemma 2.2. AR(t) is continuous for t > 0 in the uniform operator topology of
L(X).

Proof. From (6) one has that

AR(t) =
1

2πi

∫
Γ

eλtAρ(λ)dλ, t > 0.

Let λt = μ and J = tΓ to get

AR(t) =
1

2πi

∫
J

1
t
eμAρ(t−1μ)xdμ, t > 0,

and use Cauchy’s theorem to obtain

AR(t) =
1

2πi

∫
Γ

1
t
eμAρ(t−1μ)dμ,

It now follows from (V3) that

‖AR(t)‖ ≤ M

2π

∫
Γ

tn−1|eμ| 1
|μ|n |dμ|,

which converges absolutely and uniformly for t > 0. Thus we conclude the
assertion.

In this paper, for the sake of simplicity, we always require that Aα be commutative
with R(t) for any 0 ≤ α ≤ 1, that is, for any x ∈ D(Aα),

(8) AαR(t)x = R(t)Aαx.

Generally speaking, this commutation is not always valid although some recent ref-
erences (such as [11, 27]) have used it readily. We point out, however, that this
commutation can be reached many cases. For example, let B(t − s) = b(t− s)A with
b(t) a scalar function defined on (0, +∞), then, the linear problem (4) becomes

(9)

⎧⎪⎨
⎪⎩

d

dt
x(t) = −Ax(t) +

∫ t

0

b(t− s)Ax(s)ds,

x(0) = x0 ∈ X.

If we impose the following conditions on system (9),
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(V ′
1) A generates an analytic semigroup on X . In particular

Λ1 = {λ ∈ C : |argλ| < (π/2) + δ1}, 0 < δ1 < π/2

is contained in the resolvent set of A and ‖(λI−A)−1‖ ≤ M/|λ| on Λ1 for some
constant M > 0. The scalar function b(·) is in L1(0,∞) with b∗(λ) absolutely
convergent for Reλ > 0, where b∗(λ) denotes the Laplace transform of b(t).

(V ′
2) There exists Λ = {λ ∈ C : |argλ| < (π/2) + δ2}, 0 < δ2 < π/2, so that λ ∈ Λ
implies g1(λ) = 1 + b∗(λ) exists and is not zero. Further λg−1

1 (λ) ∈ Λ1 for
λ ∈ Λ.

(V ′
3) In Λ, b∗(λ) → 0 as |λ| → ∞.

Then, from [20], the conditions (V1)− (V3) above are fulfilled and hence the resolvent
operator R(t) is analytic. We see that (8) holds in this situation.
Finally, we end this section by state the following fixed point principle which will

be used in the sequel.

Theorem 2.3. (see [36]). Assume that P is a condensing operator on a Ba-
nach space X , i.e., P is continuous and takes bounded sets into bounded sets, and
α(P (B)) ≤ α(B) for every bounded set B of X with α(B) > 0. If P (H) ⊆ H for a
convex, closed, and bounded set H of X , then P has a fixed point in H (where α(·))
denotes the kuratowski measurable of noncompactness).

3. EXISTENCE OF MILD SOLUTIONS

The mild solution of Eq.(1) expressed by the resolvent operator is defined as follows.

Definition 3.1. A function x(·) ∈ C([0, T ], Xα) is said to be a mild solution of
Eq. (1), if

x(t) =R(t) [x0 + F (0, x(h1(0)))− g(x)]− F (t, x(h1(t)))

+
∫ t

0
R(t − s) [AF (s, x(h1(s)))

−
∫ s

0

B(s − τ)F (τ, x(h1(τ)))dτ + G(s, x(h2(s)))
]
ds,

for t ∈ [0, T ].

To guarantee the existence of solutions, we impose the following restrictions on
Eq.(1). Let α ∈ (0, 1).

(H0) R(t) is a compact operator for each t > 0.
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(H1) {B(t)}t∈[0,T ] is a family of operators from Y toX such thatB(t) ∈ L(Xα+β, X)
for each t ∈ [0, T ]. Then, there exists a positive number M1 such that

(10) ‖B(t)‖α+β, 0 ≤ M1 t ∈ [0, T ].

(H2) There exists a constant β ∈ (0, 1) with α + β ≤ 1, such that F : [0, T ]× Xα →
Xα+β satisfies the Lipschitz condition, i.e., there exists a constant L0 > 0 such
that : ∥∥∥F (t1, x1) − F (t2, x2)

∥∥∥
α+β

≤ L0(|t1 − t2|+ ‖x1 − x2‖α)

for any 0 ≤ t1, t2 ≤ T, x1, x2 ∈ Xα, and the inequality∥∥∥F (t, x)
∥∥∥

α+β
≤ L0(‖x‖α + 1)

holds for any (t, x) ∈ [0, T ]× Xα.
(H3) The function G : [0, T ]× Xα → Xα satisfies the following conditions:

(i) for each t ∈ [0, T ], the function G(t, ·) : Xα → Xα is continuous and for
each x ∈ Xα the function G(·, x) : [0, T ] → Xα is strongly measurable;
(ii) for each positive number k ∈ N, there is a positive function gk ∈ L2([0, T ])
such that

sup
‖x‖≤k

‖G(t, x)‖α ≤ gk(t)

and

lim inf
k→∞

1
k

∫ T

0

gk(x)ds = γ < ∞.

(H4) g : C([0, T ], Xα) → Xα is a continuous mapping which maps bounded sets
into bounded sets, i.e., there exists a constant L > 0 such that for any x ∈
C([0, T ], Xα),

‖g(x)‖α ≤ L‖x‖C .

Moreover, there is a δ = δ(k) ∈ (0, T ) such that g(u) = g(v) for any u, v ∈ Bk

with u(s) = v(s), s ∈ [δ, T ], where Bk = {x ∈ C([0, T ], Xα), ‖x(·)‖C ≤ k}.
(H5) h1, h2 ∈ C([0, T ]; [0, T ]).
(H ′

3) G : [0, T ]×Xα → X satisfies the lipschitz condition, that is, there exists L1 > 0
such that

‖G(t1, x1) − G(t2, x2)‖ ≤ L1 [|t1 − t2| + ‖x1 − x2‖α] ,

for any 0 ≤ t1, t2 ≤ T, x1, x2 ∈ Xα and the inequality

‖G(t, x)‖ ≤ L1(‖x‖α + 1),

holds for any (t, x) ∈ [0, T ]× Xα.
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(H ′
4) g : C([0, T ], Xα) → Xα is a continuous function, and there exists L2 > 0 such
that ∥∥∥g(u)− g(v)

∥∥∥
α
≤ L2‖u − v‖C ,

for any u, v ∈ C([0, T ], Xα), and the inequality∥∥∥g(u)
∥∥∥

α
≤ L2(‖u‖C + 1)

holds for any u ∈ C([0, T ], Xα).

