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SOME OPERATORS ACTING ON WEIGHTED SEQUENCE
BESOV SPACES AND APPLICATIONS

Po-Kai Huang and Kunchuan Wang*

Abstract. In this article, we study the boundedness of matrix operators acting on
weighted sequence Besov spaces ḃα,q

p,w. First we obtain the necessary and sufficient
condition for the boundedness of diagonal matrices acting on weighted sequence
Besov space ḃα,q

p,w, and investigate the duals of ḃα,q
p,w, where the weight is non-

negative and locally integrable. In particular, when 0 < p < 1, we find a type of
new sequence sapces which characterize the dual space of ḃα,q

p,w.
We also use the duals of ḃα,q

p,w to characterize an algebra of matrix operators
acting on weighted sequence Besov spaces ḃα,q

p,w and find the necessary and suffi-
cient conditions to such a characterization. Note that we do not require that the
given weight satisfies the doubling condition in this situation.

Using these results, we give some applications to characterize the boundedness
of Fourier-Haar multipliers and paraproduct operators. In this situation, we need
to require that the weight w is an Ap weight.

1. INTRODUCTION

In order to study the boundedned of some kind of linear operators, such as Haar
multipliers and paraproduct operators, one can do it by norm equivalence between
function spaces and their corresponding sequence spaces. Precisely, for example, if
we consider a linear operator T acting on homogeneous Triebel-Lizorkin space Ḟα,q

p ,
then one can use a discrete wavelet transform identity or the ϕ-transform identity
introduced by Frazier and Jawerth [5] to deduce a linear operator T to a matrixA(T ) :=
{〈TψP , ϕQ〉} and to consider the boundedness of A(T ) acting on sequence Triebel-
Lizorkin space ḟα,q

p . For simplicity, we only work with the ϕ-transform indetity, but
let us emphasize that Meyer’s wavelet transform indetity could be used equally well in
our development.
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Let us start with recalling some definitions and properties. For some ν ∈ Z and
k = (k1, k2, · · · , kn) ∈ Z

n, let Q = Qνk = {(x1, · · · , xn) ∈ R
n : 2−νki ≤ xi <

2−ν(ki + 1), i = 1, 2, · · · , n}, and xQ = 2−νk the “lower left corner” of Q = Qνk.
Also Q denotes the collection of all dyadic cubes in R

n and Qν denotes the subcollection
of Q with side length 2−ν for ν ∈ Z. For P ∈ Q, QP denotes the subcollection of Rn

such that each cube in QP is a subset of P . We choose a function ϕ ∈ S satisfying{ supp(ϕ̂) ⊆ {ξ : 1/2 ≤ |ξ| ≤ 2};
|ϕ̂(ξ)| ≥ c > 0 if 3/5 ≤ |ξ| ≤ 5/3.

(1)

Then there exists a function ψ ∈ S satisfying the same conditions as (1) such that∑
ν∈Z

ϕ̂(2−νξ)ψ̂(2−νξ) = 1 for ξ �= 0.

Hence the ϕ-transform identity [5] is given by
f =

∑
Q∈Q

〈f, ϕQ〉ψQ,(2)

where gQ(x) := |Q|−1/2g((x− xQ)/�(Q)) = 2νn/2g(2νx− k) if Q = Qνk for some
ν ∈ Z and k ∈ Zn. Here |Q| is the usual Lebesgue measure of Q in Rn.

Let P denote the class of all polynomials on R
n and S′/P denote the tempered

distributions on Rn modulo polynomials. For ν ∈ Z, let ϕν(x) = 2νnϕ(2νx). For
α ∈ R, 0 < p, q ≤ +∞ and f ∈ S′/P, define the homogeneous Triebel-Lizorkin
spaces Ḟα,q

p via the norms

‖f‖Ḟ
α,q
p

:=



∥∥∥∥{ ∑
ν∈Z

(
2να|ϕν ∗ f |

)q
}1/q∥∥∥∥

Lp

<∞ if 0<p<∞

sup
Q∈Q

{
|Q|−1

∫
Q

+∞∑
ν=−log2 �(Q)

(
2να|ϕν ∗ f |

)q
}1/q

<∞ if p=∞
.

The homogeneous Besov spaces Ḃα,q
p are defined by

‖f‖Ḃα,q
p

:=
∥∥∥∥{2να‖ϕν ∗ f‖Lp

}
ν∈Z

∥∥∥∥
�q(Z)

<∞.

Triebel-Lizorkin spaces include many other spaces as special cases; Lp ≈ Ḟ 0,2
p for

1 < p < +∞, Hp ≈ Ḟ 0,2
p for 0 < p ≤ 1, and BMO ≈ Ḟ 0,2∞ (see [7, 23] for details).

The corresponding sequence spaces ḟα,q
p and ḃα,q

p can be defined as follows. For
α ∈ R and 0 < p, q ≤ ∞, the space ḟα,q

p consists of all sequences s = {sQ} satisfying

‖s‖ḟ
α,q
p

:=



∥∥∥∥{ ∑
Q∈Q

(|Q|−α/n−1/2|sQ|χQ

)q
}1/q∥∥∥∥

Lp

<∞ if 0 <p<∞

sup
P∈Q

{
|P |−1

∫
P

∑
Q∈QP

(|Q|−1/2−α/n|sQ|χQ

)q
}1/q

<∞ if p=∞
,
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where χQ denotes the characteristic function of the cube Q. The space ḃα,q
p consists

of all sequences s = {sQ} such that

‖s‖ḃ
α,q
p

:=


( ∑

ν∈Z

{ ∑
Q∈Qν

(|Q|−α/n−1/2+1/p|sQ|
)p

}q/p)1/q

<∞ if 0<p<∞( ∑
ν∈Z

{
sup

Q∈Qν

|Q|−α/n−1/2|sQ|
}q)1/q

<∞ if p=∞
.

The function spaces Ḟα,q
p , Ḃα,q

p and the sequence spaces ḟα,q
p , ḃα,q

p are equivalent
in norms, respectively.

Proposition 1.1. ([4, 5, 7]). Suppose α ∈ R, 0 < p, q ≤ +∞, and the functions
ϕ and ψ are given in (2). Given f ∈ S ′/P, there exists a sequence of numbers
{sQ = 〈f, ϕQ〉}Q such that f =

∑
Q sQψQ. Furthermore,

(a) f ∈ Ḟα,q
p if and only if the sequence s = {sQ}Q ∈ ḟα,q

p , and ‖f‖Ḟ
α,q
p

≈ ‖s‖ḟα,q
p

;

(b) f ∈Ḃα,q
p if and only if the sequence s = {sQ}Q ∈ ḃα,q

p , and ‖f‖Ḃ
α,q
p

≈ ‖s‖ḃα,q
p

.

The prototypes of operators in this article are paraproduct operators and Haar-
Fourier multipliers, which are defined below.

Definition 1.2. Fix a function Φ in S such that supp(Φ) ⊆ [0, 1)n = Q00 and∫
Φ = 1. (We will use this Φ in the sequel.) For α ∈ R and g ∈ Ḃα,∞∞ = Ḟα,∞∞ , the

paraproduct operator Πg via the ϕ-transform identity is defined by

Πg(f) :=
∑
Q

〈g, ϕQ〉|Q|−1/2〈f,ΦQ〉ψQ.(3)

Thus, the adjoint operator of Πg is

Π∗
gf(x) =

∑
Q

〈g, ϕQ〉|Q|−1/2〈f, ψQ〉ΦQ(x).

