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ON PERTURBATION OF LOCAL INTEGRATED COSINE FUNCTIONS

Chung-Cheng Kuo

Abstract. In this paper, we apply the contraction mapping theorem to obtain
some bounded and unbounded perturbation theorems concerning local integrated
cosine functions. Some growth conditions of perturbations of local integrated
cosine functions are also established.

1. INTRODUCTION

Let X be a Banach space with norm ‖ · ‖, and L(X) denote the set of all bounded
linear operators on X . For each α > 0 and 0 < T0 ≤ ∞, a family C(·)(= {C(t)|0 ≤
t < T0}) in L(X) is called a local α-times integrated cosine function on X if it is
strongly continuous and satisfies

(1.1)

2C(t)C(s)x =
1

Γ(α)

{
[
∫ t+s

0
−

∫ t

0
−

∫ s

0
](t + s − r)α−1C(r)xdr

+
∫ t

|t−s|
(s − t + r)α−1C(r)xdr

+
∫ s

|t−s|
(t − s + r)α−1C(r)xdr

+
∫ |t−s|

0
(|t − s| + r)α−1C(r)xdr

}
for all x ∈ X and 0 ≤ t, s ≤ t + s < T0 (see [8-10, 12, 21]). Here Γ(·) denotes the
Gamma function. Moreover, we say that C(·) is
(1.2) locally Lipschitz continuous if for each 0 < t0 < T0 there exists a Kt0 > 0 such

that ‖C(t + h) − C(t)‖ ≤ Kt0h for all 0 ≤ t, h ≤ t + h ≤ t0;
(1.3) exponentially bounded if there exist K, ω ≥ 0 such that ‖C(t)‖ ≤ Keωt for

all t ≥ 0;
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(1.4) exponentially Lipschitz continuous if there exist K, ω ≥ 0 such that ‖C(t +
h) − C(t)‖ ≤ Kheω(t+h) for all t, h ≥ 0;

(1.5) nondegenerate if x = 0 whenever C(t)x = 0 for all 0 ≤ t < T0. In this case,
the (integral) generator of C(·) is a linear operator A in X defined by D(A) =
{x|x, yx ∈ X and C(t)x−jα(t)x =

∫ t
0

∫ s
0 C(r)yxdrds for all 0 ≤ t < T0} and

Ax = yx for each x ∈ D(A). Here jβ(t) = tβ

Γ(β+1) for β > −1 and t > 0.

In general,a local α-times integrated cosine function is also called an α-times inte-
grated cosine function if T0 = ∞ (see [8,19,21]), an α-times integrated cosine function
may not be exponentially bounded (see [8]) and the generator of a nondegenerate local
α-times integrated cosine function may not be densely defined (see [2]). The formation
of a local α-times integrated cosine function is first constructed by the author in [8] for
which α > 0 is arbitrary. Several examples concerning α-times integrated cosine func-
tions with densely defined generators are given as in [6], and in [2,22] when integrated
cosine functions are exponentially bounded. Perturbation of local α-times integrated
cosine functions is one of the subjects in the theory of cosine function, which has
been extensively studied by many authors when considered integrated cosine functions
are exponentially bounded (see [1,2])with α = 0 (see [1,3,4,7,16]) or α ∈ N (see
[1,2,13,15-17,19,20]). The purpose of this paper is to establish several bounded and
unbounded perturbation theorems concerning local α-times integarted cosine functions
which generalize the classical perturbation result for cosine functions and may be done
by using some results as in [8,10] about the uniqueness of strong solutions of the
following second order abstract Cauchy problem:

ACP (A, f, x, y)

{
u′′(t) = Au(t) + f(t) for 0 < t < T0,

u(0) = x, u′(0) = y,

where x, y ∈ X are given, A : D(A) ⊂ X → X is a closed linear operator with domain
D(A) and range R(A), and f is an X-valued function defined on (0, T0). In section
2, we first show that if A generates a nondegenerate local α-times integrated cosine
function C(·) on X and B is a bounded linear operator from D(A) into X such that
Bx ∈ D(Al) for all x ∈ D(A), then A + B generates a nondegenerate local α-times
integrated cosine function T (·) on X satisfying T (·)x = C(·)x + DαS ∗ BT (·)x on
[0, T0) for all x ∈ X when{

R(B) ⊂ D(Al) if [α] is even or [α] is odd with α = [α]

R(B) ⊂ D(Al+1) if [α] is odd with [α] < α < [α] + 1

(see Theorem 2.11 below). Here S(·) = j0 ∗C(·), l = [α]
2 if [α] is even, and l = [α]−1

2
if [α] is odd. Moreover, T (·) is exponentially bounded (resp., norm continuous or
exponentially Lipschitz continuous) if C(·) is. We then show that T (·) is also locally
Lipschitz continuous if C(·) is and
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{
R(B) ⊂ D(Al−1) if [α] is even with α = [α]

R(B) ⊂ D(Al) if [α] is odd or [α] is even with [α] < α < [α] + 1

(see Theorem 2.13 below). In section 3, we first show that if B is a bounded linear
operator from [D(A)] into X such that A + B is a closed linear operator from D(A)
intoX , then A+B generates a nondegenerate local α-times integrated cosine function
T (·) on X satisfying T (·)x = C(·)x+Dα+2S ∗B