First we can prove the following existence result by applying Banach fixed pricinple
without any compactness condition for C0−semigroup (S(t))t≥0 or resolvent operator
(R(t))t≥0.

Theorem 3.2. Assume that assumptions (H1), (H2), (H ′
3), (H ′

4) and (H5) hold,
then Eq.(1) has a unique mild solution provided that

(11) C0 :=
(

M0(N + 1) +
CαT 2−α

1 − α
M1 +

T βC1−β

β

)
L0+

CαT 1−α

1− α
L1+NL2 < 1.

Proof. Define the operator P on C([0, T ], Xα) by the formula

(Px)(t) =R(t) [x0 + F (0, x(h1(0)))− g(x)]− F (t, x(h1(t)))

+
∫ t

0
R(t − s) [AF (s, x(h1(s)))

−
∫ s

0
B(s − τ)F (τ, x(h1(τ)))dτ + G(s, x(h2(s)))

]
ds.

Then, it is easy to see that P maps C([0, T ], Xα) into itself. By a direct computa-
tion we can show using (11) that P is a strict contraction on C([0, T ], Xα). Hence
from the Banach fixed point theorem we conclude that P has a unique fixed point in
C([0, T ], Xα) which is a mild solution of Eq.(1).

Next, we prove the existence of mild solutions when R(t) satisfies the condition
(H0), i.e., it is compact for t > 0.

Theorem 3.3. Assume that assumptions (H0)− (H5) hold, then Eq.(1) has a mild
solution provided that

(12) C1 :=
(

NM0 + M0 +
T βC1−β

β
+

T 2−αCα

1 − α
M1

)
L0 + N (NL + γ) < 1.
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To prove the above theorem, we need some lemmas. First, for a fixed n ∈ N, we
consider the following approximate problem:

(13)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

dt
[x(t) + F (t, x(h1(t)))] + Ax(t)

=
∫ t

0
B(t − s)x(s)ds + G(t, x(h2(t))), t ∈ [0, T ],

x(0) + R(
1
n

)g(x) = x0.

Lemma 3.4. Assume that all the conditions in Theorem 3.3 are satisfied, then
for any n ∈ N, the nonlocal Cauchy problem (13) has at least one mild solution
xn ∈ C([0, T ], Xα).

Proof. Let Bk be that given in assumption (H4). It is obvious that Bk

is a bounded, closed and convex set in C([0, T ], Xα). Define the operator Qn on
C([0, T ], Xα) by the formula

(Qnx)(t) =R(t)
[
x0 + F (0, x(h1(0)))− R(

1
n

)g(x)
]
− F (t, x(h1(t)))

+
∫ t

0
R(t − s) [AF (s, x(h1(s)))

−
∫ s

0

B(s − τ)F (τ, x(h1(τ)))dτ + G(s, x(h2(s)))
]
ds.

It is easy to see that the fixed point of Qn is a mild solution of Eq.(13). Subsequently,
we will prove that Qn has a fixed point on some Bk by using Theorem 2.3.
We claim that there exists a k ∈ N such that Qn(Bk) ⊆ Bk , if it is not true, then for

each k ∈ N, there is a function xk(·) ∈ Bk, but Qnxk /∈ Bk , that is ‖Qnxk(t)‖α > k

for some t(k) ∈ [0, T ], where t(k) denotes t is dependent on k. On the other hand,
however, we have

k < ‖(Qnxk)(t)‖α

≤
∥∥∥∥R(t)

[
x0 + F (0, xk(h1(0)))− R(

1
n

)g(xk)
]∥∥∥∥

α

+ ‖F (t, xk(h1(t)))‖α

+
∥∥∥∥
∫ t

0
R(t − s) [AF (s, xk(h1(s)))

+
∫ s

0
B(s − τ)F (τ, xk(h1(τ)))dτ − G(s, xk(h2(s)))

]
ds

∥∥∥∥
α

≤N

[
‖x0‖α + M0L0(k + 1) + N sup

x∈Bk

‖g(x)‖α

]
+ M0L0(k + 1)
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+
∫ t

0

∥∥∥A1−βR(t − s)AβF (s, xk(h1(s)))
∥∥∥

α
ds

+
∫ t

0
‖AαR(t − s)‖

∫ s

0
‖B(s − τ)F (τ, x(h1(τ)))‖dτds + N

∫ t

0
gk(s)ds

≤N [‖x0‖α + M0L0(k + 1) + NLk] + M0L0(k + 1)

+
T βC1−β

β
L0(k + 1) +

T 2−αCα

1 − α
M1L0(k + 1) + N

∫ t

0
gk(s)ds.

Dividing on both sides by the k and taking the lower limit as k → +∞, we get(
NM0 + M0 +

T βC1−β

β
+

T 2−αCα

1 − α
M1

)
L0 + N (NL + γ) ≥ 1,

this contradicts (12). Hence for some positive integer k, Qn(Bk) ⊆ Bk .
Next we will show that Qn has a fixed point on Bk . To this end, we decompose

Qn = Qn1 + Qn2, where the operators Qn1, Qn2 are defined on Bk , respectively, by

(Qn1x)(t) =R(t)F (0, x(h1(0)))− F (t, x(h1(t))) +
∫ t

0
R(t − s)AF (s, x(h1(s)))ds,

(Qn2x)(t) =R(t)
[
x0 − R(

1
n

)g(x)
]
−
∫ t

0
R(t − s)

∫ s

0
B(s − τ)F (τ, x(h1(τ)))dτds

+
∫ t

0
R(t − s)G(s, x(h2(s)))ds,

for all 0 ≤ t ≤ T , and we verify that Qn1 is a contraction while Qn2 is a compact
operator.
To prove that Qn1 is a contraction, we take x1, x2 ∈ Bk, then, for each t ∈ [0, T ],

we have

‖(Qn1x1)(t) − (Qn1x2)(t)‖α

≤
∥∥∥R(t)A−β

[
AβF (0, x1(h1(0)))− AβF (0, x2(h1(0)))

]∥∥∥
α

+
∥∥∥A−β

∥∥∥ ∥∥∥AβF (t, x1(h1(t)))− AβF (t, x2(h1(t)))
∥∥∥

α

+
∥∥∥∥
∫ t

0
A1−βR(t − s)Aβ [F (s, x1(h1(s)))− F (s, x2(h1(s)))]ds

∥∥∥∥
α

≤NM0L0 sup
0≤t≤T

‖x1(t)− x2(t)‖α + M0L0 sup
0≤t≤T

‖x1(t) − x2(t)‖α

+
∫ t

0

C1−βL0

(t − s)1−β
‖x1(s) − x2(s)‖αds

≤
(

NM0 + M0 +
C1−βT β

β

)
L0 sup

0≤t≤T
‖x1(t) − x2(t)‖α.
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Thus,

‖(Qn1x1) − (Qn1x2)‖C ≤
(

NM0 + M0 +
C1−βT β

β

)
L0 ‖x1 − x2‖C .

