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THE SUBGRADIENT METHOD FOR SOLVING VARIATIONAL
INEQUALITIES WITH COMPUTATIONAL ERRORS IN A HILBERT SPACE

Alexander J. Zaslavski

Abstract. In a Hilbert space, we study the asymptotic behavior of the subgradient
method for solving a variational inequality, under the presence of computational
errors. Most results known in the literature establish convergence of optimiza-
tion algorithms, when computational errors are summable. In the present paper,
the convergence of the subgradient method to the solution of a variational in-
equalities is established for nonsummable computational errors. We show that the
the subgradient method generates good approximate solutions, if the sequence of
computational errors is bounded from above by a constant.

1. INTRODUCTION

The study of gradient-type methods and variational inequalities are important topics
is optimization theory. See, for example, [1, 3-15, 17, 18] and the references mentioned
therein.
In the present paper we study the asymptotic behavior of the gradient method for

solving a variational inequality in a Hilbert space, under the presence of computational
errors. Most results known in the literature establish convergence of optimization
algorithms, when computational errors are summable. In the present paper, the con-
vergence of the gradient method for solving variational inequalities is established for
nonsummable computational errors. We show that the gradient method generates good
approximate solution, if the sequence of computational errors is bounded from above
by a constant. Note that results of this type were obtained in [17, 18] for convex
constrained minimization problems.
Our goal is to obtain an ε-approximate solution of the problem in the presence

of computational errors, where ε is a given positive number. Clearly, in practice it
is sufficient to find an ε-approximate solution instead of constructing a minimizing
sequence. On the other hand in practice computations introduce numerical errors and
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if one uses methods in order to solve minimization problems these methods usually
provide only approximate solutions of the problems.
Let (X, 〈·, ·〉) be a Hilbert space with an inner product 〈·, ·〉 which induces a

complete norm ‖ · ‖. For each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ‖x − y‖ ≤ r}.

Let C be a nonempty closed (in the normed topology) convex subset of X .
It is well-known that the following proposition holds.

Proposition 1.1. For each x ∈ X there is a unique point PC(x) ∈ C satisfying

‖x − PC(x)‖ = inf{‖x− y‖ : y ∈ C}.

Moreover,
‖PC(x)− PC(y)‖ ≤ ‖x − y‖ for all x, y ∈ X.

Consider a single-valued mapping f : X → X . We say that f is monotone on C if

〈f(x)− f(y), x− y〉 ≥ 0 for all x, y ∈ C.

We say that f is pseudo-monotone on C if for each x, y ∈ C the inequality

〈f(y), x− y〉 ≥ 0 implies that 〈f(x), x− y〉 ≥ 0.

Clearly, if f is monotone on C, then f is pseudo-monotone on C.
For each x ∈ X and each nonempty set E ⊂ X set

ρ(x, E) = inf{‖x− y‖ : y ∈ E}.

For each nonempty set D ⊂ X and each r > 0 set

Dr = {x ∈ X : ρ(x, D) ≤ r}.

Fix r̄ ∈ (0, 1). We suppose that

(1.1) u∗ ∈ C and 〈f(u∗), u− u∗〉 ≥ 0 for all u ∈ C.

Clearly, u∗ is a solution of the corresponding variational inequality:

To find x ∈ C such that 〈f(x), y − x〉 ≥ 0 for all y ∈ C.

We say that f is strongly monotone with a constant α > 0 [10] on Cr̄ if

〈f(x) − f(y), x− y〉 ≥ α‖x − y‖2 for all x, y ∈ Cr̄ .
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We suppose that there is α ∈ (0, 1) such that

(1.2) 〈f(x), x− u∗〉 ≥ α‖x − u∗‖2 for all x ∈ Cr̄.

Relation (1.2) implies that u∗ is a unique solution of the corresponding variational
inequality.

Remark 1. Note that by (1.1), equation (1.2) holds if f is strongly monotone with
a constant α on Cr̄ .

