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THE CHAOS OF THE SOLUTION SEMIGROUP FOR THE QUASI-LINEAR
LASOTA EQUATION

Yu-Hsien Chang and Cheng-Hong Hong

Abstract. This paper is concerned with the solution semigroup of a quasi-linear
Lasota equation. We show the existence and uniqueness of a solution semigroup
for the quasi-linear Lasota equation. We also find a necessary and sufficient
condition for the solution semigroup of the equation to be chaotic.

1. INTRODUCTION

First-order partial differential equations are frequently used as mathematical models
for the population of cells. In this paper we consider the quasi-linear Lasota equation

(1.1)
∂

∂t
u + c (x)

∂

∂x
u = g (x, u) , t ≥ 0, 0 ≤ x ≤ 1,

with an initial condition

(1.1a) u (0, x) = v (x) , 0 ≤ x ≤ 1,

where v is a continuously differentiable function, and c is a continuous function defined
on [0, 1] with

(1.2) c (0) = 0, c (x) > 0 for x ∈ (0, 1], and

∫ 1

0

dx

c(x)
= ∞.

In this model, a cell is characterized by a single, scalar variable x to represent
maturity, which is normalized to have values in [0, 1]. The state of the population at
time t is characterized by a density function u (t, ·), i.e.,∫ x2

x1

u (t, x) dx
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which measures the quantity of cells that have a maturity between x1 and x2 at time
t. The coefficient c (x) is the velocity of cell differentiation and the function g (x, u)
is defined by

g (x, u) = u

(
p (x, u)− d

dx
v (x)

)
where p (x, u) is the proliferation rate (the relative increase of number of cells per unit
time).
The quasi-linear Lasota equation (1.1) has been developed as a model for the

dynamics of a self-reproducing cell population, such as the population of developing
red blood cell (erythrocyte precursors). It has also been applied to a conceptualization
of abnormal blood cell production such as leukemia. Acute leukemia arises when the
normal process of cell maturation is destabilized and immature dysfunctional precursor
blood cells accumulate in the bone marrow. Normal blood cells population contains no
more than 5% immature blast cells in bone marrow and none in the circulating blood.
In leukemia blood cells population 30% − 100% of bone marrow cells are immature
blast cells, and they are also presents in the circulating blood. The distinction between
normal (stable) and abnormal (unstable, hypercyclic or chaotic) production of cells in
the model lies in the initial presence of a sufficient supply of the most immature cells
(cell of maturity 0). If v (x) > 0, then the population has the capacity to stabilize, but
if v (x) = 0, then extreme instability can occur. The following example illustrates these
behaviors. The mathematical model has also been discussed by Mackey and Schwegle
in [5].
Consider the first-order partial differential equation

(1.3)
∂

∂t
u + rx

∂

∂x
u = αu (1 − u) , t ≥ 0, 0 ≤ x ≤ 1

with the initial condition

u (0, x) = ϕ (x) , 0 ≤ x ≤ 1.

In (1.3), rx (with r > 0) is the velocity of aging and α ∈ R is a constant related
to the relative proliferation and death rate of the cells.
When α = 0, the solution of (1.3) is u (t, x) = ϕ

(
xe−t

)
and limt→∞ u (t, x) =

ϕ (0). In general, the solution of (1.3) is given by

(1.4) u (t, x) =
ϕ
(
xe−t

)
eαt

1− ϕ (xe−t) [1 − eαt]
.

As long as ϕ (0) > 0, the solution u (t, x), given by (1.4), is globally stable, and in
fact it has the property

lim
t→∞u (t, x) =

{
0, for α < 0;
1, for α > 0.
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However, if ϕ (0) = 0, the solutions are chaotic. This can be demonstrated by picking
an initial function of the form

ϕ (y) = βynfory ∈ [0, 1], β ∈ (0, 1) .

Then the solution u (t, x) of (1.3) has the explicit form

(1.5) u (t, x) =
βxne(α−nr)t

1 − βxne−nrt + βxne(α−nr)t
.

From this explicit form, we see that

(1.6) lim
t→∞u (t, x) =

⎧⎨
⎩

0, α < nr
βxn

1+βxn , α = nr

1, α > nr

This demonstrates the multistablility that may be exhibited by the chaotic solution (1.5)
of (1.3) when ϕ (0) = 0.
If c (x) = x and g (x, u) = λu ,where λ is the constant in (1.1), then (1.1)-(1.1)a

can be written as

(1.7)
∂

∂t
u + x

∂

∂x
u = λu, t ≥ 0, 0 ≤ x ≤ 1

with the initial condition

(1.8) u (0, x) = v (x) , 0 ≤ x ≤ 1.