˜̃
T (·)x on [0, T0) for all x ∈ X when{

R(B) ⊂ D(Al+1) for all x ∈ D(A) if [α] is even or [α] is odd with α = [α]

R(B) ⊂ D(Al+2) for all x ∈ D(A) if [α] is odd with [α] < α < [α] + 1

(see Theorem 3.1 below). Here ˜̃
T (·) = j1 ∗ T (·). Moreover, T (·) is exponentially

bounded (resp., norm continuous or exponentially Lipschitz continuous) if C(·) is. We
then show that T (·) is also locally Lipschitz continuous if C(·) is and{

R(B) ⊂ D(Al) if [α] is even with α = [α]

R(B) ⊂ D(Al+1) if [α] is odd or [α] is even with [α] < α < [α] + 1

(see Theorem 3.2 below). We also show that if B is a bounded linear operator from
[D(A)] intoX such that AB = BA on D(A2), then A+B generates a nondegenerate
local α-times integrated cosine function T (·) on X satisfying T (·)x = C(·)x + DαS ∗
(λ − A)B(λ − A)−1T (·)x on [0, T0) for all x ∈ X when{

R(B) ⊂ D(Al+1) if [α] is even or [α] is odd with α = [α]

R(B) ⊂ D(Al+2) if [α] is odd with [α] < α < [α] + 1

(see Corollary 3.5 below). Here λ ∈ ρ(A) is fixed. Moreover, T (·) is exponentially
bounded (resp., norm continuous or exponentially Lipschitz continuous) if C(·) is. We
then show that T (·) is also locally Lipschitz continuous if C(·) is and{

R(B) ⊂ D(Al) if [α] is even with α = [α]

R(B) ⊂ D(Al+1) if [α] is odd or [α] is even with [α] < α < [α] + 1

(see Corollary 3.6 below). An illustrative example concerning these theorems is also
presented in the final part of this paper.

2. BOUNDED PERTURBATION THEOREMS

In this section, we first note some basic properties of a nondegenerate local α-times
integrated cosine function and known results about connections between the generator
of a local α-times integrated cosine functions for α > 0.

Proposition 2.1. (see [8, 10, 14]). Let A be the generator of a nondegenerate
local α-times integrated cosine function C(·) on X . Then



1616 Chung-Cheng Kuo

(2.1) C(0) = 0(the zero operator on X);

(2.2) A is closed and ρ(A)(the resolvent set of A) is nonempty;

(2.3) C(t)x ∈ D(A) and C(t)Ax = AC(t)x for x ∈ D(A) and 0 ≤ t < T0;

(2.4)
∫ t
0

∫ s
0 C(r)xdrds ∈ D(A) and A

∫ t
0

∫ s
0 C(r)xdrds = C(t)x−jα(t)x for x ∈ X

and 0 ≤ t < T0;

(2.5) R(C(t)) ⊂ D(A) for 0 ≤ t < T0;

(2.6) for each β > α, jβ−α−1 ∗ C(·) is a nondegenerate local β-times integrated
cosine function on X with generator A.

In the following, we shall always assume that α > 0, l = [α]
2 if [α] is even, and

l = [α]−1
2 if [α] is odd.

Definition 2.2. Let k = [α] + 1, and I be a subinterval of [0, T0) containing {0}.
For each v : I → X , we write v ∈ Cα(I, X) if v = v(0) + jα−k ∗ u on I for some
u ∈ Ck−1(I, X). In this case,we say that v is α-times continuously differetiable on I
and the (k−1)th order derivative u(k−1) of u on I is called the αth order derivative of
v on I and denoted by Dαv(on I) or Dαv : I → X . Here Ck(I, X) denotes the set of
all k-times continuously differetiable functions from I into X , C0(I, X) = C(I, X)
the set of all continuous functions from I into X , and f ∗ g(t) =

∫ t
0 f(t − s)g(s)ds

for each function f from I into C(or into L(X)) and each function g from I

Remark 2.3. Let k = [α]+1, and v ∈ Cα(I, X) for some subinterval I of [0, T0)
containing {0}. Assume that v(0) = 0. Then jk−α−1 ∗v ∈ Ck(I, X), v ∈ Cα−i(I, X)
and Dα−iv = (jk−α−1 ∗ v)(k−i) on I for all integers 0 ≤ i ≤ k − 1. In particular,
jα(·) ∈ Cα([0, T0), C) and Dα−ijα(·) = Dk−ijk(·) = ji(·) on [0, T0) for all integers
0 ≤ i ≤ k − 1.

Definition 2.4. Let A : D(A) ⊂ X → X be a closed linear operator in X with
domainD(A) and range R(A). A function u : [0, T0) → X is called a (strong) solution
of ACP (A, f, x, y) if u ∈ C2((0, T0), X)∩ C1([0, T0), X)∩ C((0, T0), [D(A)]) and
satisfies ACP (A, f, x, y). Here [D(A)] denotes the Banach space D(A) with norm
| · | defined by |x| = ‖x‖ + ‖Ax‖ for x ∈ D(A).