Note that Πg1 = g and Π∗
g1 = 0. Also, when g ∈ Ḃ0,∞∞ , Πg is a singular integral

operators (c.f. [25]).
Let f ∈ Ḟ 0,q

p . Plugging (2) into (3), we obtain

(4)

Πg(f) =
∑
Q

〈g, ϕQ〉|Q|−1/2
〈∑

P

〈f, ϕP 〉ψP ,ΦQ

〉
ψQ

=
∑
Q

〈g, ϕQ〉|Q|−1/2
(∑

P

〈ψP ,ΦQ〉〈f, ϕP 〉
)
ψQ.
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Let G be the matrix
{〈ψP ,ΦQ〉

}
Q,P

. Also let dQ = 〈g, ϕQ〉 and d = {dQ}Q.

Define the diagonal operator T (0)
d as follows. For a sequence s = {sQ}Q, T (0)

d sends
s to T (0)

d s, where
(T (0)

d s)Q = |Q|−1/2sQdQ

denotes the Qth entry of the sequence T (0)
d s. In fact, T (0)

d = diag{|Q|−1/2dQ} is a
diagonal matrix determined by the given sequence d. By Proposition 1.1 and equality
(4), we have

(5)
‖Πgf‖Ḟα,q

p
≈

∥∥∥{〈g, ϕQ〉|Q|−1/2
(∑

P

〈ψP ,ΦQ〉〈f, ϕP 〉
)}

Q

∥∥∥
ḟα,q

p

= ‖T (0)
d Gs‖ḟα,q

p
,

where s = {〈f, ϕP 〉}P . So, to show the boundedness of Πg from Ḟ 0,q
p into Ḟα,q

p is
equivalent to show the boundedness of T (0)

d G from ḟ0,q
p into ḟα,q

p . We will give a
characterization of boundedness of paraproduct operators on weighted Besov spaces in
Section 5.

Let us recall Haar multipliers introduced in [12, 19, 20]. Precisely, given a sequence
t = {tI}I dyadic, a Haar multiplier is an operator of the form

Ttf(x) :=
∑

I dyadic

tI〈f, hI〉hI(x), for f ∈ L2(R),

where the sum runs over all dyadic intervals in R, hI is the Haar function associated
to I and 〈·, ·〉 denotes the L2 inner product.

Motivated by [12, 19, 20], let us consider the generalized Haar multipliers in R
n.

For a sequence t = {tQ}, define the Fourier-Haar multiplier T t by

(6) Tt(f) :=
∑
Q∈Q

|Q|−1/2tQ〈f, ϕQ〉ψQ.

By Proposition 1.1, ‖Tt(f)‖Ḟα,q
p

≈ ‖{|Q|−1/2tQ〈f, ϕQ〉}Q‖ḟα,q
p

. Thus, to study the
boundedness of Tt on Ḟα,q

p is equivalent to study the corresponding diagonal matrix on
ḟα,q
p . We will study the boundedness of Fourier-Haar multipliers on weighted Besov

spaces in Section 5.
In this article, we focus on that a matrix operator is mapped from one weighted

sequence space to another one. In the following, we introduce the weighted Besov
space Ḃα,q

p,w and weighted sequence Besov space ḃα,q
p,w. We say w is a weight means that

w is a non-negative, locally integrable function.

Definition 1.3. (Weighed Besov space Ḃα,q
p,w). Select a function ϕ ∈ S satisfing

condition (1). For α ∈ R, 0 < p, q ≤ ∞, w a weight and f ∈ S′/P(Rn), define the
homogeneous weighted Besov space Ḃα,q

p,w via the norm
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‖f‖Ḃα,q
p,w

:=
∥∥∥∥{2να‖ϕν ∗ f‖Lp(w)

}
ν

∥∥∥∥
lq
<∞.

Note that the definition of homogeneous weighted Besov spaces is independent of
the choice of ϕ if the weight w satisfies doubling condition, see [8, 21] for more details
on matrix-weighted Besov spaces. For a weight w, let Q(w) denote the collection of all
cubes Q ∈ Q such that w(Q) :=

∫
Qw(x)dx �= 0 and Qν(w) denote the collection of

all cubes Q ∈ Qν such that w(Q) �= 0 for ν ∈ Z. It is clear that ∪ν∈ZQν(w) = Q(w)
and Q(w) = Q if w > 0 almost everywhere.

Definition 1.4. (Weighed sequence Besov space ḃα,q
p,w). For α ∈ R, 0 < p, q ≤ ∞,

and w a weight, the space ḃα,q
p,w consists of all sequence s = {sQ}Q, enumerated by the

dyadic cubes Q contained in R
n, such that

‖s‖ḃα,q
p,w

:=

∥∥∥∥∥
{

2να
∥∥∥ ∑

Q∈Qν(w)

|Q|− 1
2 sQχQ

∥∥∥
Lp(w)

}
ν∈Z

∥∥∥∥∥
lq

<∞.

The main conclusion is the norm equivalence between the homogeneous weighted
Besov space Ḃα,q

p,w and the weighted sequence Besov space ḃα,q
p,w under the Ap condition.

For the detailed description of Ap condition, refer to [9, 11]. Under the Ap condition
on w, Q(w) is the same as Q.

Proposition 1.5. ([8, Theorem 1.1], [21, Theorem 1.4]). Let α ∈ R, 0 < p, q ≤ ∞,
w ∈ Ap. Then

‖f‖Ḃα,q
p,w

=
∥∥∥ ∑

Q∈Q

〈f, ϕQ〉ψQ

∥∥∥
Ḃα,q

p,w

≈
∥∥∥{sQ(f)

}
Q

∥∥∥
ḃα,q
p,w

,

where
{
sQ(f)

}
Q

=
{〈f, ϕQ〉

}
Q

is the sequence of ϕ-transform coefficients of f .

Remark 1.6.
(a) When w ≡ 1, the sequence space ḃα,q

p,1 is the usual unweighted sequence space
ḃα,q
p given by Frazier, Jawerth and Weiss in [7].

(b) When 0 < p <∞, we have

‖s‖ḃα,q
p,w

=

{∑
ν∈Z

[ ∑
Q

�(Q)=2−ν

(
|Q|− 1

2
−α

n |sQ|
)p

w(Q)

] q
p
}1

q

and
‖s‖ḃα,∞∞,w

= sup
Q∈Q(w)

|Q|− 1
2
−α

n |sQ|.
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This article is organized as follows. In Section 2, we characterize completely for
diagonal matrix operators acting from one weighted sequence Besov space to another
one. Also, in this section, we characterize the dual space of ḃα,q

p,w. In section 3, we define
a class of almost diagonal matrices adα

p (β) for the weighted sequence Besov spaces
and show the boundedness of these matrices on ḃα,q

p,w if w is a weight with a doubling
exponent β. In section 4, we treat more general matrix operators. In some special cases,
we obtain necessary and sufficient conditions for boundedness of operators acting on
weighted sequence Besov spaces. Consequently, we characterize an algebra of bounded
matrix operators on ḃα,q

p,w for fixed α ∈ R and for all 1 ≤ p, q ≤ ∞. We apply our
previous results to study the boundedness of Fourier-Haar multipliers and paraproduct
operators acting from one weighted Besov space to another in the last section.