This initial value problem is so the called Lasota equation, which has been studied
by many authors (see e.g., [2], [3], [4], [6] and the references therein).
In this paper we consider two special cases of (1.1): In first case, we consider

g (x, u) = f (u) , where f satisfies a local Lipschitz condition. In the second case,
we consider g (x, u) = h (x)u, where h (x) is a bounded continuous function on an
interval I of R. The second case was also considered by Fukiko Takeo in [7] and
[8]. He gave some sufficient conditions for the solution semigroup to be hypercyclic
or chaotic when c (x) = rx and r > 0 is a constant. In this paper, we consider c (x)
as a continuous function that satisfies the condition (1.2), which is not limited to be
linear.

2. PRELIMINARIES

We call a family of continuous linear operators {T (t)}t≥0 ⊂ L (X) in a Banach
space X a C0-semigroup if it satisfies following three conditions:
(1) T (t) (T (s) x) = T (t + s)x for all s, t ≥ 0 and x ∈ X ;
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(2) T (0)x = x for x ∈ X ;
(3) T (t) x → x as t ↓ 0, for every x ∈ X .
A C0-semigroup {T (t)}t≥0 is called hypercyclic if there exists x ∈ X such that

the set {T (t) x : t ≥ 0} is dense in X . The C0-semigroup {T (t)}t≥0 is called chaotic
if {T (t)}t≥0 is hypercyclic and the set of periodic points

Xper = {x ∈ X : there exists a t > 0 such that T (t)x = x}
is dense in X .
We use some notations which were introduced by Batty [1] who considered the

differential equation
∂T

∂t
= λ ◦ T

where λ : R → R is a continuous function. Batty showed that the operator A =
λ (x) D, where D denotes the differentiation operator on C1 (R), generated a C0-
semigroup on C0 (R). We will use this semigroup to consider the solution of (1.1) for
the first case g (x, u) = f (u).
Let

Z (λ) = {x ∈ R : λ (x) = 0} ,

U (λ) = R \ Z (λ) = {x ∈ R : λ (x) 
= 0} ,

and let A+
l (λ) (respectively, A−

l (λ) ) be the set of all points x in Z (λ) ∪ {∞} such
that for some y < x , λ (τ) ≥ 0 (respectively, λ (τ) ≤ 0 ) for every τ in the interval
(y, x), and 1

λ(τ ) is integrable over (y, x). Let A+
r (λ) (respectively, A−

r (λ)) be the set
of all points x in Z (λ) ∪ {−∞} such that for some z > x , λ (τ) ≥ 0 (respectively,
λ (τ) ≤ 0 ) for every τ in the interval in (x, z), and 1

λ(τ ) is integrable over (x, z).
Let

Al (λ) = A+
l (λ) ∪ A−

l (λ) , Ar (λ) = A+
r (λ) ∪ A−

r (λ)

A (λ) = Ar (λ) ∪ Al (λ) .

The following result from [1] (proposition 2.7 p. 218) is known.

Lemma 1. Let λ : R → R be continuous. Then the following are equivalent:
(1) λD | C∞

c (R) generates a C0-semigroup on C0 (R), where C∞
c (R) is the space

of all C∞ functions on R whose support is compact and contained in R,
(2) A+

r (λ) = A−
l (λ) = ∅,

where D denotes the differentiation operator on C1 (R).

For the normalized case, R is replaced by [0, 1]. Let A−
l (λ) consist of x 
= 0 in

Z (λ) such that for some 0 < y < x, λ (τ) ≤ 0 for every τ in the interval (y, x) and
1

λ(τ ) is integrable over (y, x); while A+
r (λ) consist of x 
= 1 in Z (λ) such that for

some 1 > z > x, λ (τ) ≥ 0 for every τ in the interval (x, z) and 1
λ(τ ) is integrable

over (x, z). The equivalent conditions of Lemma 1 are:
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(1) λD generates a C0-semigroup on C [0, 1],
(2) A+

r (λ) = A−
l (λ) = ∅, λ (0) ≥ 0, λ (1) ≤ 0.