So by assumptions (12), we see that Qn1 is a contraction.
To prove that Qn2 is compact, firstly we prove that Qn2 is continuous on Bk, let

{xm} ⊆ Bk with xm → x in Bk , then by (H3) and (H4), we have

g(xm) → g(x), m → ∞,

and
G(s, xm(h2(s))) → G(s, x(h2(s))), m → +∞.

Since
‖G(s, xm(h2(s)))− G(s, x(h2(s)))‖α ≤ 2gk(s),

by the dominated convergence theorem and the strong continuity of R(t), we have

‖Qn2xm − Qn2x‖α

= sup
0≤t≤T

∥∥∥∥∥R(t)R(
1
n

)
[
g(xm) − g(x)

]

−
∫ t

0

R(t − s)
∫ s

0

B(s − τ)
[
F (τ, xm(h1(τ)))− F (τ, x(h1(τ)))

]
dτds

+
∫ t

0
R(t − s)

[
G(s, xm(h2(s)))− G(s, x(h2(s)))

]
ds

∥∥∥∥∥
α

≤ sup
0≤t≤T

(∥∥∥∥R(t)R(
1
n

)
[
g(xm) − g(x)

]∥∥∥∥
α

+
∥∥∥∥
∫ t

0
R(t − s)

∫ s

0
B(s − τ)

[
F (τ, xm(h1(τ)))− F (τ, x(h1(τ)))

]
dτds

∥∥∥∥
α

+
∥∥∥∥
∫ t

0
R(t − s)

[
G(s, xm(h2(s)))− G(s, x(h2(s)))

]
ds

∥∥∥∥
α

)

→ 0 as m → ∞,

i.e., Qn2 is continuous.
Next we prove that {(Qn2x)(·), x ∈ Bk} ⊆ C([0, T ], Xα) is a family of equicon-

tinuous function. To see this we fix t1 > 0, let t2 > t1 and ε > 0 be small enough,
then

‖(Qn2x)(t2) − (Qn2x)(t1)‖α

≤
∥∥∥∥(R(t2) − R(t1)(x0 − R(

1
n

)g(x)
∥∥∥∥

α



Existence of Solutions for Neutral Integrodifferential Equations with Nonlocal Conditions 1891

+
∥∥∥∥
∫ t2

0

R(t2 − s)
∫ s

0

B(s − τ)F (τ, x(h1(τ)))dτds

−
∫ t1

0
R(t1 − s)

∫ s

0
B(s − τ)F (τ, x(h1(τ)))dτds

∥∥∥∥
α

+
∥∥∥∥
∫ t2

0

R(t2 − s)G(s, x(h2(s)))ds−
∫ t1

0

R(t1 − s)G(s, x(h2(s)))ds

∥∥∥∥
α

≤‖R(t2) − R(t1)‖ [‖x0‖α + N‖g(x)‖α]

+
∫ t1−ε

0

‖AαR(t2 − s) − AαR(t1 − s)‖
∫ s

0

‖B(s − τ)F (τ, x(h1(τ)))‖dτds

+
∫ t1

t1−ε
‖AαR(t2 − s) − AαR(t1 − s)‖

∫ s

0
‖B(s − τ)F (τ, x(h1(τ)))‖dτds

+
∫ t2

t1

∥∥∥∥AαR(t2 − s)
∫ s

0
B(s − τ)F (τ, x(h1(τ)))dτ

∥∥∥∥ds

+
∫ t1−ε

0
‖R(t2 − s) − R(t1 − s)‖ ‖G(s, x(h2(s)))‖α ds

+
∫ t1

t1−ε
‖R(t2 − s) − R(t1 − s)‖ ‖G(s, x(h2(s)))‖α ds

+
∫ t2

t1

‖R(t2 − s)G(s, x(h2(s)))‖α ds.

Noting that ‖G(s, x(h2(s)))‖α ≤ gk(s) and gk(s) ∈ L2, we see that ‖(Qn2x)(t2) −
(Qn2x)(t1)‖α → 0 independently of x ∈ Bk as t2 − t1 → 0 since, by Lemma 2.2,
(R(t))t>0 and (AαR(t))t>0 are continuous in t in the uniform operators topology.
Similarly, we can prove that the functions

{
Qn2x, x ∈ Bk

}
are equicontinuous at

t = 0. Hence Qn2 maps Bk into a family of equicontinuous functions.
Now, we verify that for fixed t ∈ [0, T ], the set {(Qn2x)(t), x ∈ Bk} is relatively

compact in Xα.
If t = 0, then (Qn2x)(0) = x0 − R( 1

n)g(x). Clearly g(x) is a bounded set in Bk ,
so it is true for t = 0.
If t ∈ (0, T ], let (Qn2x)(t) = R(t)

[
x0 − R( 1

n)g(x)
]
+ (Q′

n2x)(t), where

(Q′
n2x)(t)

= −
∫ t

0
R(t − s)

∫ s

0
B(s − τ)F (τ, x(h1(τ)))dτds +

∫ t

0
R(t − s)G(s, x(h2(s)))ds.

Take α′ ∈ (0, 1) such that 0 < α′ − α < 1
2 , then we have

‖Aα′
(Q′

n2x)(t)‖ ≤
∥∥∥∥
∫ t

0
Aα′

R(t − s)
∫ s

0
B(s − τ)F (τ, x(h1(τ)))dτds

∥∥∥∥



1892 Xianlong Fu, Yan Gao and Yu Zhang

+
∥∥∥∥
∫ t

0

Aα′
R(t − s)G(s, x(h2(s)))ds

∥∥∥∥
≤Cα′T 2−α′

1 − α′ M1L0(‖x‖α + 1) +
T

1
2
−(α′−α)Cα′−α√
1 − 2(α′ − α)

‖gk(·)‖L2,

which implies {Aα′
(Q′

n2x)(t), x ∈ Bk} is bounded in X . Hence we infer that
(Q′

n2x)(t) is relatively compact inXα by the compactness of operator A−α′
: X → Xα

(noting that the imbeddingXα′ ↪→ Xα is compact). Thus, (Qn2x)(t) is also relatively
compact in Xα because R(t)

[
x0 − R( 1

n)g(x)
]
does so.

Therefore, from the infinite-dimensional version of the Ascoli-Arzela theorem, Qn2

is a completely continuous operator on C([0, T ], Xα). Those arguments enable us to
conclude that Qn = Qn1 + Qn2 is a condensing map on Bk , and by the Theorem 2.3
there exists a fixed point xn(·) for Qn on Bk. Therefore, the nonlocal Cauchy problem
(13) has a mild solution xn(·), and the proof is completed.
Now define the solution set D and the sets D(t) by

D = {xn ∈ C([0, T ], Xα) : xn = Qnxn, n ≥ 1},
D(t) = {xn(t) : xn ∈ D, n ≥ 1}, t ∈ [0, T ].