Through the article, a cube means a dyadic cube in Rn, and C denotes a positive
constant independent of the main variables, which may vary from line to line. We also
denote by q′ the index conjugate to q; that is, q′ = q/(q − 1) for 1 ≤ q ≤ ∞. When
0 < q ≤ 1, q′ is defined as ∞.

2. DIAGONAL MATRICES AND DUALITY

As in [13, 14, 24, 25], to study singular integral operators acting on homoge-
neous Triebel-Lizorkin spaces or Besov spaces, it suffices to study the boundedness for
paraproduct operators acting on the same spaces, equivalently, it does study the bound-
edness of matrix operators deduced from paraproduct operators acting on corresponding
sequence sapces, as described in (5).

Here we start with the diagonal matrices acting on weighted sequence Besov spaces.
For γ ∈ R and a fixed sequence d = {dQ}Q, define a linear operator T (γ)

d acting on
sequence spaces by

T
(γ)
d s :=

{|Q|−1/2−γ/ndQsQ
}

Q
for every sequence s.(7)

Let D(γ)
d be the diagonal matrix operator with diagonal entries {|Q|−1/2−γ/ndQ}Q.

Then T (γ)
d = D

(γ)
d . In this section, let us first study the boundedness of T (γ)

d .

Proposition 2.1. [10, Theorem 3.1]). Let α1, α2, γ ∈ R, 0 < p, q1, q2 ≤ ∞ and
let w be a weight.

(a) For q1 > q2, T (γ)
d is bounded from ḃα1,q1

p,w into ḃα1+α2,q2
p,w if and only if d ∈

ḃ
α2+γ,

q1q2
q1−q2∞,w .

(b) For q1 ≤ q2, T (γ)
d is bounded from ḃα1,q1

p,w into ḃα1+α2,q2
p,w if and only if d ∈

ḃα2+γ,∞∞,w .

More generally, we have the following result for different indices.
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Theorem 2.2. Let α1, α2 ∈ R, 0 < p1, p2, q1, q2 ≤ ∞ and γ ∈ R. Also let w be
a weight. Then T (γ)

d is bounded from ḃα1,q1
p1,w into ḃα2,q2

p2,w if one of following cases holds:

(a) p1 > p2, q1 > q2 and d ∈ ḃ
α2−α1+γ,

q1q2
q1−q2

p1p2
p1−p2

,w
;

(b) p1 > p2, q1 ≤ q2 and d ∈ ḃα2−α1+γ,∞
p1p2

p1−p2
,w

;

(c) p1 ≤ p2, q1 > q2 and d ∈ ḃ
α2−α1+γ,

q1q2
q1−q2∞,w ;

(d) p1 ≤ p2, q1 ≤ q2 and d ∈ ḃα2−α1+γ,∞∞,w .

Proof. Without loss of generality, we may assume α1 = α2 = 0. Let s ∈ ḃ0,q1
p1,w

and suppose 0 < p1, p2, q1, q2 ≤ ∞.
For part (a), let δ = p1/p2 and ρ = q1/q2. Applying Hölder’s inequality twice,

then we have

‖T (γ)
d s‖

ḃ
0,q2
p2,w

=
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p2

(
|Q|− 1

2 |sQ|
)p2

w(Q)
] q2

p2
} 1

q2

≤
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p2δ′

w(Q)
] q2

p2δ′

×
[ ∑

Q∈Qν(w)

(
|Q|− 1

2 |sQ|
)p1

w(Q)
] q2

p1
} q1

q2
· 1
q1

≤
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p2δ′

w(Q)
] q2ρ′

p2δ′
} 1

q2ρ′

×
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2 |sQ|
)p1

w(Q)
]q1

p1

} 1
q1

= ‖d‖
ḃ
γ,q2ρ′
p2δ′,w

· ‖s‖
ḃ
0,q1
p1,w

,

where p2δ
′ = p2(p1/p2)′ = p1p2

p1−p2
and q2ρ′ = q2(q1/q2)′ = q1q2

q1−q2
.

For part (b), let δ = p1/p2. Since q1 ≤ q2, q1/q2 ≤ 1. Applying Hölder’s inequality
and triangle inequality, we obtain

‖T (γ)
d s‖

ḃ
0,q2
p2,w

=
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p2

(
|Q|− 1

2 |sQ|
)p2

w(Q)
] q2

p2
} 1

q2

≤
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p2δ′

w(Q)
] q2

p2δ′
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×
[ ∑

Q∈Qν(w)

(
|Q|− 1

2 |sQ|
)p1

w(Q)
]q2

p1
} 1

q2

≤ sup
ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p2δ′

w(Q)
] 1

p2δ′

×
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2 |sQ|
)p1

w(Q)
] q2

p1
} 1

q2

≤ ‖d‖ḃγ,∞
p2δ′,w

·
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2 |sQ|
)p1

w(Q)
] q1

p1
} 1

q1

= ‖d‖ḃ
γ,∞
p2δ′,w

· ‖s‖
ḃ
0,q1
p1,w

.

For part (c), let ρ = q1/q2. Since p1 ≤ p2, p1/p2 ≤ 1. Applying triangle inequality
and then Hölder’s inequality, we obtain

‖T (γ)
d s‖

ḃ
0,q2
p2,w

=
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p2

(
|Q|− 1

2 |sQ|
)p2

w(Q)
] q2

p2
} 1

q2

≤
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2 |Q|− 1
2
− γ

n |dQ||sQ|
)p1

w(Q)
] q2

p1

} 1
q2

≤
{∑

ν∈Z

[
sup

Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p1

] q2
p1

×
[ ∑

Q∈Qν(w)

(
|Q|− 1

2 |sQ|
)p1

w(Q)
]q2

p1
} q1

q2
· 1
q1

≤
{∑

ν∈Z

[
sup

Q∈Qν(w)

|Q|− 1
2
− γ

n |dQ|
]q2ρ′} 1

q2ρ′

×
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2 |sQ|
)p1

w(Q)
] q1

p1

} 1
q1

= ‖d‖
ḃ
γ,q2ρ′
∞

· ‖s‖
ḃ
0,q1
p1,w

.

For part (d), since p1 ≤ p2 and q1 ≤ q2,we have p1/p2 ≤ 1 and q1/q2 ≤ 1.
Applying triangle inequality twice, we obtain the result.

‖T (γ)
d s‖

ḃ
0,q2
p2,w

=
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p2

(
|Q|− 1

2 |sQ|
)p2

w(Q)
] q2

p2
} 1

q2
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≤
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2 |Q|− 1
2
− γ

n |dQ||sQ|
)p1

w(Q)
] q2

p1

} 1
q2

≤
{∑

ν∈Z

[
sup

Q∈Qν(w)

(
|Q|− 1

2
− γ

n |dQ|
)p1

] q2
p1

×
[ ∑

Q

�(Q)=2−ν

(
|Q|− 1

2 |sQ|
)p1

w(Q)
] q2

p1
} 1

q2

≤ sup
Q∈Q(w)

|Q|− 1
2
− γ

n |dQ| ·
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|− 1

2 |sQ|
)p1

w(Q)
] q1

p1
} 1

q1

= ‖d‖ḃγ,∞
∞,w

· ‖s‖
ḃ
0,q1
p1,w

.

For the case pi = ∞ or qi = ∞, with modification, we could obtain the results. This
completes the proof of Theorem 2.2.