3. THE CASE g (x, u) = f (u)

In this section we consider a special case of (1.1) with g (x, u) = f (u), where
f satisfies a local Lipschitz condition. We transform (1.1) into the following Cauchy
problem

(3.1)

⎧⎪⎨
⎪⎩

∂

∂t
u = Au + Fu;

u (0) = u0

where A = −cD with D (A) =
{
f : f ∈ C1 [0, 1]

}
, (cD) f (x) = c (x) f ′ (x) and

Fu = f (u).
To solve problem (3.1), we first consider the Cauchy problem⎧⎨

⎩
∂

∂t
u = Au;

u (0) = u0.

Let c (x) = −λ (x). From (1.2), we haveZ (λ) = {0} and A+
r (−c) = {z ∈ (0, 1) ,

−c (z) ≥ 0} . Since c (z) ≥ 0 for 0 < z < 1 we see that A+
r (−c) = ∅. On the other

hand, A−
l (−c) = {y : y < 0,−c (y) ≥ 0}. Since c is only defined on [0, 1], this

implies A−
l (−c) = ∅. Now we have that λ (0) = −c (0) = 0, λ (1) = −c (1) ≤ 0

and A+
r (−c) = A−

l (−c) = ∅. This implies that c satisfied the condition (2) of Lemma
1 and A = − (cD) generates a C0-semigroup {T (t)}t≥0 on C [0, 1].
To represent the C0-semigroup {T (t)}t≥0 in explicit form we define a function

q (x) by

(3.2) q (x) = −
∫ 1

x

ds

c (s)
forall 0 < x ≤ 1.

Since c (x) > 0 we see that for any 0 < x1 < x2 < 1,

−
∫ 1

x1

ds

c (s)
< −

∫ 1

x2

ds

c (s)
.

Therefore, the function q is strictly increasing on the interval (0, 1). It follows
that q is an one-to-one mapping, and hence q−1 exists on [0,∞). From the definition
of q (x), it is obvious that q′ (x) = 1

c(x)
.
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Define ht : [0, 1] → [0, 1] in the following way

ht(0) = 0, if c (x) = 0 at x = 0,

ht(x) = q−1 (q (x) − t) , if c (x) 
= 0 for 0 < x ≤ 1, t ≥ 0.

We then defined T (t) on C [0, 1] by

(3.3) (T (t) f) (x) = f (ht(x)) .

Since
∫ 1
0

ds
c(s)

= ∞, this implies that ht is defined for all t ∈ [0,∞), and hence T (t)

is also defined on the interval [0,∞). Notice that if limx0→0

(∫ 1
x0

ds
c(s)

)
= tmax < ∞,

then ht can only be defined on [0, tmax], and hence T (t) can only be defined on
[0, tmax]. In this case we need not to discuse the chaos of the solution semigroup.
According to this definition , we have

∂

∂t
(T (t) f) (x) =

∂

∂t
f (ht(x))

= f ′ (ht(x))
(

∂

∂t
(ht(x))

)
= f ′ (ht(x))

−1
q′ (ht(x))

= −c (ht(x)) f ′ (ht(x)) = λ (ht(x)) f ′ (ht(x))

= −c (D) (T (t) f) (x) , forall t > 0 and f in C1 [0, 1] .

and

∂

∂x
(T (t) f) (x) =

∂

∂x
f (ht(x))

= f ′ (ht(x))
(

∂

∂x
(ht(x))

)
= f ′ (ht (x))

q′ (x)
q′ (ht(x))

.

This shows that the operator A = − (cD) generates a C0-semigroup {T (t)}t≥0 on
C [0, 1], and (T (t) f) (x) = u (t, x) is the solution of the initial value problem:⎧⎨

⎩
∂

∂t
u + c (x)

∂

∂x
u = 0;

u (0, x) = u0 (x) .

By the general perturbation theorem, (3.1) has a unique mild solution u (t, x) that
satisfies

u (t, x) = T (t) u0 +
∫ t

0
T (t − s) f (u (s, x)) ds.
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4. THE CASE g (x, u) = h (x)u

In [7] and [8], Takeo considered the following initial value problem:

(4.1)

⎧⎨
⎩

∂

∂t
u + c (x)

∂

∂x
u = h (x) u;

u (0, x) = f (x) .

where c (x) = r or c (x) = rx with r a positive constant. Here we consider c (x)
satisfying (1.2) and I = [0, 1].
The following lemma is one of Takeo’s results which will be used later [8, Theorem

2.1].