Remark 2.5. u ∈ C([0, T0), [D(A)]), if f ∈ C([0, T0), X) and u is a (strong)
solution of ACP (A, f, x, y) in C2([0, T0), X).

Theorem 2.6 (see [8, 10]). A generates a nondegenerate local α-times integrated
C-cosine function C(·) on X if and only if for each x ∈ X , ACP (A, jα(·)x, 0, 0) has
a unique (strong) solution u(·, x) in C2([0, T0), X). In this case, we have u(·, x) =
j1 ∗ C(·)x for all x ∈ X .
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Proposition 2.7. (see [10]). Let A be the generator of a nondegenerate local
α-times integrated cosine function C(·) on X , x, y ∈ X and f ∈ L1

loc([0, T0), X) ∩
C((0, T0), X). Then ACP (A, Cf, Cx, Cy) has a (strong) solution u in C2([0, T0), X)
if and only if v(·) = C(·)x+S(·)y+S∗f(·) ∈ Cα+2([0, T0), X). In this case, u = Dαv
on [0, T0). Here S(·) = j0 ∗ C(·).
Lemma 2.8. (see [11]). Let V (·) and Z(·) be strongly continuous families of

bounded linear operators from X into Y for some Banach space Y , and let W (·)
be a strongly continuous family in L(Y ) such that Z(·)x = V (·)x + W ∗ Z(·)x on
[0, T0) for all x ∈ X . Then Z(·) is exponentially bounded (resp., norm continuous or
exponentially Lipschitz continuous) if V (·) and W (·) both are.
Lemma 2.9. (see [11]). Let V (·) be a locally Lipschitz continuous family of

bounded linear operators from X into Y for some Banach space Y , and letW (·) be a
locally Lipschitz continuoous family in L(Y ) with W (0) = 0 on Y . Then there exists
a unique locally Lipschitz continuous family Z(·) of bounded linear operators from X
into Y such that

Z(t)x = V (t)x +
d

dt
W ∗ Z(t)x

for all x ∈ X and 0 ≤ t < T0.

Combining (2.3) with (2.4) we can obtain the next result by induction.

Remark 2.10. Let A be the generator of a nondegenerate local α-times integrated
cosine function C(·) on X . Then for each m ∈ N and x ∈ D(Am),

(2.7) C(·)x = j2(m−1) ∗ S(·)Amx +
m−1∑
i=0

jα+2i(·)Aix on [0, T0).

The following two theorems are the main results of this section concerning bounded
perturbation of local α-times integrated cosine functions on X . The first one has been
obtained by Zheng in [20] when α ∈ N and B is a bounded linear operator on X
except for the growth condition of T (·).
Theorem 2.11. Let A be the generator of a nondegenerate local α-times integrated

cosine function C(·) on X . Assume that B is a bounded linear operator from D(A)
into X . Then A + B generates a nondegenerate local α-times integrated cosine
function T (·) on X satisfying

(2.8) T (·)x = C(·)x + DαS ∗BT (·)x on [0, T0)

for all x ∈ X when

(2.9)

{
R(B) ⊂ D(Al) if [α] is even or [α] is odd with α = [α]

R(B) ⊂ D(Al+1) if [α] is odd with [α] < α < [α] + 1.
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Moreover, T (·) is exponentially bounded (resp., norm continuous or exponentially
Lipschitz continuous) if C(·) is.
Proof. Clearly, A + B : D(A) ⊂ X → X is closed. Now if α ∈ N, 0 < t0 < T0

and f ∈ C([0, t0], D(A)) are fixed. By (2.7), (2.9) and Remark 2.3, we have S ∗Bf ∈
Cα([0, t0], D(A)) and

(2.10)

DαS ∗ Bf(t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C ∗ Bf(t) if α = 1

S ∗ AlBf(t) +
l−1∑
i=0

j2i+1 ∗ AiBf(t) if α is even and α ≥ 2

C ∗ AlBf(t) +
l−1∑
i=0

j2i+1 ∗ AiBf(t) if α is odd and α ≥ 3

for all 0 ≤ t ≤ t0. Next if [α] < α < [α] + 1. We set C̃(·) = j[α]−α ∗ C(·) and
S̃(·) = j0 ∗ C̃(·), then C̃(·) is ([α] + 1)-times integrated C-cosine function on X with
generator A. Just as in the case α ∈ N, we also have DαS ∗ Bf ∈ Cα([0, t0], D(A))
and

(2.11)

DαS ∗Bf(t)

=D[α]+1S̃ ∗ Bf(t)

