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POSITIVE SOLUTIONS FOR THE PERIODIC SCALAR p-LAPLACIAN:
EXISTENCE AND UNIQUENESS

Sophia Th. Kyritsi and Nikolaos S. Papageorgiou

Abstract. We study a nonlinear periodic problem driven by the scalar p-Laplacian.
The reaction term is a Carathéodory function f(t, x) which satisfies only a uni-
lateral growth condition in the x-variable. Assuming strict monotonicity for the
quotient f(t, x)

/
xp−1 and using variational methods coupled with suitable trunca-

tion techniques, we produce necessary and sufficient conditions for the existence
and uniqueness of positive solutions.

1. INTRODUCTION

In this paper we study the following nonlinear periodic problem driven by the scalar
p-Laplacian:

(1)

{
−(|u′(t)|p−2u′(t)

)′ = f
(
t, u(t)

)
a.e. on T = [0, b],

u(0) = u(b), u′(0) = u′(b), u ≥ 0, 1<p<∞

}
.

The reaction term f(t, x) is a Carathéodory function, i.e., for all x∈R, t −→ f(t, x)
is measurable, and for a.a. t∈T , x −→ f(t, x) is continuous.

The aim of this work is to establish the existence and uniqueness of positive so-
lutions, when the nonlinearity f(t, ·) is only unilaterally restricted (only from above).
In fact, we produce necessary and sufficient conditions for such problems to have a
unique positive solution.

There have been papers dealing with the existence and multiplicity of positive
solutions for the periodic scalar p-Laplacian. We mention the works of Aizicovici-
Papageorgiou-Staicu [1], Binding-Rynne [3, 4], del Pino-Manásevich-Murúa [5],
Drabek-Manásevich [6], Kyritsi-Papageorgiou [7], Motreanu-Motreanu-Papageorgiou
[8], Yang [11], and Zhang [12]. In all these works a bilateral polynomial growth is
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imposed on the right-hand side. To the best of our knowledge, the question of existence
and uniqueness of periodic solutions for the scalar p-Laplacian has not been addressed
in this generality.

Our approach is variational with suitable truncation techniques.

2. MATHEMATICAL BACKGROUND

We start by considering the following weighted nonlinear eigenvalue problem:

(2)

{ −(|u′(t)|p−2u′(t)
)′ =

(
λ̂ + β(t)

)|u(t)|p−2u(t) a.e. on T = [0, b],

u(0) = u(b), u′(0) = u′(b), 1<p<∞, λ̂ ∈ R, β ∈ L1(T )

}
.

This eigenvalue problem was first investigated by Zhang [12] and later Binding-
Rynne [3, 4] answered important questions left open by Zhang and produced a more
definitive picture for the spectrum of problem (2). In particular, from Binding-Rynne
[4], we know that problem (2) admits a smallest eigenvalue λ̂0(β) ∈ R which is simple
and has the following variational characterization:

(3) λ̂0(β) = inf
[
‖u′‖p

p −
∫ b

0

β(t)|u(t)|pdt : u ∈ W 1,p
per (0, b), ‖u‖p = 1

]
,

where W 1,p
per (0, b) = {u ∈ W 1,p(0, b) : u(0) = u(b)}. Recall that W 1,p(0, b) is

embedded continuously, (in fact compactly), into C(T ), therefore the evaluations at
t = 0 and t = b in the definition of W 1,p

per (0, b) make sense. Every eigenfunction
u ∈ W 1,p

per (0, b) corresponding to λ̂0(β) satisfies

u ∈ C1
0 (Z)1(T ) and |u(t)|>0 for all t∈T.

So, an eigenfunction corresponding to λ̂0(β) has constant sign and we can always
assume that it is positive. An eigenfunction corresponding to an eigenvalue λ̂ �= λ̂1(β)
is necessarily nodal (i.e., sign changing).

We can rewrite (3) as follows:

(4) λ̂0(β) = inf
[
‖u′‖p

p −
∫
{u�=0}

β(t)|u(t)|pdt : u ∈ W 1,p
per (0, b), ‖u‖p = 1

]
.

We observe that in (4), the integral
∫
{u�=0}β|u|pdt makes sense even when β(·) is

only a measurable function and there exists ĉ ∈ L1(T )+ such that

β(t) ≤ ĉ(t) a.e. on T or β(t) ≥ −ĉ(t) a.e. on T.

In the first case λ̂0(β) ∈ (−∞, +∞] and in the second case λ̂0(β) ∈ [−∞, +∞).
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In addition to the Sobolev space W1,p
per (0, b), we shall also use the Banach space

Ĉ1(T ) = C1(T ) ∩ W 1,p
per (0, b) = {u ∈ C1(T ) : u(0) = u(b)}. This is an ordered

Banach space with an order cone given by

Ĉ+ = {u ∈ Ĉ1(T ) : u(t) ≥ 0 for all t∈T}.