Lemma 2. Let X be the space C0 ([0,∞), C) of all complex-valued functions
on [0,∞) satisfying limx→∞ f (x) = 0 with the norm ‖f‖∞ = supx∈[0,∞) |f (x)|.
Consider the initial value problem

(4.2)

⎧⎨
⎩

∂

∂t
u − ∂

∂x
u = h (x) u, x ∈ [0,∞), t > 0;

u (0, x) = f (x) x ∈ [0,∞).

where h ∈ C ([0,∞), C) is bounded and f ∈ X .
Then the solution semigroup {Q (t)}t≥0,

(Q (t) f) (x) = exp
(∫ x+t

x h (s) ds
)

f (x + t)

is a strongly continuous semigroup on X . Moreover, (1) {Q (t)}t≥0 is hypercyclic
if only if lim supx→∞

∫ x
0 �h (s) ds = ∞ , where �h is the real part of h; (2) if

X = C0 ([0,∞), C), then {Q (t)}t≥0 is chaotic if and only if
∫ x
0 �h (s) ds = ∞.

By renaming y = x + t, the differential equation in (4.2) becomes

d

dt
u (t, y − t) = ut − ux = h (y − t) u

with the initial data f . Then we have the solution semigroup

(Q (t) f) (x) = exp
(∫ x+t

x
h (s) ds

)
f (x + t) .

Suppose u (t, y) is the solution of (4.2), where y ∈ {−q (x) : 0 < x ≤ 1} = [0,∞),
and y → ∞ as x → 0. By the assumption (1.2), the range of −q is [0,∞).
Let y = −q(x),

v (t, x) = u (t, y) for 0 < x ≤ 1, and

v (t, 0) = lim
z→0

v (t, z) = lim
z→0

u (t,−q (z)) = lim
y→∞ u (t, y) = 0.
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where q is defined by (3.2).
Then we get

∂

∂t
u =

∂

∂t
v

and
∂

∂y
u =

∂

∂x
v · ∂x

∂y
= (−c (x)) · ∂

∂x
v.

This implies that v is the solution of the initial value problem

(4.3)

⎧⎨
⎩

∂

∂t
v + c (x)

∂

∂x
v = k (x) v, x ∈ [0, 1], t > 0;

u (0, x) = f (x) x ∈ [0, 1].

where c (x) satisfied (1.2) and k (x) = h (−q (x)).
The unique solution semigroup {S (t)}t≥0 of (4.3) is given by

(4.4) (S (t) v) (x) =
∞∑

n=0

Tn (t) v (x) for v (x) ∈ C[0, 1],

where Tn (·) is defined recursively as

T0 (t) v (x) = T (t) v (x) = v (ht(x))

where T (t) and ht(x) are defined by (3.3), and

Tn+1 (t) =
∫ t
0 T0 (t − s) BTn (s) ds,

where B is a bounded operator defined by

Bv (x) = k (x) v (x) .

By induction and integration by part we get

(4.5)
Tn (t) v (x) =

1
n!

(∫ t

0
T (t − s) k (x) ds

)n

T (t) v (x)

=
1
n!

(∫ t

0
k (ht−s(x)) ds

)n

v (ht(x))
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In fact, if (4.5) is true for n, then

Tn+1 (t) v (x)

=
∫ t

0
T0 (t − s)

(
k (x)

(
1
n!

∫ s

0
k (hs−τ (x)) dτ

)n

v (ht(x))
)

ds

= v (ht(x))
∫ t

0
k (ht−s(x))

1
n!

(∫ s

0
k (ht−τ (x))dτ

)n

ds

= v (ht(x)) [
(∫ s

0

k (ht−τ (x)) dτ

)
1
n!

(∫ s

0

k (ht−τ (x)) dτ

)n

|s=t
s=0

−
∫ t

0

(∫ s

0
k (ht−τx) dτ

)
1

(n − 1)!

(∫ s

0
k (ht−τx) dτ

)n−1

k (ht−sx) ds]

= v (ht(x)) [
1
n!

(∫ t

0

k (ht−τ (x)) dτ

)n+1

−
∫ t

0

1
(n − 1)!

(∫ s

0
k (ht−τ (x)) dτ

)n

k (ht−s(x)) ds]

=
1
n!