At the end of this section, let us consider the duals of weighted sequence Besov
spaces.

Proposition 2.3. [10, Theorem 1.3]). Let α ∈ R, 1 < p ≤ ∞, 0 < q ≤ ∞, and
w be a weight. Then the dual of ḃα,q

p,w is ḃ−α,q′
p′,w in the following sense.

(i) For t = {tQ}Q∈Q(w)
∈ ḃ

−α,q′
p′,w , the linear functional Lt on ḃα,q

p,w, given by Lt(s) =

〈s, t〉w =
∑

Q∈Q(w) sQ
tQ

w(Q)
|Q| for s = {s

Q
}

Q∈Q(w)
∈ ḃα,q

p,w, is continuous with
‖Lt‖ ≤ C‖t‖

ḃ−α,q′
p′ ,w

.

(ii) Conversely, every continuous linear functional L on ḃα,q
p,w satisfies L = Lt for

some t = {tQ}Q∈Q(w)
∈ ḃ−α,q′

p′,w with ‖t‖
ḃ
−α,q′
p′,w

≤ C‖L‖ provided that w is a

“double measure”, i.e. w(2B) ≤ Cw(B) for every ball B in Rn.

In order to find the dual space of ḃα,q
p,w for 0 < p ≤ 1 and 0 < q ≤ ∞, we need to

define a sequence space ċα,q
p,w given in [10].

Definition 2.4. For α ∈ R, 0 < p ≤ 1, 0 < q ≤ ∞, and a weight w, we say that
t = {tQ}Q ∈ ċα,q

p,w if ‖t‖ċα,q
p,w

is finite, where ‖t‖ċα,q
p,w

is defined by

‖t‖ċ
α,q
p,w

=
[∑

ν∈Z

(
sup

Q∈Qν(w)

|Q|−α
n
− 1

2 |tQ|w(Q)1−
1
p

)q] 1
q

.

Remark 2.5.
(i) If p = 1, then ċα,q

1,w = ḃα,q∞,w.
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(ii) If w ≡ 1, then ċα,q
p,1 = ḃ

α−n+n/p,q
∞ by a direct calculation.

Here is a characterization of the dual of ḃα,q
p,w for α ∈ R, 0 < p ≤ 1 and 0 < q ≤ ∞.

Proposition 2.6. [10, Theorem 1.6]). Let α ∈ R, 0 < p ≤ 1, 0 < q ≤ ∞, and w
be a weight. Then the dual of ḃα,q

p,w is ċ−α,q′
p,w in the following sense.

(i) For t = {tQ}Q∈Q(w)
∈ ċ−α,q′

p,w , the linear functional Lt on ḃα,q
p,w, given by Lt(s) =

〈s, t〉w for s = {sQ}Q∈Q(w)
∈ ḃα,q

p,w, is continuous with ‖Lt‖ ≤ C‖t‖
ċ−α,q′
p,w

.

(ii) Conversely, every continuous linear functional L on ḃα,q
p,w satisfies L = Lt for

some t = {t
Q
}

Q∈Q(w)
∈ ċ−α,q′

p,w with ‖t‖
ċ−α,q′
p,w

≤ C‖L‖.

Remark 2.7. Observe that

〈s, t〉w =
∑
Q∈Q

s
Q
t
Q

w(Q)
|Q| =

∑
Q∈Q

s
Q
hQ = 〈s,h〉,

where hQ = tQ
w(Q)
|Q| and h = {hQ}Q.

The characterization presented in Proposition 2.3 says that the dual of ḃα,q
p,w with

respect to a weighted pairing can be identified with ḃ−α,q′
p′,w for any doubling weight

w. Let us denote the dual with respect to the weighted pairing by
(
ḃα,q
p,w

)′. The
difference arises because the pairing used as above observation. In Roudenko’s case
she has two sequences s = {sQ}Q∈Q, and h = {hQ}Q∈Q, indexed on the dyadic
cubes and the pairing is: 〈s,h〉 =

∑
Q sQhQ, whereas in this article the pairing is

〈s, t〉w =
∑

Q∈Q(w) sQ tQ
w(Q)
|Q| . When dealing with any doubling weight, it may occur

that w(Q) = 0 for some Q, which would imply w = 0 a.e. on Q; so two sequences
will be equal in such space if and only if they coincide off those cubes (we are working
with equivalence classes). In the case of the weighted pairing since there is no need to
invoque the reciprocal of the weight (or a power of the weight), the above idetification
work well, unlike when using the usual pairing.

In the case when both w > 0 a.e, and w−1 > 0 a.e, it would be interesting to
explicitly state that the map that takes a sequence hQ into the sequence tQ = hQ

|Q|
w(Q)

is a one-to-one and continuous mapping from ḃ−α,q′

p′,w1−p′ into ḃ−α,q′
p′,w for all weight. To

see this,

‖t‖
ḃ−α,q′
p′,w

=
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|α/n−1/2|hQ| |Q|

w(Q)

)p′

w(Q)
]q′/p′}1/q′
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≤
{∑

ν∈Z

[ ∑
Q∈Qν(w)

(
|Q|α/n−1/2|hQ|

)p′

w1−p′(Q)
]q′/p′}1/q′

= ‖h‖
ḃ
−α,q′
p′,w1−p′

,

since

|Q| =
∫

Q
w1/p(x)w−1/p(x)dx ≤ [

w(Q)
]1/p[

w1−p′(Q)]1/p′,

by Hölder’s inequality. However the reverse embedding holds only if w ∈ Ap because
|Q| ≤ [

w(Q)
]1/p[

w1−p′(Q)]1/p′ ≤ C|Q|, where C is dependent only on the Ap

constant. Effectively the duals with respective to the different pairings are different
spaces when the weight w is not in Ap, that explains the discrepancy.

By Remark 2.5 and Proposition 2.6, we have a characterization of the dual space
of unweighted sequence Besov space ḃα,q

p for α ∈ R, 0 < p ≤ 1 and 0 < q ≤ +∞.

Corollary 2.8. Let α ∈ R, 0 < p ≤ 1 and 0 < q ≤ ∞. Then(
ḃα,q
p

)′ =
(
ḃα,q
p,1

)′ ≈ ċ−α,q′
p,1 = ḃ

−α−n+n
p
,q′

∞ .

3. ALMOST DIAGONAL MATRICES

At the beginning of this section, let us recall a definition about “doubling condition”.

Definition 3.1. A weight w is called a doubling measure, if there exists a constant
C = Cn such that for any δ > 0 and any z ∈ Rn,∫

B2δ(z)

w(t)dt ≤ C

∫
Bδ(z)

w(t)dt,(8)

where Bδ(z) is an open ball in Rn centered at z with radius δ. If C = 2β is the
smallest constant for the inequality (8) holds, then β is called the doubling exponent
of w.

In this section, we always assume that w is a weight which is a doubling measure
with doubling exponent β. For such a weight, we study the almost diagonality given
by Roudenko [21] with matrix-weight for p ≥ 1 and by Bownik [1] for scalar case.
Here we adopt Bownik’s definition, but we emphasize that, for p ≥ 1, both definitions
are equivalent.