Lemma 3.5. Assume that all the conditions of Theorem 3.3 are satisfied. Then for
each t ∈ (0, T ], D(t) is relatively compact in Xα and D is equicontinuous on (0, T ].

Proof. For n ≥ 1 and xn ∈ D, we have, for t ∈ (0, T ],

xn(t) =R(t)
[
x0 + F (0, xn(h1(0)))− R(

1
n

)g(xn)
]
− F (t, xn(h1(t)))

+
∫ t

0
R(t − s)

[
AF (s, xn(h1(s)))

−
∫ s

0
B(s − τ)F (τ, xn(h1(τ)))dτ + G(s, xn(h2(s)))

]
ds

=R(t)
[
x0 + F (0, xn(h1(0)))− R(

1
n

)g(xn)
]
− A−αAαF (t, xn(h1(t)))

+
∫ t

0
R(t − s)

[
AF (s, xn(h1(s)))

−
∫ s

0

B(s − τ)F (τ, xn(h1(τ)))dτ + G(s, xn(h2(s)))
]

ds

=
3∑

i=1

Ii.
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From (H2) and (H4) we obtain F (t, xn(h1(t))) and g(xn(t)) are bounded in Xα. By
the compactness of (R(t))t>0 and A−α, we see I1, I2 are relatively compact in Xα.
Now we verify

I3 =
∫ t

0
R(t − s)

[
AF (s, xn(h1(s))) −

∫ s

0
B(s − τ)F (τ, xn(h1(τ)))dτ

]
ds

+
∫ t

0
R(t − s)G(s, xn(h2(s)))ds

is relatively compact in Xα too. For this, take 0 < α′ < α + β, as above we have

‖Aα′
I3‖ =

∥∥∥∥∥
∫ t

0
Aα′

R(t−s)
[
AF (s, xn(h1(s)))−

∫ s

0
B(s−τ)F (τ, xn(h1(τ)))dτ

]
ds

+
∫ t

0
Aα′

R(t − s)G(s, xn(h2(s)))ds

∥∥∥∥∥
≤
∥∥∥∥
∫ t

0
A1+α′−α−βR(t − s)Aα+βF (s, xn(h1(s)))

∥∥∥∥
+
∥∥∥∥
∫ t

0
Aα′

R(t − s)
∫ s

0
B(s − τ)

[
F (τ, xn(h1(τ)))

]
dτds

∥∥∥∥
+
∥∥∥∥
∫ t

0
Aα′−αR(t − s)AαG(s, xn(h2(s)))ds

∥∥∥∥
≤Tα+β−α′

C1+α′−α−β

α + β − α′ L0(‖x‖α + 1) +
T 1−α′

Cα′

1 − α′ M1L0 (‖x‖α + 1)

+
T

1
2
−(α′−α)Cα′−α√
1 − 2(α′ − α)

‖gk(·)‖L2,

which implies {Aα′
I3, xn ∈ D(t)} is bounded inX . Hence we infer that I3 is relatively

compact in Xα. Thus, D(t) is relatively compact in Xα.
Due to Lemma 2.2, we can prove the second assertion by using the similar argu-

ments as that in Lemma 3.4.

Proof of Theorem 3.3.
Proof. We prove that the solution set D is relatively compact in C([0, T ], Xα).

Due to Lemma 3.5 we only need to verify that D(0) is relatively compact in Xα and
D is equicontinuous at t = 0.
For xn ∈ D, n ≥ 1, let

xn(t) =

{
x(δ), t ∈ [0, δ),

xn(t), t ∈ [δ, T ],
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where δ comes from the condition (H4). Then, by condition (H4), g(xn) = g(xn).
Since D is relatively compact in C((0, T ], Xα), without loss of generality, we may

suppose that there is a subsequence, still denote {xn} ⊆ D, such that xn → x in
C((0, T ], Xα), as n → ∞, for some x(·). Thus, by the continuity of g and the strong
continuity of R(t) at t = 0, we get

‖xn(0)− (x0 + g(x))‖α ≤
∥∥∥R(

1
n

)g(xn)− R(
1
n

)g(x)
∥∥∥

α
+
∥∥∥R(

1
n

)g(x)− g(x)
∥∥∥

α

=
∥∥∥R(

1
n

)
[
g(xn) − g(x)

]∥∥∥
α

+
∥∥∥[R(

1
n

) − I
]
g(x)

∥∥∥
α

→ 0 as n → ∞,

i.e. D(0) is relatively compact in Xα.
On the other hand, for t ∈ (0, T ]

‖xn(t)− xn(0)‖α

=

∥∥∥∥∥R(t)
[
x0 + F (0, xn(h1(0)))− R(

1
n

)g(xn)
]
− F (t, xn(h1(t)))

+
∫ t

0
R(t − s)

[
AF (s, xn(h1(s)))

−
∫ s

0
B(s − τ)F (τ, xn(h1(τ)))dτ + G(s, xn(h2(s)))

]
ds

−
[
x0 + F (0, xn(h1(0)))− R(

1
n

)g(xn) − F (0, xn(h1(0)))
]∥∥∥∥∥

α

≤
∥∥∥∥∥
∫ t

0
R(t − s)

[
AF (s, xn(h1(s)))

−
∫ s

0
B(s − τ)F (τ, xn(h1(τ)))dτ + G(s, xn(h2(s)))

]
ds

∥∥∥∥∥
α

+
∥∥∥R(t)x0 − x0

∥∥∥
α

+
∥∥∥(R(t)− I)R(

1
n

)g(xn)
∥∥∥

α
+
∥∥∥(R(t)− I)F (0, xn(h1(0)))

∥∥∥
α

+
∥∥∥F (t, xn(h1(t)))− F (0, xn(h1(0)))

∥∥∥
α

→ 0,

uniformly in n as t → 0, since D(0) =
{
x0 − R( 1

n)g(xn) : xn ∈ D
}∞

n=1
is relatively

compact and A−β is compact. Thus, we obtain that the set D ⊆ C([0, T ], Xα) is
equicontinuous at t = 0, and hence D is relatively compact in C([0, T ], Xα). We may
suppose that xn → x∗ ∈ C([0, T ], Xα) as n → ∞.
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By the expression of mild solution for the system (13), we have

xn(t) =R(t)
[
x0 + F (0, xn(h1(0)))− R(

1
n

)g(xn)
]
− F (t, xn(h1(t)))

+
∫ t

0
R(t − s) [AF (s, xn(h1(s)))

−
∫ s

0
B(s − τ)F (τ, xn(h1(τ))) + G(s, xn(h2(s)))

]
ds,

for 0 ≤ t ≤ T . Taking limit as n → ∞ on both sides, we obtain that

x∗(t) =R(t) [x0 + F (0, x∗(h1(0)))− g(x∗)] − F (t, x∗(h1(t)))∫ t

0
R(t − s) [AF (s, x∗(h1(s)))

−
∫ s

0

B(s − τ)F (τ, x∗(h1(τ))) + G(s, x∗(h2(s)))
]
ds,

for t ∈ [0, T ], which implies that Eq.(1) has a mild solution x∗(·).
Remark 3.6. It is easily seen from the above proof that, if the function g(·) is

supposed to be completely continuous, then the compact condition (H0) of resolvent
operator R(t) in Theorem 3.3 can be taken off, that is, it is sufficient to assume that
the analytic semigroup (S(t))t≥0 is compact.