Remark 2. The assumption that α ∈ (0, 1) is not restrictive. If (1.2) holds with
α = α0, then (1.2) is true for any α ∈ (0, α0). More precisely, if (1.2) is true with
α = α0, where α0 > 1, then (1.2) and the assertion of Theorem 1.1 hold with α = 1/2
(see (1.4), (1.6) and (1.7)).
In this paper we consider the single-valued mapping f : X → X which satisfy

(1.1) and (1.2) and suppose that f is bounded on bounded subsets of Cr̄ .
In this paper, in order to solve the variational inequality (to find u∗), we use the

algorithm known in the literature as the subgradient method. In each iteration of
this algorithm, in order to get the next iterate xk+1, an orthogonal projection onto
C is calculated, according to the following iterative step. Given the current iterate xk

calculate xk+1 = PC(xk−τkf(xk)), where τk is some positive number. This algorithm
generates sequences which converge to u∗. In this paper, we study the behavior of the
sequences generated by the algorithm taking into account computational errors which
are always present in practice. Namely, in practice the algorithm generates a sequence
{xk}∞k=0 such that for each integer k ≥ 0,

‖xk+1 − PC(xk − τkf(xk))‖ ≤ δ,

with a constant δ > 0 which depends only on our computer system. Surely, in this
situation one cannot expect that the sequence {xk}∞k=0 converges to the point u∗. The
goal of our paper is to understand what subset of C attracts all sequences {xk}∞k=0

generated by the algorithm. Our main result (Theorem 1.1) shows that this subset of
C is an ε-neighborhood of u∗ with some ε > 0 depending on δ (see (1.7)).
As it was pointed out by the referee analogous asymptotic behavior of optimization

methods was also considered in [16].
In this paper we prove the following result.

Theorem 1.1. Let ε ∈ (0, 1), M0 > 1, M1 > 1,

(1.3) f(B(u∗, M0 + 1)) ⊂ B(0, M1),

(1.4) 0 < τ∗
1 < τ∗

0 < 2−1αM−2
1 ε2/4,

(1.5) {τk}∞k=0 ⊂ [τ∗
1 , τ∗

0 ],
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a natural number k0 satisfy

(1.6) k0 > (M0 + 1)2α−1(τ∗
1 )−116ε−2

and let a positive number δ satisfy

(1.7) δ < r̄/2,

4δ(M0 + 2 + M1) < τ∗
1 α(ε/4)2.

Assume that {xi}∞i=0 ⊂ X ,

(1.8) x0 ∈ B(u∗, M0)

and that for each integer i ≥ 0,

(1.9) ‖xi+1 − PC(xi − τif(xi))‖ ≤ δ.

Then
‖xi − u∗‖ ≤ ε for all integers i ≥ k0.

Note that under the assumptions of Theorem 1.1 its assertion also holds for exact
iterates {xi}∞i=0 ⊂ X satisfying (1.8) and such that for each each integer i ≥ 0,

xi+1 = PC(xi − τif(xi)).

The paper is organized as follows. Section 2 contains auxiliary results. Theorem
1.1 is proved in Section 3.
Since the mapping f is single-valued our result does not cover the case with sub-

gradient operators for nonsmooth convex functionals but it does cover the case with
gradient operators for smooth convex functionals. Convergence of the projected sub-
gradient method for nonsmooth convex optimization in the presence of nonsummable
computational errors was studied in [17].

2. AUXILIARY RESULTS

We use the assumptions, notation and the definitions introduced in Section 1.
In the sequel we use the following well-known result.

Proposition 2.1. Assume that D is a nonempty convex closed subset of X and
that x ∈ X \ D. Then for each z ∈ D,

〈z − PD(x), x− PD(x)〉 ≤ 0.

Lemma 2.1. Let

(2.1) u ∈ Cr̄, τ > 0, v = PC(u − τf(u)).
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Then
‖v − u∗‖2 ≤ (1 − 2ατ)‖u − u∗‖2 + τ2‖f(u)‖2.

Proof. By (1.2) and (2.1),

(2.2) 〈f(u), u− u∗〉 ≥ α‖u − u∗‖2.

By (1.1), (2.1), (2.2) and Proposition 1.1,

‖v − u∗‖2 = ‖PC(u − τf(u))− u∗‖2 ≤ ‖(u− u∗) − τf(u)‖2

≤ ‖u − u∗‖2 + τ2‖f(u)‖2 − 2τ〈f(u), u− u∗〉
≤ ‖u − u∗‖2 + τ2‖f(u)‖2 − 2τα‖u − u∗‖2

= (1 − 2ατ)‖u − u∗‖2 + τ2‖f(u)‖2.

Lemma 2.1 is proved.

Lemma 2.2. Let M0 > 0, M1 > 0,

(2.3) τ ∈ (0, 1), δ ∈ (0, r̄),

(2.4) f(B(u∗, M0)) ⊂ B(0, M1),

(2.5) u ∈ Cr̄ ∩ B(u∗, M0)

and let

(2.6) v ∈ X, ‖v − PC(u− τf(u))‖ ≤ δ.