=D[α]C̃ ∗Bf(t)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C̃ ∗ AlBf(t) +

l−1∑
i=0

j2i+1 ∗ AiBf(t) if [α] is even and [α] ≥ 2

S̃ ∗Al+1Bf(t) +
l∑

i=0

j2i+1 ∗ AiBf(t) if [α] is odd

on [0, t0] for all 0 < t0 < T0 and f ∈ C([0, t0], D(A)). We shall show that for each
x ∈ X there exists a function wx in C([0, T0), D(A)) such that wx(·) = C(·)x +
DαS ∗ Bwx(·) on [0, T0). Indeed, fix x ∈ X and 0 < t0 < T0 we define U :
C([0, t0], D(A)) → C([0, t0], D(A)) by U(f)(·) = C(·)x + Dα(S ∗ Bf)(·) on [0, t0]
for all f ∈ C([0, t0], D(A)). From (2.1), (2.5) and the assumption Bx ∈ D(Aλ) for
all x ∈ D(A), we have that U is well-defined and AiB is a bounded linear operator
from D(A) into X for all integers 0 ≤ i ≤ λ. Here λ = l if [α] is odd or [α] is even
with [α] < α < [α] + 1, and λ = l− 1 if [α] is even with α = [α]. We first claim that

(2.12) ‖DαS ∗ Bf(t)‖ ≤ Mt0

∫ t

0
‖f(s)‖ds

for all f ∈ C([0, t0], D(A)) and 0 ≤ t ≤ t0, where
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Mt0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
0≤r≤t0

‖S(r)‖‖AlB‖ +
l−1∑
i=0

j2i+1(t0)‖AiB‖ if 2 ≤ α ∈ N is even

sup
0≤r≤t0

‖C(r)‖‖B‖ if α = 1

sup
0≤r≤t0

‖C(r)‖‖AlB‖ +
l−1∑
i=0

j2i+1(t0)‖AiB‖ if 2 ≤ α ∈ N is odd

sup
0≤r≤t0

‖C̃(r)‖‖B‖ if 0 < α < 1

sup
0≤r≤t0

‖C̃(r)‖‖AlB‖ +
l−1∑
i=0

j2i+1(t0)‖AiB‖ if [α] < α < [α] + 1

and [α] is even

sup
0≤r≤t0

‖S̃(r)‖‖Al+1B‖ +
l∑

i=0

j2i+1(t0)‖AiB‖ if [α] < α < [α] + 1

and [α] is odd.

To this end, we consider only the case α ∈ N, for the case [α] < α < [α] + 1 can be
treated similarly. Indeed, if α ∈ N is even and f ∈ C([0, t0], D(A)), then

(2.13)

‖S ∗ AlBf(t)‖ ≤
∫ t

0
‖S(t− s)AlBf(s)‖ds

≤
∫ t

0
sup

0≤r≤t0

‖S(r)‖‖AlBf(s)‖ds

= sup
0≤r≤t0

‖S(r)‖‖AlB‖
∫ t

0
‖f(s)‖ds

and

(2.14)

‖j2i+1 ∗ AiBf(t)‖ ≤
∫ t

0
‖j2i+1(t − s)AiBf(s)‖ds

≤
∫ t

0
j2i+1(t0)‖AiB‖‖f(s)‖ds

=j2i+1(t0)‖AiB‖
∫ t

0
‖f(s)‖ds

for all 0 ≤ t ≤ t0 and integers 0 ≤ i ≤ l − 1. By (2.10), (2.13) and (2.14), we have

‖DαS ∗ Bf(t)‖ ≤ ‖S ∗ AlBf(t)‖ +
l−1∑
i=0

‖j2i+1 ∗ AiBf(t)‖ ≤ Mt0

∫ t

0
‖f(s)‖ds

for all 0 ≤ t ≤ t0, that is, (2.12) holds when α ∈ N is even. Similarly, we can
show that (2.12) also holds when α ∈ N is odd. Having shown that (2.12) holds. By
induction, we also have
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(2.15)

‖Unf(t) − Ung(t)‖ =‖U(Un−1f)(t) − U(Un−1g)(t)‖
=‖DαS ∗ B(Un−1f − Un−1g)(t)‖

≤Mn
t0

∫ t

0
jn−1(t − s)‖f(s) − g(s)‖ds

≤Mn
t0jn(t)‖f − g‖

≤Mn
t0jn(t0)‖f − g‖

for all f, g ∈ C([0, t0], D(A)), 0 ≤ t ≤ t0 and n ∈ N, where ‖f−g‖ = max
0≤s≤t0

‖f(s)−
g(s)‖. Since Mn

t0jn(t0) → 0 as n → ∞, we obtain from the contraction mapping the-
orem that there exists a unique function wx,t0 in C([0, t0], D(A)) such that wx,t0(·) =
C(·)x + DαS ∗ Bwx,t0(·) on [0, t0]. In this case, we set wx(t) = wx,t0(t) for all
0 ≤ t ≤ t0 < T0, thenwx(·) is a unique function in C([0, T0), D(A)) such that wx(·) =
C(·)x+DαS∗Bwx(·) on [0, T0). Since S∗jα(·)x+S∗j1∗Bwx(·) ∈ Cα+2([0, T0), X)
and Dα(S ∗jα(·)x+S ∗j1 ∗Bwx(·)) = j0 ∗S(·)x+j1 ∗DαS ∗Bwx(·) = j1 ∗wx(·) on
[0, T0), we obtain from Proposition 2.7 that u = j1 ∗wx is the unique (strong) solution
of ACP (A, jα(·)x + j1 ∗ Bwx(·), 0, 0) in C2([0, T0), X), and so u = j1 ∗ wx is the
unique function in C2([0, T0), X) such that u′′(·)(= Au + jα(·)x + j1 ∗ Bwx(·) =
Au + jα(·)x + j1 ∗ Bwx(·) = Au(·) + jα(·)x + Bu(·)) = (A + B)u(·) + jα(·)x
on [0, T0). Hence u = j1 ∗ wx is a unique solution of ACP (A + B, jα(·)x, 0, 0)
in C2([0, T0), X), which together with Theorem 2.6 implies that A + B generates a
nondegenerate local α-times integrated cosine function T (·) on X satisfying (2.8). We
conclude from (2.10), (2.11) and Lemma 2.8 that T (·) is also exponentially bounded
(resp., exponentially Lipschitz continuous) if C(·) is, by setting Y = D(A) = C(·),
Z(·) = T (·) and