Definition 3.2. Let w be a doubling measure with doubling exponent β. For α ∈ R,
0 < p, q ≤ ∞, let J = β

p + max
{
0, n− n

p

}
, we say that a matrix A = {aQP}Q,P is

(α, p, w) almost diagonal, denoted by A ∈ adα
p (β), if there exist an ε > 0 and C > 0

such that for all dyadic cubes Q, P ,
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|aQP |≤C
[
�(Q)
�(P )

]α

min
([

�(Q)
�(P )

]n+ε
2

,

[
�(P )
�(Q)

]n+ε
2

+J−n)(
1+

|xQ − xP |
max(�(Q), �(P ))

)−J−ε

.

Remark 3.3. Note that if p ≥ 1 then J = n + (β − n)/p and if 0 < p < 1 then
J = β/p. Also note that if the weight w ≡ 1, then β = n. Thus the definition of
almost diagonality in Definition 3.2 is the same as the one given by M. Frazier and
B. Jawerth in [5] under q ≥ 1 and w ≡ 1. Also note that in general the exponent
J is independent of q for Besov case, while in case of the Triebel-Lizorkin spaces
J = n/min(1, p, q) in unweighted cases.

Basically, the proof was showed by Roudenko for p ≥ 1 in [21] and showed by
Bownik in more general setting in [2].

Proposition 3.4. ([2, 10, 21]). Let α ∈ R, 0 < p, q ≤ ∞, and w a doubling
measure with exponent β. If A ∈ adα

p (β), then A is bounded on ḃα,q
p,w.

Now we may state that the class of almost diagonal matrices is closed under com-
position. The class of all operators on the distribution space level, which corresponds
to almost diagonal matrices, is then also an algebra under composition. For γ > 0,
δ > 0, J = β

p + max
{
0, n− n

p

}
and P, Q dyadic, denote

wQP (δ, γ) : =
[
�(Q)
�(P )

]α

min
([

�(Q)
�(P )

]n+γ
2

,

[
�(P )
�(Q)

]n+γ
2

+J−n)
(

1 +
|xQ − xP |

max(�(Q), �(P ))

)−J−δ

and

WQP (δ, γ1, γ2) :=
∑
R

wQR(δ, γ1)wRP (δ, γ2).

Theorem 3.5. Suppose α ∈ R and 0 < p, q ≤ ∞. If A, B ∈ adα
p (β), then

A ◦B ∈ adα
p (β). Consequently, adα

p (β) is an algebra.

Before proving the Theorem 3.5, we need the following lemma, which is a modi-
fication of Theorem D.2 in [5].

Lemma 3.6. [5, Theorem D.2]). Suppose δ, γ1, γ2 > 0, γ1 �= γ2, and 2δ < γ1+γ2.
Then there exists a constant C such that

WQP (δ, γ1, γ2) ≤ CwQP (δ,min(γ1, γ2)).

Proof. [Proof of Theorem 3.5.] By the proof for [5, Theorem 9.1], we have the
desired result immediately by Lemma 3.6.
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4. AN ALGEBRA OF MATRIX OPERATORS ON WEIGHTED SEQUENCE BESOV SPACES

In this section, we will treat more general matrices on special weighted sequence
Besov space. Let b denote the class of matrices A such that |A| is bounded on ḟ0,q

p for
all 1 ≤ p, q ≤ ∞, where |A| = {|aQP |}Q,P if A = {aQP}Q,P . Frazier and Jawerth
[5] characterized the following result.

Proposition 4.1. [5, Corollary 10.2]). A matrix {aQP}Q,P belongs to b if and
only if {|aQP |}Q,P satisfies all conditions in the following:

sup
P∈Q

∑
Q∈Q

|aQP |(|Q|/|P |)1/2 <∞;

sup
Q∈Q

∑
P∈Q

|aQP |(|Q|/|P |)−1/2 <∞;

sup
P0∈Q

1
|P0|

∥∥∥∥ { ∑
P∈QP0

|aQP ||P |1/2

}∥∥∥∥
ḟ0,∞
1

<∞;

sup
Q0∈Q

1
|Q0|

∥∥∥∥ { ∑
Q∈QQ0

|aQP ||Q|1/2

}∥∥∥∥
ḟ

0,∞
1

<∞.

The main purpose of this section is to characterize an algebra of bounded matrix
operators acting on weighted sequence Besov spaces ḃα,q

p,w for all 1 ≤ p, q ≤ ∞, where
α is fixed in R. Let us observe some special cases.

Theorem 4.2. Suppose α ∈ R, 0 < p = q ≤ 1, w is a weight, and A = {aQP} is
a matrix. Then A is bounded on ḃα,q

q,w if and only if

sup
P∈Q(w)

{ ∑
Q∈Q(w)

[( |Q|
|P |

)−α
n
− 1

2

|aQP |
]qw(Q)
w(P )

} 1
q

<∞.(9)

Proof. First let us suppose that A is bounded on ḃα,q
q,w. Fix a dyadic cube P ∈ Q(w)

and define a sequence sP by

(sP )Q :=

{
|P |α

n
+ 1

2w(P )−
1
q if Q = P

0 if Q �= P
.

Then ‖sP ‖ḃ
α,q
q,w

= 1. Since (AsP )Q = aQP |P |α
n

+ 1
2w(P )−

1
q for Q ∈ Q(w), we have{ ∑

Q∈Q(w)

[( |Q|
|P |

)−α
n
− 1

2

|aQP |
]qw(Q)
w(P )

} 1
q

=
[ ∑

Q∈Q(w)

(
|Q|−α

n
− 1

2 |aQP ||P |α
n

+ 1
2w(P )−

1
q

)q

w(Q)
]1

q

= ‖AsP‖ḃ
α,q
q,w

≤ ‖A‖‖sP‖ḃ
α,q
q,w

= ‖A‖.
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Thus, after taking supremum over all dyadic cubes P in Q(w), we have condition (9).
Conversely, suppose that condition (9) holds. Since s ∈ ḃα,q

q,w, we have

‖s‖ḃ
α,q
q,w

=
[ ∑

P∈Q(w)

(
|P |−α

n
− 1

2 |sP |
)q

w(P )
]1

q

and so

‖As‖q

ḃα,q
q,w

=
∑

Q∈Q(w)

(
|Q|−α

n
− 1

2

∣∣∣∣ ∑
P∈Q(w)

aQP sP

∣∣∣∣)q

w(Q)

≤
∑

P∈Q(w)

∑
Q∈Q(w)

[( |Q|
|P |

)−α
n
− 1

2

|aQP |
]qw(Q)
w(P )

·
(
|P |−α

n
− 1

2 |sP |
)q

w(P )

≤ sup
P∈Q(w)

{ ∑
Q∈Q(w)

[( |Q|
|P |

)−α
n
− 1

2

|aQP |
]qw(Q)
w(P )

}
· ‖s‖q

ḃα,q
q,w
,

where we apply the triangle inequlaity in the first inequality for index q. Hence A is
bounded on ḃα,q

q,w.

By a duality argument, we have the following result.

Corollary 4.3. Suppose α ∈ R, w is a weight, and A = {aQP} is a matrix. Then
A is bounded on ḃα,∞∞,w if and only if

sup
Q

∑
P

( |P |
|Q|

)α
n
− 1

2

|aQP |w(P )
w(Q)

<∞.(10)

Proof. Note that a matrix A is bounded on ḃα,∞∞,w if and only if its adjoint A∗ is
bounded on ḃ−α,1

1,w where a∗QP = aPQ. Thus, by Theorem 4.2, A is bounded on ḃα,∞∞,w

if and only if condition (10) holds.