Then
‖v − u∗‖2 ≤ δ2 + 2δ(M0 + M1) + (1 − τα)‖u − u∗|2 + τ2M2

1 .

Proof. Put

(2.7) y = PC(u − τf(u)).

By (2.7), (2.5), (2.3), (2.4) and Lemma 2.1,

(2.8) ‖y − u∗‖2 ≤ (1−ατ)‖u− u∗‖2 + τ2‖f(u)‖2 ≤ (1− ατ)‖u− u∗‖2 + τ2M2
1 .

By (2.7), (2.6), (2.8), (2.5) and (2.3),

‖v − u∗‖2 = ‖v − y + y − u∗‖2 ≤ ‖v − y‖2 + ‖y − u∗‖2 + 2‖v − y‖‖y − u∗‖
≤ δ2 + 2δ(‖u − u∗‖ + τM1)

+(1 − τα)‖u − u∗‖2 + τ2M2
1

≤ δ2 + 2δ(M0 + M1) + (1 − ατ)‖u − u∗‖2 + τ2M2
1 .
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Lemma 2.2 is proved.

Lemma 2.3. Let M0 > 1, M1 > 1,

(2.9)
f(B(u∗, M0 + 1)) ⊂ B(0, M1),

0 < τ∗
1 < τ∗

0 , τ∗
0 ≤ 2−1αM−2

1 ,

(2.10) {τk}∞k=0 ⊂ [τ∗
1 , τ∗

0 ],

a positive number δ satisfy

(2.11)
δ < r̄/2, 2δ(M0 + 2 + M1) < 4−1,

2δ(M0 + 2 + M1) < 2−1τ∗
1 α

and let {xk}∞k=0 ⊂ X satisfy

(2.12) x0 ∈ B(u∗, M0)

and for all integers k ≥ 0,

(2.13) ‖xk+1 − PC(xk − τkf(xk))‖ ≤ δ.

Then
‖xk − u∗‖ ≤ M0 + 1 for all integers k ≥ 0.

Proof. By (1.1), (2.9)-(2.13) and Proposition 2.1,

‖x1 − u∗‖ ≤ ‖u∗ − PC(x0 − τ0f(x0))‖+ ‖PC(x0 − τ0f(x0)) − x1‖
≤ ‖u∗ − PC(x0 − τ0f(x0))‖+ δ ≤ ‖u∗ − x0 + τ0f(x0)‖ + δ

≤ ‖u∗ − x0‖ + τ0‖f(x0)‖+ δ ≤ M0 + τ0M1 + δ < M0 + 1.

Thus

(2.14) ‖x1 − u∗‖ ≤ M0 + 1.

By induction we show that

(2.15) ‖xk − u∗‖ ≤ M0 + 1

for all integers k ≥ 1. Clearly, (2.15) holds with k = 1 in view of (2.14).
Assume that k ≥ 1 is an integer and (2.15) holds. By (2.9), (2.10), (2.11), (2.13),

(2.15) and Lemma 2.2 applied with u = xk , v = xk+1, τ = τk,

(2.16) ‖xk+1 − u∗‖2 ≤ δ2 + 2δ(M0 + 1 + M1) + (1 − ατk)‖xk − u∗‖2 + τ2
k M2

1 .
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There are two cases:

(2.17) ‖xk − u∗‖ ≤ 1;

(2.18) ‖xk − u∗‖ > 1.

Assume that (2.17) holds. Then by (2.16), (2.11), (2.17) and (2.10),

‖xk+1 − u∗‖2 ≤ 2δ(M0 + 2 + M1) + 1 + τ2
k M2

1 < 2

and

(2.19) ‖xk+1 − u∗‖ ≤ 2 < M0 + 1.

Assume that (2.18) holds. By (2.16), (2.18), (2.15), (2.10) and (2.11),

‖xk+1 − u∗‖2 ≤ 2δ(M0 + 2 + M1) + τ2
kM2

1 + ‖xk − u∗‖2 − ατk

≤ (M0 + 1)2 + 2δ(M0 + 2 + M1) − τk(α − τkM
2
1 )

≤ (M0 + 1)2 + 2δ(M0 + 2 + M1) − τ∗
1 (α − τ∗

0M2
1 )

≤ (M0 + 1)2 + 2δ(M0 + 2 + M1) − τ∗
1 α2−1 ≤ (M0 + 1)2

and
||xk+1 − u∗|| ≤ M0 + 1

Then the equation above holds in both cases.
This completes the proof of Lemma 2.3.