4. EXISTENCE OF STRONG SOLUTIONS

In this section, we prove the existence of strong solutions defined as follows.

Definition 4.1. A function x(·) ∈ C([0, T ]; Xα) is said to be a strong solution of
Eq.(1), if

(i) x is differentiable a.e.on [0, T ] in X , and x′ ∈ L1([0, T ], X);
(ii) x satisfies

d

dt
[x(t) + F (t, x(h1(t)))] + Ax(t) =

∫ t

0
B(t − s)x(s)ds + G(t, x(h2(t)))

a.e. on [0.T ], and
x(0) + g(x) = x0.

Theorem 4.2. Let X be a reflexive Banach space, suppose the conditions (H0)−
(H2), (H ′

3) and (H ′
4) are satisfied with F ([0, T ] × Xα) ⊆ D(A), and the function

AF (0, ·) : Xα → X maps bounded sets into bounded sets. Additionally, the following
conditions hold:
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(H6) x0 ∈ D(A), g(x) ∈ D(A) and g(·) maps bounded sets into bounded sets;
(H7) There exist constants 0<l1, l2 ≤ 1, such that ‖hi(t)−hi(t)‖≤ li|t− t|, i=1, 2;
(H8) There holds

(14) M∗ :=
(
‖A−β‖+

1
β

C1−βT β + T 2NM1

)
L0l1 +

CαT 1−α

1− α
L1l2 < 1.

Then, the nonlocal Cauchy problem (1) has a strong solution on [0, T ].

Proof. Let P be the operator defined in the proof of Theorem 3.2. Consider the
set B′

k =
{

x ∈ C([0, T ], Xα) : ‖x‖C ≤ k, ‖x(t)−x(s)‖α ≤ L∗|t− s|, t, s ∈ [0, T ]
}

for some positive constants k and L∗ large enough. It is clear that B′
k is a nonempty,

closed and convex set. We shall prove that P has a fixed point on B′
k. Obviously,

from the proof of Theorem 3.3 it is sufficient to show that for any x ∈ B′
k , one has

that
‖(Px)(t2) − (Px)(t1)‖α ≤ L∗|t2 − t1|, t2, t1 ∈ [0, T ].

In fact, by the expression of operator P , we get

‖Px(t2) − Px(t1)‖α

≤‖[R(t2) − R(t1)]Aα [x0 + F (0, x(h1(0)))− g(x)]‖
+ ‖A−β‖‖F (t2, x(h1(t2)))− F (t1, x(h1(t1)))‖α+β

+
∥∥∥∥
∫ t1

0
A1−βR(t1−s)Aβ+α[F (s+t2−t1, x(h1(s + t2−t1)))−F (s, x(h1(s)))]ds

+
∫ t2−t1

0
A1−βR(t2 − s)Aβ+αF (s, x(h1(s)))ds

∥∥∥∥
+
∥∥∥∥
∫ t1

0
R(t1−s)

∫ s

0
B(s−τ)[F (τ+t2−t1, x(h1(τ+t2−t1)))−F (τ, x(h1(τ)))]dτds

+
∫ t1

0
R(t1 − s)

∫ t2−t1

0
B(s + t2 − t1 − τ)F (τ, x(h1(τ)))dτds

+
∫ t2−t1

0
R(t2 − s)

∫ s

0
B(s − τ)F (τ, x(h1(τ)))dτds

∥∥∥∥
α

+
∥∥∥∥
∫ t1

0
R(t1 − s)[G(s + t2 − t1, x(h2(s + t2 − t1)))− G(s, x(h2(s)))]ds

+
∫ t2−t1

0
R(t2 − s)G(s, x(h2(s)))ds

∥∥∥∥
α

.

Since
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‖[R(t2) − R(t1)] [x0 + F (0, x(h1(0)))− g(x)]‖α

=
∥∥∥∥
∫ t2

t1

R′(t) [x0 + F (0, x(h1(0)))− g(x)]dt

∥∥∥∥
α

≤
∥∥∥∥
∫ t2

t1

−R(t)A [x0 + F (0, x(h1(0)))− g(x)]dt

∥∥∥∥
α

+
∥∥∥∥
∫ t2

t1

∫ t

0

R(t − s)B(s) [x0 + F (0, x(h1(0)))− g(x)]dsdt

∥∥∥∥
α

≤ Cα

1− α
‖A[x0 + F (0, x(h1(0)))− g(x)]‖ ∣∣t1−α

2 − t1−α
1

∣∣
+

CαM1

(1− α)(2− α)
‖x0 + F (0, x(h1(0)))− g(x)‖α+β

∣∣t2−α
2 − t2−α

1

∣∣ .
From conditions (H2), (H ′

3) and (H7), it yields that

‖Px(t2)− Px(t1)‖
≤ Cα

1 − α
‖A[x0 + F (0, x(h1(0)))− g(x)]‖ ∣∣t1−α

2 − t1−α
1

∣∣
+

CαM1

(1 − α)(2 − α)
‖x0 + F (0, x(h1(0)))− g(x)‖α+β

∣∣t2−α
2 − t2−α

1

∣∣ ,
+ ‖A−β‖L0|t2 − t1| + ‖A−β‖L0L

∗l1|t2 − t1|+ 1
β

C1−βT βL0|t2 − t1|

+
1
β

C1−βT βL0L
∗l1|t2 − t1| + 1

β
C1−βL1(k + 1)|tβ2 − tβ1 |

+
CαT 2−α

1 − α
M1‖L0|t2 − t1|+ CαT 2−α

1 − α
M1L0L

∗l1|t2 − t1|

+
CαT 1−α

1 − α
M1L0(k + 1)|t2 − t1|1−α

+ TNL1|t2 − t1|+ TNL1L
∗l2|t2 − t1| + N (k + 1)|t2 − t1|

≤
(

C∗ +
[(

‖A−β‖+
1
β

C1−βT β +
CαT 2−α

1 − α
M1

)
L0l1 + NTL1l2

]
L∗
)
|t2 − t1|,

where C∗ is a constant independent of L∗ and x ∈ B′
k . So it follows from (14) that