(2.16) W (·)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(·)AlB +
l−1∑
i=0

j2i+1(·)AiB if α ∈ N is even

C(·)B if α = 1

C(·)AlB +
l−1∑
i=0

j2i+1(·)AiB if α ∈ N is odd

C̃(·)B if 0 < α < 1

C̃(·)AlB +
l−1∑
i=0

j2i+1(·)AiB if [α]<α< [α]+1 and [α] is even

S̃(·)Al+1B+
l∑

i=0

j2i+1(·)AiB if [α]<α< [α]+1 and [α] is odd

in Lemma 2.8.
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Remark 2.12. (see [11]). Let W (·) be a locally Lipschitz continuous family
in L(Y ) with W (0) = 0 on Y for some Banach space Y and g ∈ L1

loc([0, T0), Y ).
Then W ∗ g ∈ C1([0, T0), Y ) and for each 0 < t0 < T0, we have ‖(W ∗ g)′(t)‖ ≤
Kt0

∫ t
0 ‖g(s)‖ds for all 0 ≤ t ≤ t0. Here Kt0 is given as in (1.2) with C(·) is replaced

by W (·). Moreover, (W ∗ g)′(·) is locally Lipschitz continuous if g is.

Theorem 2.13. Let A be the generator of a locally Lipschitz continuous nonde-
generate local α-times integrated cosine function C(·) on X for some α ≥ 1. Assume
that B is a bounded linear operator from D(A) into X . Then A + B generates a
locally Lipschitz continuous nondegenerate local α-times integrated cosine function
T (·) on X satisfying (2.8) when either α = 1, or α > 1 and

(2.17)

{
R(B) ⊂ D(Al−1) if [α] is even and α = [α] ∈ N

R(B) ⊂ D(Al) if [α] is odd or [α] is even with [α] < α < [α] + 1.

Just as in the proof of Theorem 2.11, we shall first show that that A+B generates
a nondegenerate local α-times integrated cosine function T (·) on X satisfying (2.8)
and need only to show that for each 0 < t0 < T0, we have ‖DαS ∗ Bf(t)‖ ≤
Nt0

∫ t
0 ‖f(s)‖ds for all f ∈ C([0, t0], D(A)) and 0 ≤ t ≤ t0 when α > 1. Here

Nt0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kt0‖B‖ if α = 2

Kt0‖Al−1B‖ +
l−2∑
i=0

j2i+1(t0)‖AiB‖ if α ∈ N is even and α ≥ 4

sup
0≤r≤t0

‖C(r)‖‖AlB‖ +
l−1∑
i=0

j2i+1(t0)‖AiB‖ if α ∈ N is odd and α ≥ 3

sup
0≤r≤t0

‖C̃(r)‖‖AlB‖ +
l−1∑
i=0

j2i+1(t0)‖AiB‖ if [α] < α < [α] + 1

and [α] is even
Kt0j2−α(t0)‖B‖ if 1 < α < 2

Kt0j[α]+1−α(t0)‖AlB‖ +
l−1∑
i=0

j2i+1(t0)‖AiB‖ if [α] < α < [α] + 1

and [α] is odd

and Kt0 is given as in (1.2). Indeed, if 0 < t0 < T0 is given. The local Lipschitz
continuity of C(·) implies that C̃(·) is locally Lipschitz continuous with a Lipschitz
constant Kt0j[α]+1−α(t0) on [0, t0]. Combining this, Remarks 2.10 and 2.12 with
(2.17), we have S ∗ Bf ∈ Cα([0, t0], D(A)) and
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(2.18)

DαS ∗Bf(t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
C∗Bf(t) if α = 2

d

dt
C∗Al−1Bf(t)+

l−2∑
i=0

j2i+1∗AiBf(t) if α ∈ N is even and α≥4

C ∗ AlBf(t)+
l−1∑
i=0

j2i+1∗AiBf(t) if α ∈ N is odd and α≥3

C̃ ∗ AlBf(t)+
l−1∑
i=0

j2i+1∗AiBf(t) if [α] is even and [α]<α< [α]+1

d

dt
C̃∗Bf(t) if 1<α<2

d

dt
C̃∗AlBf(t)+

l−1∑
i=0

j2i+1 ∗AiBf(t) if [α] is odd and [α]<α< [α]+1.