Theorem 4.4. Suppose α ∈ R, w is a weight and A = {aQP} is a matrix operator
with aQP ≥0 for all dyadic cubes P and Q. Then A is bounded on ḃα,∞

1,w if and only
if

sup
ν∈Z

∑
µ∈Z

sup
P∈Qµ(w)

∑
Q∈Qν(w)

( |Q|
|P |

)−α
n
− 1

2

aQP
w(Q)
w(P )

<∞.(11)

Proof. Suppose A is bounded on ḃα,∞
1,w . For each pair of µ and ν in Z, let

Kµ,ν := sup
P∈Qµ(w)

∑
Q∈Qν(w)

( |Q|
|P |

)−α
n
− 1

2

aQP
w(Q)
w(P )

.
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Claim that Kµ,ν < ∞ for every pair of µ and ν. Suppose that there exist µ0, ν0 ∈ Z

such thatKµ0,ν0 = ∞. For j ∈ N, there exists a dyadic cube Pj such that �(Pj) = 2−µ0

and ∑
Q∈Qν0(w)

( |Q|
|Pj|

)−α
n
− 1

2

aQPj

w(Q)
w(Pj)

≥ j.

For j ∈ N, let sj be a sequence defiend by, for P ∈ Q(w),

(sj)P :=

{
|Pj |α

n
+ 1

2w(Pj)−1 if P = Pj

0 if P �= Pj

.

Then ‖sj‖ḃα,∞
1,w

= 1 and for Q ∈ Q(w)

(Asj)Q =
∑

P∈Q(w)

aQP (sj)P = aQPj |Pj |α
n

+ 1
2w(Pj)−1.

Thus, ∑
Q∈Qν0(w)

( |Q|
|Pj|

)−α
n
− 1

2

aQPj

w(Q)
w(Pj)

=
∑

Q∈Qν0 (w)

|Q|−α
n
− 1

2 |(Asj)|w(Q)

≤ ‖Asj‖ḃα,∞
1,w

≤ C‖sj‖ḃα,∞
1,w

= C,

where we apply the boundedness of the matrix A on ḃα,∞
1,w . This contradiction yields

Kµ,ν <∞ for each µ, ν ∈ Z.
Fix ν ∈ Z and, for each µ ∈ Z, choose a dyadic cube Pµ satisfying �(Pµ) = 2−µ

and ∑
Q∈Qν(w)

( |Q|
|Pµ|

)−α
n
− 1

2

aQPµ

w(Q)
w(Pµ)

≥ 1
2
Kµ,ν.

Let sν be a sequence defiend by

(sν)P :=

{
|Pµ|α

n
+ 1

2w(Pµ)−1 if P = Pµ

0 if P �= Pµ

.

Then ‖sν‖ḃα,∞
1,w

= 1 and

(Asν)Q =
∑
µ∈Z

∑
P∈Qµ(w)

aQP (sν)P =
∑
µ∈Z

aQPµ |Pµ|α
n

+ 1
2w(Pµ)−1.

Since A is bounded on ḃα,∞
1,w , we have
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∑
µ∈Z

sup
P∈Qµ(w)

∑
Q∈Qν(w)

( |Q|
|P |

)−α
n
− 1

2

aQP
w(Q)
w(P )

≤ 2
∑
µ∈Z

∑
Q∈Qν(w)

( |Q|
|Pµ|

)−α
n
− 1

2

aQPµ

w(Q)
w(Pµ)

= 2
∑

Q∈Qν(w)

|Q|−α
n
− 1

2

(∑
µ∈Z

aQPµ |Pµ|α
n

+ 1
2w(Pµ)−1

)
w(Q)

≤ 2‖Asν‖ḃ
α,∞
1,w

≤ C‖sν‖ḃ
α,∞
1,w

= C.

Thus, after taking the supremum over ν ∈ Z, we have condition (11).
Conversely, suppose that condition (11) holds. Since s ∈ ḃα,∞

1,w , we have

‖s‖ḃα,∞
1,w

= sup
µ∈Z

∑
P∈Qµ(w)

|P |−α
n
− 1

2 |sP |w(P )

and so

‖As‖ḃ
α,∞
1,w

≤ sup
ν∈Z

∑
µ∈Z

∑
P∈Qµ(w)

|P |−α
n
− 1

2 |sP |w(P )
∑

Q∈Qν(w)

( |Q|
|P |

)−α
n
− 1

2

aQP
w(Q)
w(P )

≤ sup
ν∈Z

∑
µ∈Z

[
sup

P∈Qµ(w)

∑
Q∈Qν(w)

( |Q|
|P |

)−α
n
− 1

2

aQP
w(Q)
w(P )

]
×
[ ∑

P∈Qµ(w)

|P |−α
n
− 1

2 |sP |w(P )
]

≤ sup
ν∈Z

[∑
µ∈Z

sup
P∈Qµ(w)

∑
Q∈Qν(w)

( |Q|
|P |

)−α
n
− 1

2

aQP
w(Q)
w(P )

]
· ‖s‖ḃα,∞

1,w
.

Hence A is bounded on ḃα,∞
1,w .

Corollary 4.5. Suppose α ∈ R, w is a weight and A = {aQP} is a matrix operator
with aQP ≥ 0 for all dyadic cubes P and Q. Then A is bounded on ḃα,1∞,w if and only
if

sup
µ∈Z

∑
ν∈Z

sup
Q∈Qν(w)

∑
P∈Qµ(w)

( |P |
|Q|

)α
n
− 1

2

aQP
w(P )
w(Q)

<∞.(12)

Proof. By a duality argument, the result follows immediately.

Definition 4.6. Let w be a weight and α ∈ R. We say that a matrix operator
A = {aQP} is an element of an algebra of bounded matrix operator, denoted by
A ∈ amoα(w), if |A| is bounded on ḃα,q

p,w for all 1 ≤ p, q ≤ ∞.
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Here is a characterization of amoα(w).

Theorem 4.7. Let α ∈ R, w be a weight, and A = {aQP} be a matrix operator.
Then A ∈ amoα(w) if and only if A satisfies (9–10),

sup
ν∈Z

∑
µ∈Z

sup
P∈Qµ(w)

∑
Q∈Qν(w)

( |Q|
|P |

)−α
n
− 1

2

|aQP |w(Q)
w(P )

<∞,(13)

and

sup
µ∈Z

∑
ν∈Z

sup
Q∈Qν(w)

∑
P∈Qµ(w)

( |P |
|Q|

)α
n
− 1

2

|aQP |w(P )
w(Q)

<∞.(14)

Proof. By Definition 4.6, the “if” part follows immediately by Theorem 4.2 with
p = q = 1, Corollary 4.3, Theorem 4.4 and Corollary 4.5. Conversely,

(a) by Theorem 4.2 with p = q = 1 and condition (9), A is bounded on ḃα,1
1,w;

(b) by Corollary 4.3 and condition (10), A is bounded on ḃα,∞∞,w;
(c) by Theorem 4.4 and condition (13), A is bounded on ḃα,∞

1,w ;

(d) by Corollary 4.5 and condition (14), A is bounded on ḃα,1∞,w.

Hence it follows from interpolation theorem that A is bounded on ḃα,q
p,w for all 1 ≤

p, q ≤ ∞, i.e., A ∈ amoα(w).