‖Px(t2) − Px(t1)‖ ≤ L∗|t2 − t1| as long as L∗ is large enough (≥ C∗
1−M∗). Thus, P

has a fixed point x(·) which is a mild solution of Eq.(1). Moreover, x(·) is Lipschitz
continuous in α−norm and hence is Lipschitz in X .
For this x(·), let

f(t) = R(t)[x0 + F (0, x(h1(0)))− g(x)],

p(t) =
∫ t

0
R(t − s)AF (s, x(h1(s)))ds,
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q(t) =
∫ t

0

R(t − s)
∫ s

0

B(s − τ)F (τ, x(h1(τ)))dτds,

r(t) =
∫ t

0
R(t − s)G(s, x(h2(s)))ds.

Then, from the hyprothes, it is not difficult to verify that they are all Lipschitz continu-
ous in X , respectively. Since x is Lipschitz continuous in X on [0, T ] and the space X
is reflexive, we see that x(·) is a.e. differentiable on [0, T ] and x′(·) ∈ L1([0, T ], X).
The same argument shows that f(t), p(t), q(t), r(t) also have this property.
On the other hand, by the standard arguments, we can obtain that f(t), p(t), q(t),

r(t) ∈ D(A), and one has that

f ′(t) = R′(t)[x0 + F (0, x(h1(0)))− g(x)]
= −R(t)A[x0 + F (0, x(h1(0)))− g(x)]

+
∫ t

0
R(t − s)B(s)[x0 + F (0, x(h1(0)))− g(x)]ds,

p′(t) = AF (t, x(h1(t))) +
∫ t

0
R′(t − s)AF (s, x(h1(s)))ds

= AF (t, x(h1(t))) − A

∫ t

0
R(t − s)AF (s, x(h1(s)))ds

+
∫ t

0

∫ t−s

0
R(t − s − τ)B(τ)AF (s, x(h1(s)))dτds,

q′(t) =
∫ t

0
B(t−s)F (s, x(h1(s)))ds+

∫ t

0
R′(t−s)

∫ s

0
B(s−τ)F (τ, x(h1(τ)))dτds

=
∫ t

0
B(t−s)F (s, x(h1(s)))ds−

∫ t

0
R(t−s)A

∫ s

0
B(s−τ)F (τ, x(h1(τ)))dτds

+
∫ t

0

∫ t−s

0
R(t − s − u)B(u)

∫ u

0
B(u − τ)F (τ, x(h1(τ)))dτduds,

and

r′(t) = G(t, x(h2(t))) +
∫ t

0
R′(t − s)G(s, x(h2(s)))ds

= G(t, x(h2(t)))−
∫ t

0
R(t − s)AG(s, x(h2(s)))ds

+
∫ t

0

∫ t−s

0
R(t − s − τ)B(τ)G(τ, x(h2(τ)))dτds.

Using Definition 2.1, we have x satisfies a.e. that



Existence of Solutions for Neutral Integrodifferential Equations with Nonlocal Conditions 1899

d

dt

[
x(t) + F (t, x(h1(t)))

]
=

d

dt

(
R(t)

[
x0 + F (0, x(h1(0)))− g(x)

]
+
∫ t

0
R(t − s)

[
AF (s, x(h1(s)))

−
∫ s

0

B(s − τ)F (τ, x(h1(τ)))dτ + G(s, x(h2(s)))

]
ds

)

= − AR(t)
[
x0 + F (0, x(h1(0)))− g(x)

]
+ AF (t, x(h1(t)))

− A

∫ t

0

R(t − s)AF (s, x(h1(s)))ds

+
∫ t

0
R(t−s)A

∫ s

0
B(s−τ)F (τ, x(h1(τ)))dτds−

∫ t

0
R(t−s)AG(s, x(h2(s)))ds

+
∫ t

0

R(t−s)B(s)[x0+F (0, x(h1(0)))−g(x)]ds−
∫ t

0

B(t−s)F (s, x(h1(s)))ds

+
∫ t

0

∫ t−s

0
R(t − s − τ)B(τ)AF (s, x(h1(s)))dτds

−
∫ t

0

∫ t−s

0
R(t − s − u)B(u)

∫ u

0
B(u − τ)F (τ, x(h1(τ)))dτduds

+
∫ t

0

∫ t−s

0

R(t − s − τ)B(τ)G(τ, x(h2(τ)))dτds + G(t, x(h2(t))),

that is,
d

dt

[
x(t) + F (t, x(h1(t)))

]
= − A

[
R(t)[x0 + F (0, x(h1(0)))− g(x)]− F (t, x(h1(t)))

+
∫ t

0
R(t − s)AF (s, x(h1(s)))ds

−
∫ t

0
R(t − s)

∫ s

0
B(s − τ)F (τ, x(h1(τ)))dτds +

∫ t

0
R(t − s)G(s, x(h2(s)))

]
ds

+
∫ t

0
B(t − s)R(s)[x0 + F (0, x(h1(0)))− g(x)]ds−

∫ t

0
B(t − s)F (s, x(h1(s)))ds

+
∫ t

0

∫ s

0
B(t − s)R(s − τ)AF (τ, x(h1(τ)))dτds

−
∫ t

0
B(t − s)

∫ s

0
R(s − τ)

∫ τ

0
B(τ − u)F (u, x(h1(u)))dudτds
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+
∫ t

0
B(t − s)

∫ s

0
R(s − τ)G(τ, x(h2(τ)))dτds + G(t, x(h2(t)))

= − Ax(t) +
∫ t

0

B(t − s)x(s)ds + G(t, x(h2(t))).

This shows that x(·) is also a strong solution of Eq.(1). Thus the proof is
completed.

5. EXISTENCE OF STRICT SOLUTIONS

In this section, by using the Gronwall’s lemma, we give a existence result of strict
solutions for nonlocal problem (1).

Definition 5.1. A function x(·) : [0, T ] → D(Aα) is said to be a strict solution of
Eq. (1), if the following conditions hold:

(i) x(·) + F (·, x(h1(·))) ∈ C1([0, T ], X)∩ C([0, T ], Xα);
(ii) x(·) satisfies Eq.(1) for t ∈ [0, T ].

We assume that:
(H9) F ∈ C1([0, T ]×Xα; X), and the partial derivatives D1F (·, ·) and D2F (·, ·) are

locally Lipschitz (in X-norm) with respect to the second argument. Additionally,
F ([0, T ], Xα) ⊆ D(A) is continuously differentiable.

(H10) G ∈ C1([0, T ]×Xα; X), and the partial derivativesD1G(·, ·) and D2G(·, ·) are
locally Lipschitz with respect to the second argument.

(H11) h1(·) and h2(·) are continuously differentiable on [0, T ] with hi(t) ≤ t, for
t ∈ [0, T ]. Let |h′

i| = sup0∈[0,T ] |h′
i(t)|, for i = 1, 2.