By Remark 2.12, we also have ‖ d
dtC ∗ Al−1Bf(t)‖ ≤ Kt0‖Al−1B‖ ∫ t

0 ‖f(s)‖ds for
all f ∈ C([0, t0], D(A)) and 0 ≤ t ≤ t0 if α ∈ N is even with α ≥ 2, and ‖ d

dt C̃ ∗
AlBf(t)‖ ≤ Kt0j[α]+1−α‖AlB‖ ∫ t

0 ‖f(s)‖ds for all f ∈ C([0, t0], D(A)) and 0 ≤
t ≤ t0 if [α] is odd with [α] < α < [α] + 1. Consequently, ‖DαS ∗ Bf(t)‖ ≤
Nt0

∫ t
0 ‖f(s)‖ds when α > 1. Having shown that A + B generates a nondegenerate

local α-times integrated cosine function T (·) on X satisfying (2.8). We conclude from
Lemma 2.9 and (2.18) that T (·) is also locally Lipschitz continuous: it suffices to set
Y = D(A), V (·) = C(·), Z(·) = T (·) and

W (·) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(·)B if α = 2

C(·)Al−1B +
l−2∑
i=0

j2i+2(·)AiB if α ∈ N is even and α ≥ 4

S(·)AlB +
l−1∑
i=0

j2i+2(·)AiB if α ∈ N is odd and α ≥ 3

S̃(·)AlB +
l−1∑
i=0

j2i+2(·)AiB if [α] is even and [α] < α < [α] + 1

C̃(·)B if 1 < α < 2

C̃(·)AlB +
l−1∑
i=0

j2i+2(·)AiB if [α] is odd and [α] < α < [α] + 1

in Lemma 2.9.
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3. UNBOUNDED PERTURBATION THEOREMS

By slightly modifying the proof of Theorem 2.11, we can establish the following
unbounded perturbation theorems concerning local α-times integrated cosine functions
on X .

Theorem 3.1. Let C(·) be a nondegenerate local α-times integrated cosine
function on X with generator A. Assume that B is a bounded linear operator from
[D(A)] into X such that A + B is a closed linear operator from D(A) into X . Then
A+ B generates a nondegenerate local α-times integrated cosine function T (·) on X

satisfying

(3.1) T (·)x = C(·)x + Dα+2S ∗ B
˜̃
T (·)x on [0, T0)

for all x ∈ X when{
R(B) ⊂ D(Al+1) if [α] is even or [α] is odd with α = [α]

R(B) ⊂ D(Al+2) if [α] is odd with [α] < α < [α] + 1.

Here ˜̃
T (·) = j1 ∗ T (·). Moreover, T (·) is also exponentially bounded (resp., norm

continuous or exponentially Lipschitz continuous) if C(·) is.
Proof. We consider only the case α ∈ N, for the case [α] < α < [α] + 1 can be

treated similarly. Just as in the proof of Theorem 2.11, for each 0 < t0 < T0, we can
apply (2.10) and the fact Bx ∈ D(Al+1) for all x ∈ D(A) to establish the following
inequalities as with (2.12)-(2.15):

(3.2) |S ∗ AlBf(t)| ≤ sup
0≤r≤t0

‖S(r)‖|AlB|
∫ t

0
|f(s)|ds,

(3.3) |j2i+1 ∗AiBf(t)| ≤ j2i+1(t0)|AiB|
∫ t

0
|f(s)|ds

for all 0 ≤ t ≤ t0 and integers 0 ≤ i ≤ l − 1,

(3.4) |DαS ∗ Bf(t)| ≤ Mt0

∫ t

0
|f(s)|ds

for all 0 ≤ t ≤ t0, and

(3.5) |Unf(t) − Ung(t)| ≤ Mn
t0jn(t0)|f − g|

for all f, g ∈ C([0, t0], [D(A)]), 0 ≤ t ≤ t0 and n ∈ N is even. Here |AiB| denotes
the norm of AiB in L([D(A)]) for all integers 0 ≤ i ≤ l, |f−g| = max

0≤s≤t0
|f(s)−g(s)|
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and U : C([0, t0], [D(A)]) → C([0, t0], [D(A)]) is defined by U(f)(·) = j1 ∗C(·)x +
Dα(S ∗ Bf)(·) on [0, t0] for all f ∈ C([0, t0], [D(A)]), and

Mt0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
0≤r≤t0

‖S(r)‖|AlB| +
l−1∑
i=0

j2i+1(t0)‖AiB| if 2 ≤ α ∈ N is even

sup
0≤r≤t0

‖C(r)‖‖B‖ if α = 1

sup
0≤r≤t0

‖C(r)‖|AlB| +
l−1∑
i=0

j2i+1(t0)|AiB| if 2 ≤ α ∈ N is odd

sup
0≤r≤t0

‖C̃(r)‖|B| if 0 < α < 1

sup
0≤r≤t0

‖C̃(r)‖|AlB| +
l−1∑
i=0

j2i+1(t0)|AiB| if [α] < α < [α] + 1

and [α] is even

sup
0≤r≤t0

‖S̃(r)‖|Al+1B| +
l∑

i=0

j2i+1(t0)|AiB| if [α] < α < [α] + 1

and [α] is odd.