Remark 4.8.
(a) It is routine to check that amoα(w) is an algebra with composition.
(b) Because β/p+ n/p′ ≤ β for p ≥ 1, it follows from Theorem 3.4 that we have

adα
1 (β) ⊆ amoα(w).

(c) If the weight w ≡ 1, then β = n. So we have the following result: if a matrix
A is almost diagonal then (i) the estimate wQP is independent of p for p ≥ 1,
(ii) the matrix A is bounded on ḃα,q

p for 1 ≤ p, q ≤ ∞ and (iii) A ∈ amoα(1).

5. APPLICATIONS

Consider that an operator T is linear from the Schwartz space S to its dual S′ and
has a kernel K : Rn × Rn → C which gives the action of T away from the diagonal.
The kernel K is a function which is locally integrable on R

n × R
n \ {(x, y) : x = y}

and there exist a constant C > 0 and a regularity exponent ε ∈ (0, 1] such that

|K(x, y)| ≤ C|x − y|−n for x �= y;(15)

|K(x, y)−K(x′, y)| ≤ C
|x− x′|ε
|x− y|n+ε

for |x− x′| ≤ |x− y|
2

;(16)

|K(x, y)−K(x, y′)| ≤ C
|y − y′|ε
|x− y|n+ε

for |y − y′| ≤ |x− y|
2

.(17)
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That K gives the action of T away from the diagonal means that is for any two
functions f and g in S and which have disjoint support, we have that

Tf(g) = 〈Tf, g〉 =
∫

R2n

K(x, y)f(y)g(x)dxdy,

then T is called a singular integral operator, denoted by T ∈ SIO(ε).
Next, we recall the definition of Ap weight in questions.

Definition 5.1. (Ap Weights). For every cube Q in R
n, and a non-negative and

locally integrable function w on Rn. We say that w ∈ Ap if ‖w‖Ap is finte, where
‖w‖Ap is defined by

‖w‖Ap :=


sup
Q

ess sup
y∈Q

w−1(y)
1
|Q|

∫
Q
w(t)dt if 0 < p ≤ 1

sup
Q

(
1
|Q|

∫
Q
w(x)dx

)(
1
|Q|

∫
Q
w(x)1−p′dx

)p−1

if 1 < p <∞
,

where 1
p + 1

p′ = 1. Also let A∞ =
⋃

0<p<∞Ap .

Remark 5.2.
(a) Let us recall matrix-Ap weights given in [8, 18, 21]. Let M be the cone of

non-negative definite m ×m complex-valued matrices. By definition, a matrix
weight W is an almost everywhere invertible map W : Rn → M, W and W−1

are locally integrable. We say that W is a matrix-Ap weight if it is a matrix
weight satisfying

‖W‖Ap :=


sup
Q

ess sup
y∈Q

1
|Q|

∫
Q

∥∥∥W 1
p (t)W− 1

p (y)
∥∥∥p
dt <∞ if 0 < p ≤ 1

sup
Q

∫
Q

(∫
Q

∥∥∥W 1
p (x)W− 1

p (t)
∥∥∥p′ dt

|Q|
) p

p′ dx

|Q| <∞ if 1 < p <∞
,

where the first supremum is taken over all cubes Q in Rn.
(b) In the scalar case, an Ap weight is an A1 weight in the sense of Muckenhoupt

[11] for 0 < p ≤ 1. Since there exists a constant C > 0 such that
1
|Q|

∫
Q
w(t)dt ≤ C · w(y) for a.e. y ∈ Q, for all Q ⊆ R

n.

In terms of the maximal function, this condition is

Mw(x) = sup
x∈Q

1
|Q|

∫
Q
w(t)dt ≤ C · w(x) for a.e. x,

i.e. w ∈ A1, where M is the Hardy-Littlewood maximal operator.
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(c) If a scalar weight w ∈ Ap for 1 ≤ p ≤ ∞, then w(x)dx is a doubling measure.

Definition 5.3. Let w be a weight and T ∈ SIO(ε). Then T ∈ AMO0(w) if T
is bounded on Ḃ0,q

p,w for all 1 ≤ p, q ≤ ∞.

Theorem 5.4. Suppose w is an A1 weight and T ∈ SIO(ε). Let A(T ) =
{〈TψP , ϕQ〉}. Then the following statements are equivalent.

(a) T ∈ AMO0(w);
(b) A(T ) ∈ amo0(w);
(c) A(T ) satisfies (9–10) and (13-14) with α = 0 and aQP = 〈TψP , ϕQ〉, simulta-

neously.

Proof. By Proposition 1.5, (a) implies (b) and by Theorem 4.7, (b) implies (c).
Finally, by Definition 5.3, Proposition 1.5 and Theorem 4.7, (c) implies (a). Hence we
establish the equivalence of all three statements.

Here is an application for the boundedness of Fourier-Haar multipliers.

Theorem 5.5. Let α1, α2 ∈ R, 0 < p, q1, q2 ≤ ∞ and w ∈ Ap.
(a) For q1>q2, the Fourier-Haar multiplierT t is bounded from Ḃα1,q1

p,w into Ḃα1+α2,q2
p,w

if and only if t∈ ḃα2,q2ρ′∞,w , where ρ′ is the index conjugate of ρ=q1/q2.
(b) For q1 ≤ q2, the Fourier-Haar multiplier T t is bounded from Ḃα1,q1

p,w into
Ḃα1+α2,q2

p,w if and only if t ∈ ḃα2,∞∞,w .

Proof. For part (a), suppose t = {tQ}Q ∈ ḃα2,q2ρ′∞,w and f ∈ Ḃα1,q1
p,w where

ρ = q1

q2
and ρ′ = q1

q1−q2
. Then

{〈f, ϕQ〉
}

Q
∈ ḃα1,q1

p,w , by Proposition 1.5. Thus, by (6),
Propositions 1.5 and 2.1(a), we have

‖Ttf‖Ḃ
α1+α2,q2
p,w

≈
∥∥∥{|Q|− 1

2 tQ〈f, ϕQ〉
}

Q

∥∥∥
ḃ
α1+α2,q2
p,w

≤ C‖t‖
ḃ
α2,q2ρ′
∞,w

·
∥∥∥{〈f, ϕQ〉

}
Q

∥∥∥
ḃ
α1,q1
p,w

≤ C‖t‖
ḃ
α2,q2ρ′
∞,w

· ‖f‖Ḃ
α1,q1
p,w

.

Conversely, suppose that Tt is bounded from Ḃα1,q1
p,w into Ḃα1+α2,q2

p,w . Then, by
Proposition 1.5, we obtain∥∥∥{|Q|− 1

2 tQ〈f, ϕQ〉
}

Q

∥∥∥
ḃ
α1+α2,q2
p,w

≈ ‖Ttf‖Ḃ
α1+α2,q2
p,w

≤ C‖f‖Ḃ
α1,q1
p,w

≤ C
∥∥∥{〈f, ϕQ〉

}
Q

∥∥∥
ḃ
α1,q1
p,w

.
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Thus, by Proposition2.1 (a), we get t ∈ ḃα2,q2ρ′∞,w .
Similarly, for part (b), suppose t = {tQ}Q ∈ ḃα2,∞∞,w and f ∈ Ḃα1,q1

p,w . Then{〈f, ϕQ〉
}

Q
∈ ḃα1,q1

p,w , and so Tt is bounded from Ḃα1,q1
p,w into Ḃα1+α2,q2

p,w , by Propositions
1.5 and 2.1 (b).