Theorem 5.2. Assume that assumptions (H1), (H ′
3), (H9), (H10) and (H11) hold

with M0L0 < 1. In addition, suppose that g : C([0, T ], Xα) → X is continuously
differentiable. Let x(·) be a mild solution of Eq.(1). If x(0) + F (0, x(0)) ∈ D(A),
then x(·) is a strict solution of Eq.(1).
Proof. Let x(·) be the mild solution of Eq.(1) which is obtained by Theorem 3.2

or Theorem 3.3. Then by using the strict contraction principle, one can show that there
exists a unique function y satisfying:

(15)

y(t) =R(t)
{
− A

[
x0 − g(x) + F (0, x(0))

]
+ H(0, x(0))

}
+
∫ t

0

R(t − s)B(s)
[
x0 − g(x) + F (0, x(0))

]
ds

+
∫ t

0

R(t − s) [D1H(s, x(s)) + D2H(s, x(s))y(s)]ds

− [D1F (t, x(h1(t))) + D2F (t, x(h1(t)))y(h1(t))h′
1(t)

]
,
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where

H(t, x(t)) = AF (t, x(h1(t)))−
∫ t

0
B(t − s)F (s, x(h1(s)))ds + G(s, x(h2(s))).

Now, we introduce the function z(t) defined by

z(t) = x0 − g(x) +
∫ t

0
y(s)ds, t ∈ [0, T ].

We will prove that x(t) = z(t) on [0, T ], which implies that x(t) is a strict solution of
Eq.1. Using the expression of y(t), we obtain

∫ t

0

y(s)ds =
∫ t

0

R(s)

{
− A

[
x0 − g(x) + F (0, x(0))

]
+ H(0, x(0))

}
ds

+
∫ t

0

∫ s

0

R(s − τ)B(τ)

[
x0 − g(x) + F (0, x(0))

]
dτds

+
∫ t

0

∫ s

0

R(s − τ)

[
D1H(τ, x(τ))+ D2H(τ, x(τ))y(τ)

]
dτds

−
∫ t

0

[
D1F (s, x(h1(s))) + D2F (s, x(h1(s)))y(h1(s))h′

1(s)

]
ds

=
∫ t

0

{
− R(s)A

[
x0 − g(x) + F (0, x(0))

]

+
∫ s

0
R(s − τ)B(τ)

[
x0 − g(x) + F (0, x(0))

]
dτ

}
ds

+
∫ t

0
R(s)H(0, x(0))ds

+
∫ t

0

∫ s

0
R(s − τ)

[
D1H(τ, x(τ))+ D2H(τ, x(τ))y(τ)

]
dτds

−
∫ t

0

[
D1F (s, x(h1(s))) + D2F (s, x(h1(s)))y(h1(s))h′

1(s)

]
ds,

or ∫ t

0
y(s)ds =

∫ t

0
R′(s)

[
x0 − g(x) + F (0, x(0))

]
ds +

∫ t

0
R(s)H(0, x(0))ds
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+
∫ t

0

∫ s

0
R(s − τ)

[
D1H(τ, x(hτ))+ D2H(τ, x(τ))y(τ)

]
dτds

−
∫ t

0

[
D1F (s, x(h1(s))) + D2F (s, x(h1(s)))y(h1(s))h′

1(s)

]
ds

=R(t)

[
x0 − g(x) + F (0, x(0))

]
− x0 + g(x)− F (0, x(0)) +

∫ t

0
R(s)H(0, x(0))ds

+
∫ t

0

∫ s

0
R(s − τ)

[
D1H(τ, x(τ))+ D2H(τ, x(τ))y(τ)

]
dτds

−
∫ t

0

[
D1F (s, x(h1(s))) + D2F (s, x(h1(s)))y(h1(s))h′

1(s)

]
ds,

then,

(16)

z(t) =R(t)

[
x0 − g(x) + F (0, x(0))

]
− F (0, x(0)) +

∫ t

0

R(s)H(0, x(0))ds

+
∫ t

0

∫ s

0

R(s − τ)

[
D1H(τ, x(τ))+ D2H(τ, x(τ))y(τ)

]
dτds

−
∫ t

0

[
D1F (s, x(h1(s))) + D2F (s, x(h1(s)))y(h1(s))h′

1(s)

]
ds.

Since

F (t, z(h1(t)))

=
∫ t

0

d

ds
F (s, z(h1(s)))ds + F (0, z(0))

=
∫ t

0

[
D1F (s, z(h1(s))) + D2F (s, z(h1(s)))y(h1(s))h′

1(s)

]
ds + F (0, z(0)),

or

(17)
F (0, z(0)) =

∫ t

0

[
D1F (s, z(h1(s)))

+D2F (s, z(h1(s)))y(h1(s))h′
1(s)

]
ds−F (t, z(h1(t))),

and t → H(t, z(t)) is continuously differentiable on [0, T ], we have
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d

dt

∫ t

0
R(t − s)H(s, z(s))ds =H(t, z(t)) +

∫ t

0
R′(t − s)H(s, z(s))ds

=H(t, z(t))−
∫ t

0
H(s, z(s))dR(t− s)

=R(t)H(0, z(0))+
∫ t

0
R(t − s)

[
D1H(s, z(s))

+ D2H(s, z(s))y(s)
]
ds,

hence,∫ t

0
R(t − s)H(s, z(s))ds

=
∫ t

0
R(s)H(0, z(0))ds+

∫ t

0

∫ s

0
R(s−τ)

[
D1H(τ, z(τ))+D2H(τ, z(τ))y(τ)

]
dτds,

or

(18)

∫ t

0
R(s)H(0, z(0))ds =

∫ t

0
R(t − s)H(s, z(s))ds

−
∫ t

0

∫ s

0
R(s − τ)

[
D1H(τ, z(τ))+ D2H(τ, z(τ))y(τ)

]
dτds.

Observing that x(0) = z(0), we substitute (17) and (18) into (16) and get

z(t) =R(t)

[
x0 − g(x) + F (0, x(0))

]
− F (t, z(h1(t)))

+
∫ t

0

[
D1F (s, z(h1(s))) + D2F (s, z(h1(s)))y(h1(s))h′

1(s)

]
ds

+
∫ t

0
R(t − s)H(s, z(s))ds

−
∫ t

0

∫ s

0
R(s− τ)

[
D1H(τ, z(τ)) + D2H(τ, z(τ))y(τ)

]
dτds

+
∫ t

0

∫ s

0
R(s− τ)

[
D1H(τ, x(τ))+ D2H(τ, x(τ))y(τ)

]
dτds

−
∫ t

0

[
D1F (s, x(h1(s))) + D2F (s, x(h1(s)))y(h1(s))h′

1(s)

]
ds.

Consequently,
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z(t) − x(t) =

(
F (t, x(h1(t))) − F (t, z(h1(t)))

)

+
∫ t

0
R(t − s)

(
H(s, z(s))− H(s, x(s))

)
ds

+
∫ t

0

[
D1F (s, z(h1(s)))− D1F (s, x(h1(s)))

]
ds

+
∫ t

0

[
D2F (s, z(h1(s)))− D2F (s, x(h1(s)))

]
y(h1(s))h′

1(s)ds

−
∫ t

0

∫ s

0
R(s − τ)

[
D1H(τ, z(τ))− D1H(τ, x(τ))

]
dτds

−
∫ t

0

∫ s

0
R(s − τ)

[
D2H(τ, z(τ))− D2H(τ, x(τ))

]
y(τ)dτds.