Similarly, we can show that (3.5) also holds when n ∈ N is odd. Combining (3.2)-
(3.5), we can obtain that for each x ∈ X there exists a unique function wx in
C([0, T0), [D(A)]) such that wx(·) = j0 ∗ S(·)x + DαS ∗ Bwx(·) on [0, T0) as in
the proof of Theorem 2.11, and then show that u = j1 ∗ wx is the unique (strong) so-
lution of ACP (A, jα+2(·)x+ j1 ∗Bwx, 0, 0) in C2([0, T0), X), so that u = j1 ∗wx is
the unique (strong) solution of ACP (A + B, jα+2(·)x, 0, 0) in C2([0, T0), X). Hence
A + B generates a nondegenerate local (α + 2)-times integrated cosine function ˜̃

T (·)
on X satisfying

(3.6) ˜̃
T (·)x = j0 ∗ S(·)x + DαS ∗ B

˜̃
T (·)x on [0, T0)

for all x ∈ X . We obtain from the assumption Bx ∈ D(Al+1) for all x ∈ D(A) and
(2.8) that ˜̃

T (·)x is twice continuously differentiable on [0, T0) for all x ∈ X , and so
T (·) defined by T (t)x = d

dt T̃ (t)x for all x ∈ X and 0 ≤ t < T0, is a nondegenerate
local α-times integrated cosine function on X with generator A+B satisfying T (·)x =

C(·)x + Dα+2S ∗ B
˜̃
T (·)x on [0, T0) for all x ∈ X . Here T̃ (t)x = d

dt
˜̃
T (t)x for all

x ∈ X and 0 ≤ t < T0. Clearly, S(·) is exponentially Lipschitz continuous if C(·) is
exponentially bounded. Applying Lemma 2.8, (2.10) and (3.6), we also get that T̃ (·)
is exponentially Lipschitz continuous, if C(·) is exponentially bounded : it suffices to
set Y = [D(A)], V (·) = S(·), Z(·) = ˜̃

T (·) and
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W (·) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(·)AlB +

l−1∑
i=0

j2i(·)AiB if α ∈ N is even

S(·)Al+1B +
l∑

i=0

j2i(·)AiB if α ∈ N is odd

in Lemma 2.8. This implies that T (·) is also exponentially bounded if C(·) is. Next if
C(·) is norm continuous (resp., exponentially Lipschitz continuous). Applying Lemma
2.8 again, we get that ˜̃

T (·) is also norm continuous (resp., exponentially Lipschitz
continuous), and soAiB

˜̃
T (·) for 0 ≤ i ≤ l+1 are norm continuous (resp., exponentially

Lipschitz continuous). Combining this with (2.10), we have that Dα+2S ∗ B
˜̃
T (·) is

norm continuous (resp., exponentially Lipschitz continuous), which together with (3.1)
implies that T (·) is also norm continuous (resp., exponentially Lipschitz continuous).
Theorem 3.2. Let C(·) be a locally Lipschitz continuous nondegenerate local α-

times integrated cosine function on X with generator A for some α≥1. Assume that
B is a bounded linear operator from [D(A)] into X such that A+B is a closed linear
operator from D(A) into X . Then A+B generates a locally Lipschitz continuous
nondegenerate local α-times integrated cosine function T (·) on X satisfying (3.1)
when {

R(B) ⊂ D(Al) if [α] is even with α = [α]

R(B) ⊂ D(Al+1) if [α] is odd or [α] is even with [α] < α < [α] + 1.

Proof. Just as in the proof of Theorem 3.1, we consider only the case α =
k − 1 ∈ N, and so for each 0 < t0 < T0, we deduce from Remark 2.12 and the fact
(C∗AlBf)′(·) = A(S∗AlBf)(·)+jl−1∗AlBf(·) that A+B generates a nondegenerate
local α-times integrated cosine function T (·) on X satisfying (3.1). Clearly, ˜̃

T (·) is
locally Lipschitz continuous and ˜̃

T (0) = 0 on X . It follows that AiB
˜̃
T (·) is also

locally Lipschitz continuous and AiB
˜̃
T (0) = 0 on X for all integers 0 ≤ i ≤ (l + 1).

Combining this with the local Lipschitz continuity of C(·), we conclude from Remark
2.12 that (C ∗ AlB

˜̃
T )′(·) is locally Lipschitz continuous, which together with (2.10)

that of f is replaced by ˜̃
T (·), and (3.1) implies that T (·) is also locally Lipschitz

continuous.