(∫ t

0

k (ht−τ (x)) dτ

)n+1

v (ht(x))− nTn+1 (t) v (x)

This implies that

Tn+1 (t) v (x) =
1

(n + 1)!

(∫ t

0
k (ht−τ (x))dτ

)n+1

v (ht(x)) ,

and hence (4.5) is also true for n + 1. Thus (4.5) holds for all integer n. From (4.4)
and (4.5), we have

(S (t) v) (x) =
∞∑

n=0

Tn (t) v (x) = exp
(∫ t

0
k (ht−s(x))ds

)
v (ht(x))

= exp
(∫ t

0
T (t − s) k (x) ds

)
T (t) v (x) .

To apply Lemma 2, we need to prove the equivalence of S (t) and Q (t). We rewrite
S (t) and Q (t) as follows:

(S (t) v) (x) = exp
(∫ t

0

k (ht−s(x))ds

)
v (ht(x))

= exp

(∫ x

ht(x)

k (r)
c (r)

dr

)
v (ht(x)) =

η (x)
η (ht(x))

v (ht(x))

where η (x) = exp
(
− ∫ 1

x
k(r)
c(r)

dr
)
, and

(Q (t) f) (x) = exp
(∫ x+t

x
h (s) ds

)
f (x + t) =

ρ (x)
ρ (x + t)

f (x + t)
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with ρ (x) = exp
(− ∫ x

0 h (s) ds
)
. From k (x) = h (−q (x)) and by a change of

variable, we get
η (x) = ρ (−q (x))

and η (ht(x)) = ρ (−q (x) + t). Define a linear map Ψ from C0 ([0,∞), C) to
C0 ([0, 1], C) by

Ψf (y) = f
(
q−1 (−y)

)
.

From the above definition Ψ is 1-1 and onto. This implies the existence of Ψ−1 which
is given by

Ψ−1f (x) = f (−q (x)) .

Since y = −q (x), we have

Ψ ◦ Q (t) ◦ Ψ−1 (f (x)) = Ψ (Q (t) f (y)) = Ψ (u (t, y)) = Ψ
(

ρ (y)
ρ (y + t)

f (y + t)
)

=
η (x)

η (ht(x))
Ψ (f (x + t)) =

η (x)
η (ht(x))

f
(
q−1 (−y − t)

)
=

η (x)
η (ht(x))

f (ht(x)) = S (t) f (x) = v (t, x) = u (t, y)

for every f ∈ C0 ([0, 1], C). This shows thatΨ◦Q (t)◦Ψ−1 = S (t) and the equivalence
of S (t) and Q (t). According to the above result and Lemma 2 we obtain a necessary
and sufficient condition for {S (t)}t≥0 to be chaotic.

Theorem 3. Let X be the space C0 ([0, 1], C) = {f ∈ C ([0, 1], C) | f (0) = 0}
endowed with the supremum norm. Consider the initial value problem:⎧⎨

⎩
∂

∂t
u + c (x)

∂

∂x
u = k (x)u, x ∈ [0, 1], t > 0;

u (0, x) = f (x) x ∈ [0, 1].

where c (x) satisfies (1.2), k ∈ C ([0,∞), C) is bounded and f ∈ X .
Then the solution semigroup {S (t)}t≥0 is given by

(S (t) f) (x) = exp
(∫ t

0
T (t − s) k (x) ds

)
T (t) f (x) ,

where {T (t)}t≥0 is a semigroup defined by (3.3). Moreover, {S (t)}t≥0 is chaotic if
and only if

lim
x→0

∫ 1

x

�k (s)
c (s)

ds = ∞.

Therefore, if �k (0) > 0 and c (x) = O (xα), α ≥ 1 as x → 0, then {S (t)}t≥0 is
chaotic.
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Proof. By using k (x) = h (−q (x)), the initial value problem (4.3) can be trans-
form to the initial value problem (4.2). Since∫ ∞

0
h (s) ds = lim

x→0

∫ 1

x

�h (−q (τ))
c (τ)

dτ = lim
x→0

∫ 1

x

�k (s)
c (s)

ds,

we see by applying Lemma 2 that {S (t)}t≥0 is chaotic if and only if limx→0

∫ 1
x

�k(s)
c(s) ds

= ∞. Moreover, if �k (0) > 0, then {S (t)}t≥0 is chaotic since c (x) = O (xα), α ≥ 1
as x → 0.
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