Then from assumptions (H1), (H ′
3), (H9), (H10) and (H11) we obtain that

sup
0≤s≤t

‖z(s)− x(s)‖ ≤ M0L0 sup
0≤s≤t

‖z(s)− x(s)‖+ c

∫ t

0
sup

0≤τ≤s
‖z(τ)− x(τ)‖ds,

where c is positive constant. Since M0L0 < 1, we have

sup
0≤s≤t

‖z(s) − x(s)‖ ≤ c

1 − M0L0

∫ t

0
sup

0≤τ≤s
‖z(τ) − x(τ)‖ds.

By Gronwall’s lemma we infer that x(·) = z(·) on [0, T ] and we conclude that x(·) ∈
C1([0, T ], X) and is a strict solution of Eq.(1).

6. EXAMPLE

Consider the following partial functional indegrodifferential equation

(19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
z(t, x) +

∫ π

0
a(y, x)

(
z(t sin t, y) + sin

(
∂

∂y
z(t, y)

))
dy

]

=
∂2

∂x2
z(t, x) +

∫ t

0
b(t− s)

∂2

∂x2
z(s, x)ds + c(t, z(t cos t, x,

∂

∂x
z(t, x))),

0 ≤ x ≤ π, 0 ≤ t ≤ T,

z(t, 0) = z(t, π) = 0, t ∈ [0, T ],

z(0, x) +
p∑

i=1

ki(x)z(ti, x) = z0(x), 0 ≤ x ≤ π,
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where T ≤ π, p is a positive integer, 0 < t0 < t1 < · · · < tp < T , z0(x) ∈ X :=
L2([0, π]), b(·) is continuous, then there exist a constantM1 > 0 such that ‖b(·)‖ ≤ M1

and ki(x) is a C1 function.
To write system (19) in the form of Eq.(1), let A be defined by

Az = −z′′

with the domain

D(A) = {z(·) ∈ X : z′, z′′ ∈ X, and z(0) = z(π) = 0}.
Then −A generates a strongly continuous semigroup (S(t))t≥0 which is compact,
analytic, and self-adjoint. Furthermore, A has a discrete spectrum, the eigenvalues
are n2, n ∈ N, with the corresponding normalized eigenvectors ξn(x) =

√
2
π sin(nx),

n = 1, 2, · · · . Then the following properties hold:
(i) If z ∈ D(A), then

Az =
∞∑

n=1

n2〈z, ξn〉ξn.

(ii) For each z ∈ X ,
A−1/2z =

∞∑
n=1

1
n
〈z, ξn〉ξn.

In particular, ‖A−1/2‖ = 1.

(iii) The operator A1/2 is given by

A1/2z =
∞∑

n=1

n〈z, ξn〉ξn

on the space

D(A1/2) =

{
z(·) ∈ X,

∞∑
n=1

n〈z, ξn〉ξn ∈ X

}
.

For System (19) we assume that the following conditions hold:
(A1) The function a and (∂/∂x)a(y, x) are measurable, a(y, 0) = a(y, π) = 0, let

N0 =

[∫ π

0

∫ π

0

(
∂2

∂x2
a(y, x)

)2

dydx

]1/2

< ∞.

(A2) The function c : [0, T ]× R × R → R is a C1 function.

We take α = β = 1
2 , B(t) = b(t)A, and define the functions F : [0, T ]× X 1

2
→

D(A), G : [0, T ]× X 1
2
→ X 1

2
, and g : C([0, T ], X 1

2
) → X 1

2
, respectively, by

F (t, z)(x) = Z(z(t, x))(x),
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G(t, z)(x) = c(t, z(t, x),
∂

∂x
z(t, x)),

and
g(z(t, x)) =

p∑
i=1

ki(x)z(ti, x),

where
Z(z)(x) =

∫ π

0
a(y, x)

[
z(y) + sin(z′(y)))

]
dy.

Then, with these notations, System (19) can be rewritten into the form (1).
We know that, for the operator (−A, D(A)), there is ϕ ∈ (0, π/2) such that

Λ :=
{
λ ∈ C : |argλ| < π

2
+ ϕ

}
⊂ ρ(−A),

where ρ(−A) denotes the resolvent set of −A. So we may assume that
(A3) The scalar function b(·) satisfies that λ ∈ Λ implies g(λ) := 1 + b∗(λ) = 0, and

λg(λ) ∈ Λ for λ ∈ Λ, further, b∗(λ) → 0 as |λ| → ∞, λ ∈ Λ.

Then the conditions (V ′
1) − (V ′

3) are verified, and hence the linear equation (2) for
System (19) has a resolvent operator (R(t))t≥0, which is given by, for x ∈ X ,

R(t)x =
1

2πi

∫
Γ

eλtρ(λ)xdλ

=
1

2πi

∫
Γ

eλtg−1(λ)(λg−1(λ) + A)−1xdλ,

where Γ is described in Section 2. It is readily seen that R(t) is compact for all t > 0,
since R(λ,−A) is compact for any λ ∈ ρ(A).
Clearly, G satisfies (H3) while g verifies (H4). From (A1) it follows that

〈Z(z), ξn〉 =
∫ π

0
ξn(x)

[∫ π

0
a(y, x)

[
z(y) + sin(z′(y))

]
dy

]
dx

=
1
n

√
2
π

〈∫ π

0

∂a(y, x)
∂x

[
z(y) + sin(z′(y))

]
dy, cos(nx)

〉

=
1
n2

√
2
π

〈∫ π

0

∂2a(y, x)
∂x2

[
z(y) + sin(z′(y))

]
dy, ξn

〉
,

which shows that F (t, z) = Z(z) takes values in D(A). Furthermore, it is easy to
prove (see [32]) that

‖z2 − z1‖ ≤ ‖z2 − z1‖ 1
2
.

Thus, we know from (A1) that Z : X 1
2
→ X1 is Lipschitz continuous with ‖Z‖ ≤ N0,

which implies the function F verifies assumption (H2). Therefore, all the conditions
of theorem 3.3 are all satisfied. Hence from Theorem 3.3, system (19) admits a mild
solution on [0, T ] under the above assumptions additionally provided that (8) holds.
Moreover, if:
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(A4) The function (∂2/∂x2)a(y, x) is measurable, and∫ π

0

∫ π

0

(
∂2

∂x2
a(y, x)

)2

dydx < ∞.

(A5) Functions z′′0 and (∂2/∂x2)ki(x, y) are measurable, and z0(0) = z0(π) = 0,
ki(0) = ki(π) = 0.

Then system (19) has a strong solution provided that condition (14) is satisfied.
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