Corollary 3.3. Let C(·) be a nondegenerate local α-times integrated cosine
function on X with generator A. Assume that B is a bounded linear operator from
[D(A)] intoX such that ρ(A+B) is nonempty. Then A+B generates a nondegenerate
local α-times integrated cosine function T (·) on X satisfying (3.1) for all x ∈ X when{

R(B) ⊂ D(Al+1) if [α] is even or [α] is odd with α = [α]

R(B) ⊂ D(Al+2) if [α] is odd with [α] < α < [α] + 1.
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Moreover, T (·) is also exponentially bounded (resp., norm continuous or exponentially
Lipschitz continuous) if C(·) is.
Corollary 3.4. Let C(·) be a locally Lipschitz continuous nondegenerate local α-

times integrated cosine function on X with generator A for some α ≥ 1. Assume that
B is a bounded linear operator from [D(A)] into X such that ρ(A + B) is nonempty.
Then A + B generates a locally Lipschitz continuous nondegenerate local α-times
integrated cosine function T (·) on X satisfying (3.1) when{

R(B) ⊂ D(Al) if [α] is even with α = [α]

R(B) ⊂ D(Al+1) if [α] is odd or [α] is even with [α] < α < [α] + 1.

The conclusion of Theorem 3.1 is still true when the assumption that A + B is a
closed linear operator from D(A) into X is replaced by assuming that AB = BA on
D(A2).

Corollary 3.5. Let C(·) be a nondegenerate local α-times integrated cosine
function on X with generator A. Assume that B is a bounded linear operator from
[D(A)] intoX such thatAB = BA onD(A2). Then A+B generates a nondegenerate
α-times integrated cosine function T (·) on X satisfying

(3.7) T (·)x = C(·)x + DαS ∗ (λ − A)B(λ − A)−1T (·)x on [0, T0)

for all x ∈ X when{
R(B) ⊂ D(Al+1) if [α] is even or [α] is odd with α = [α]

R(B) ⊂ D(Al+2) if [α] is odd with [α] < α < [α] + 1.

Here λ ∈ ρ(A) is fixed. Moreover, T (·) is also exponentially bounded (resp., norm
continuous or exponentially Lipschitz continuous) if C(·) is.
It is easy to see from the assumption AB = BA on D(A2) that A + B is closed

(see [18]). Just as in the proof of Theorem 2.11, we also have that for each x ∈ X
there exists a unique function wx in C([0, T0), X) such that wx = C(·)x+DαS ∗ (λ−
A)B(λ − A)−1wx, and so j1 ∗ wx is the unique solution of

ACP (A, jαx + j1 ∗ (λ − A)B(λ − A)−1wx, 0, 0)

= ACP (A, jαx + (λ − A)B(λ − A)−1j1 ∗ wx, 0, 0)
= ACP (A, jαx + (λ − A)B(λ − A)−1j1 ∗ wx, 0, 0)

= ACP (A, jαx + B(λ − A)(λ − A)−1j1 ∗ wx, 0, 0)
= ACP (A, jαx + Bj1 ∗ wx, 0, 0)
= ACP (A, jαx + Bj1 ∗ wx, 0, 0)

in C2([0, T0), X). Hence u = j1∗wx is the unique function in C2([0, T0), X) such that
u′′ = Au + jαx + Bu = (A + B)u + jαx on [0, T0) and u(0) = 0 = u′(0). Applying
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Theorem 2.6 again, we get thatA+B generates a nondegenerate local α-times integrated
cosine function on X satisfying (3.7) which is defined by T (·)x = wx(·) for all x ∈ X .
Moreover, T (·) is also exponentially bounded (resp., norm continuous or exponentially
Lipschitz continuous) if S(·) is.
By slightly modifying the proof of Theorem 2.13, the next unbounded perturbation

result concerning locally Lipschitz continuous local α-times integrated cosine functions
on X is also attained.

Corollary 3.6. Let C(·) be a nondegenerate locally Lipschitz continuous local
α-times integrated cosine function on X with generator A for some α ≥ 1. Assume
that B is a bounded linear operator from [D(A)] into X such that AB = BA on
D(A2). Then A + B generates a nondegenerate locally Lipschitz continuous local
α-times integrated cosine function T (·) on X satisfying (3.7) when{

R(B) ⊂ D(Al) if [α] is even with α = [α]

R(B) ⊂ D(Al+1) if [α] is odd or [α] is even with [α] < α < [α] + 1.

We end this paper with a simple illustrative example. Let X = Lp(Rn) for some
1 ≤ p < ∞ and n ∈ N, and Δ denote the Laplacian operator with maximal distribution
domain. It is known that Δ generates an exponentially bounded nondegenerate α-times
integrated cosine function onX for all α > (n−1)| 1p−1

2 | withD(Δ) = W p,2(Rn) = X

(see [5]), and so Δ generates an exponentially Lipschitz continuous (α + 1)-times
integrated cosine function C(·) on L∞(Rn) and D(Δ) = C0(Rn). Applying Theorem
2.13, we get that Δ + B generates a nondegenerate locally Lipschitz continuous local
β-times integrated cosine function T (·) on L∞(Rn) satisfying (2.8) when n+1

2 < β ≤ 2
and B : C0(Rn) → L∞(Rn) is a bounbed linear operator from C0(Rn) into L∞(Rn)
defined by B(f)(x) =

∫
Rn f(x− y)dμ(y) for all f ∈ C0(Rn) and x ∈ Rn. Here μ is

a fixed finite regular Borel measure on R
n.
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