As it was pointed out by the referee, Lemma 2.3 can also be deduced from inequality
(2.16) and Lemma 7.1.1 of [2].

3. PROOF OF THEOREM 1.1
By Lemma 2.3

(3.1) ‖xi − u∗‖ ≤ M0 + 1 for all integers i ≥ 0.

Assume that an integer i ≥ 1 and that

(3.2) ‖xi − u∗‖ > ε/2.

By Lemma 2.2 applied with u = xi, v = xi+1, τ = τi and (1.7),

‖xi+1 − u∗‖2 ≤ δ2 + 2δ(M0 + M1 + 1) + (1− ατi)‖xi − u∗‖2 + τ2
i M2

1

≤ 2δ(M0 + M1 + 2) + ‖xi − u∗‖2 − τiα‖xi − u∗‖2 + τ2
i M2

1 .
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Combined with (3.2), (1.5), (1.4) and (1.7),

‖xi − u∗‖2 − ‖xi+1 − u∗‖2 ≥ τiα(ε/2)2 − τ2
i M2

1 − 2δ(M0 + M1 + 2)

≥ τi(α(ε/2)2 − τiM
2
1 ) − 2δ(M0 + M1 + 2)

≥ τ∗
1 α(ε/2)22−1 − 2δ(M0 + M1 + 2)

≥ ατ∗
1 (ε/4)2.

Thus we have shown that the following property holds:
(P1) if an integer i ≥ 1 satisfies ‖xi − u∗‖ > ε/2, then

(3.3) ‖xi − u∗‖2 − ‖xi+1 − u∗‖2 ≥ ατ∗
1 (ε/4)2.

Let p ≥ 1 be an integer. We show that there exists an integer i ∈ {p, . . . , p + k0 − 1}
such that

‖xi − u∗‖ ≤ ε/2.

Assume the contrary. Then for each integer i ∈ {p, . . . , p + k0 − 1},

‖xi − u∗‖ > ε/2

and in view of (P1), equation (3.3) holds. By (3.1) and (3.3) which holds for all
integers i ∈ {p, . . . , p + k0 − 1},

(M0 + 1)2 ≥ ‖xp − u∗‖2 − ‖xp+k0 − u∗‖2

=
p+k0−1∑

i=p

[‖xi − u∗‖2 − ‖xi+1 − u∗‖2]

≥ k0ατ∗
1 (ε/4)2

and
k0 ≤ (M0 + 1)2α−1(τ∗

1 )−116ε−2.

This contradicts (1.6).
The contradiction we have reached proves that there is an integer j ∈ {p, . . . , p +

k0 − 1} such that
‖xj − u∗‖ ≤ ε/2.

Thus we have shown that the following property holds:
For each integer p ≥ 1 there is an integer j ∈ {p, . . . , p + k0 − 1} such that

||xj − u∗|| ≤ ε/2.
By the property above there is a natural number j ≤ k0 such that

(3.4) ‖xj − u∗‖ ≤ ε/2.
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We show by induction that for each integer i ≥ j,

(3.5) ‖xi − u∗‖ ≤ ε.

Assume that an integer i ≥ j and that (3.5) holds. There are two cases:

(3.6) ‖xi − u∗‖ ≤ ε/2;

(3.7) ‖xi − u∗‖ > ε/2.

Assume that (3.6) holds. By (1.9), (1.1), Proposition 1.1, (3.6), (1.4), (3.1), (1.3), (1.7)
and (1.4),

(3.8)

‖xi+1 − u∗‖ ≤ ‖xi+1 − PC(xi − τif(xi))‖ + ‖PC(xi − τif(xi))− u∗‖
≤ δ + ‖xi − τif(xi)− u∗‖
≤ δ + ‖xi − u∗‖+ τi‖f(xi)‖ ≤ δ + ε/2 + τ∗

0 M1 ≤ ε.

Assume that (3.7) holds. By (3.7), property (P1) and (3.5),

‖xi+1 − u∗‖ ≤ ‖xi − u∗‖ ≤ ε.

Thus in both cases
‖xi+1 − u∗‖ ≤ ε.

Thus we have shown by induction that

‖xi − u∗‖ ≤ ε

for all integers i ≥ 0. Theorem 1.1 is proved.
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