Conversely, suppose that Tt is bounded from Ḃα1,q1
p,w into Ḃα1+α2,q2

p,w . Then∥∥∥{|Q|− 1
2 tQ〈f, ϕQ〉

}
Q

∥∥∥
ḃ
α1+α2,q2
p,w

≤ C
∥∥∥{〈f, ϕQ〉

}
Q

∥∥∥
ḃ
α1,q1
p,w

.

Thus, by Proposition 2.1(b), we obtain t ∈ ḃα2,∞∞,w .

To prove the boundedness of paraproduct operators, we need the following lemma.

Lemma 5.6. Let Φ be the function given in Definition 1.2. Define Φ Q(x) =
|Q|− 1

2 Φ
(x−xQ

�(Q)

)
. Suppose G={gQP}Q,P where gQP =〈ψP ,ΦQ〉 for all dyadic cubes

P and Q. For α<0, 0<p, q≤∞, G∈adα
p (β), hence is bounded on ḃα,q

p,w.

Proof. For �(P ) ≤ �(Q), since
∫
xγψP (x)dx = 0 for all γ , by [5, p. 150, Lemma

B.1], we have

|〈ψP ,ΦQ〉| ≤ C
( �(Q)
�(P )

)α
(

1+
|xQ−xP |
�(Q)

)−J−ε(�(P )
�(Q)

)n+ε
2

+J−n
, α∈R and ε>0,

where C depends on J only.
For �(Q) < �(P ), by [5, p. 152, Lemma B.2], we obtain

|〈ψP ,ΦQ〉| ≤ C

(
1 +

|xQ − xP |
�(P )

)−J−ε( �(Q)
�(P )

)n
2

= C
( �(Q)
�(P )

)α
(

1 +
|xQ − xP |
�(P )

)−J−ε(�(Q)
�(P )

)n−2α
2
.

So choosing ε = −2α, we obtain the result.

Here is an application to paraproduct operators.

Theorem 5.7. For α < 0, β ∈ R and 0 < p, q ≤ ∞, let w be an Ap-weight and
Πg be the paraproduct operator defined in Definition 1.2.

(i) If 0 < r < p and g ∈ Ḃ
β,qr/(q−r)
pr/(p−r),w

, then Πg is bounded from Ḃα,q
p,w into Ḃα+β,r

r,w .

(ii) If 0 < p ≤ r and Sϕ(g) = {〈g, ϕ
Q
〉}

Q∈Q
∈ ċ

β,qr/(q−r)
p/r,w

, then Πg is bounded from
Ḃ

α,q
p,w into Ḃα+β,r

r,w .
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Proof. Let f ∈ Ḃα,q
p,w. By equation (4) and Proposition 1.5, we have

(18)

‖Πgf‖r
Ḃα+β,r

r,w
≈

∥∥∥{〈g, ϕQ〉|Q|−1/2
(∑

P

〈ψP ,ΦQ〉〈f, ϕP 〉
)}

Q

∥∥∥r

ḃα+β,r
r,w

=
∑
Q∈Q

(
|Q|−α/n−1/2+1/(2r)|(Gs)Q|

)r

(
|Q|−β/n−1/2+1/(2r)|〈g, ϕQ〉|

)rw(Q)
|Q| ,

where s = {〈f, ϕP 〉}P∈Q
= Sϕ(f). For case (i), by Proposition 2.3, the last inequality

is dominated by a multiple of∥∥∥{(
|Q|−α/n−1/2+1/(2r)(Gs)Q

)r}
Q∈Q

∥∥∥
ḃ
0,q/r
p/r,w

×
∥∥∥{(

|Q|−β/n−1/2+1/(2r)〈g, ϕQ〉
)r}

Q∈Q

∥∥∥
ḃ
0,(q/r)′
(p/r)′,w

,

provided
{(

|Q|−β/n−1/2+1/(2r)〈g, ϕQ〉
)r}

Q∈Q
∈ ḃ

0,(q/r)′
(p/r)′,w. A calculation shows that∥∥∥{(

|Q|−α/n−1/2+1/(2r)(Gs)Q

)r}
Q∈Q

∥∥∥
ḃ
0,q/r
p/r,w

=
{∑

ν∈Z

[ ∑
Q∈Qν

(
|Q|−α/n−1/2|(Gs)

Q
|
)p
w(Q)

]q/p}r/p

=
∥∥Gs

∥∥r

ḃ
α,q
p,w

≤ C‖s‖r
ḃα,q
p,w

≤ C‖f‖r
Ḃα,q

p,w
,

by Proposition 1.5 and Lemma 5.6. Also∥∥∥{(
|Q|−β/n−1/2+1/(2r)〈g, ϕ

Q
〉
)r}

Q∈Q

∥∥∥
ḃ
0,(q/r)′
(p/r)′ ,w

=
{∑

ν∈Z

[ ∑
Q∈Qν

(
|Q|−β/n−1/2|〈g, ϕQ〉|

)pr/(p−r)
w(Q)

] qr/(q−r)
pr/(p−r)

}(q−r)/r

=
∥∥{〈g, ϕ

Q
〉}∥∥r

ḃ
β,qr/(q−r)
pr/(p−r),w

,

which is equivalent to
∥∥g∥∥r

Ḃ
β,qr/(q−r)
pr/(p−r),w

by Proposition 1.5.
For case (ii), apply Proposition 2.6 to (18) to yield that

‖Πgf‖r
Ḃ

α+β,r
r,w

≤ C
∥∥∥{(

|Q|−α/n−1/2+1/(2r)(Gs)Q

)r}
Q∈Q

∥∥∥
ḃ
0,q/r
p/r,w

×
∥∥∥{(

|Q|−β/n−1/2+1/(2r)〈g, ϕQ〉
)r}

Q∈Q

∥∥∥
ċ
0,(q/r)′
p/r,w

.
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It is clear that∥∥∥{(
|Q|−β/n−1/2+1/(2r)〈g, ϕ

Q
〉
)r}

Q∈Q

∥∥∥
ċ
0,(q/r)′
p/r,w

=
{∑

ν∈Z

(
|Q|−β/n−1/2|〈g, ϕ

Q
〉|w(Q)1/r−1/p

)qr/(q−r)}(q−r)/(qr)

=
∥∥{〈g, ϕQ〉

}
Q∈Q

∥∥
ċ
β,qr/(q−r)
p0,w

,

where p0 satisfies 1− 1/p0 = 1/r− 1/p; that is p0 = pr/(pr+ r− p). Therefore Πg

is bounded from Ḃα,q
p,w into Ḃα+β,r

r,w and the proof is finished.

Remark 5.8. In 1989, M. Meyer [16] proved that a singular integral operator T is
bounded on Ḃ0,1

1 if and only if T ∗1 = 0, T1 ∈ Ḃ0∞∞ , ΠT 1 is bounded on Ḃ0,1
1 , and T

satisfies the weak boundedness property. In 1995, Youssfi [27] showed that for β ∈ R,
1 < p < ∞, 1 ≤ q ≤ 2, and g ∈ Ḃ

β,∞∞ , Πg is bounded from Ḟ
0,q
p into Ḃβ,p

p if and
only if g ∈ Ḟβ,q∞ . In Theorem 5.7, we give a sufficient condition for the boundedness
of paraproduct operators acting on homogeneous weighted Besov spaces.
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