This cone has an nonempty interior given by

intĈ+ = {u ∈ Ĉ+ : u(t)>0 for all t∈T}.

Let u, v ∈ intĈ+ and set

R(u, v) = |u′(t)|p − |v′(t)|p−2v′(t)
( u(t)p

v(t)p−1

)′
.

From Allegretto-Huang [2] we know that R(u, v)(t) ≥ 0 for all t∈T .
Let A : W 1,p

per (0, b) −→ W 1,p
per (0, b)∗ be the nonlinear operator defined by

〈A(u), y〉 =
∫ b

0
|u′|p−2u′y′dt for all u, y ∈ W 1,p

per (0, b)

(by 〈·, ·〉 we denote the duality brackets for the pair
(
W 1,p

per (0, b)∗, W 1,p
per (0, b)

)
). This

map is continuous and monotone (see, for example, Papageorgiou-Kyritsi [9]).
Throughout this work by ‖ · ‖ we denote the norm of the Sobolev space W1,p

per (0, b)
and for p ∈ [1,∞], by ‖ · ‖p we denote the norm of the Lebesgue space Lp(T ). Finally,
for every r ∈ R, we set r± = max{±r, 0} and by | · |1 we denote the Lebesgue measure
on R.

3. EXISTENCE OF POSITIVE SOLUTIONS

The hypotheses on the reaction term f(t, x) are the following:

H: f : T ×R −→ R is a Carathéodory function such that

(i) for all x ≥ 0, f(·, x) ∈ L1(T ) and there exists α ∈ L1(T )+ such that

f(t, x) ≤ α(t)(1 + xp−1) for a.a t∈T, all x ≥ 0;

(ii) for a.a. t∈T , the function x −→ f(t,x)
xp−1 is strictly decreasing on (0, +∞);

(iii) if ϑ(t) = lim
x→+∞

f(t,x)
xp−1 , then λ̂0(ϑ)>0;

(iv) if ϑ0(t) = lim
x→0+

f(t,x)
xp−1 , then λ̂0(ϑ0)<0;
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Remark 3.1. Because we are looking for positive solutions and the hypotheses
on f(t, ·) concern only the positive semiaxis R+ = [0, +∞), by truncating f(t, ·) if
necessary, we may (and will) assume that f(t, x) = f(t, 0) for a.a. t ∈ T , all x ≤ 0.
By virtue of hypothesis H(ii) we see that the limits ϑ(t), ϑ0(t) in hypotheses H(iii),
(iv) exist and are measurable functions. We have

f(t, x)
xp−1

≤ f(t, 1) for a.a. t∈T, all x ≥ 1 and f(·, 1) ∈ L1(T ),

⇒ ϑ(t) ≤ f(t, 1) for a.a. t∈T,

⇒ λ̂0(ϑ) ∈ (−∞, +∞].

Similarly, we have

f(t, x)
xp−1

≥ f(t, 1) for a.a. t∈T, all x ∈ (0, 1] and f(·, 1) ∈ L1(T ),

⇒ ϑ0(t) ≥ f(t, 1) for a.a. t∈T,

⇒ λ̂0(ϑ0) ∈ [−∞, +∞).

If ϑ, ϑ0 ∈ L1(T ), then λ̂0(ϑ), λ̂0(ϑ0) ∈ R and are the principal eigenvalues of (2)
when β = ϑ and β = ϑ0 respectively. In the autonomous case, i.e., when f(t, x) = fø,
hypotheses H(iii), (iv) reduce to

ϑ0 <0<ϑ

(recall that 0 is the principal eigenvalue of the negative periodic scalar p-Laplacian,
i.e., for problem (2) when β ≡ 0).

Example 3.2. The function fø = λ(xr−1 − xq−1) for all x ≥ 0 with λ > 0,
1<r ≤ p ≤ q<∞, and r �= p or q �= p, satisfies hypotheses H. In this case ϑ = −∞
if q >p and ϑ = −λ if r <p = q (and thus λ̂0(ϑ) = +∞ if q >p and λ̂0(ϑ) = λ if
r<p = q) and ϑ0 = +∞ if r<p and ϑ0 = λ if r = p<q (and thus λ̂0(ϑ0) = −∞ if
r <p and λ̂(ϑ0) = −λ if r = p<q). Another admissible nonlinearity is provided by
the fø = xr−1 − δxp−1ex for all x ≥ 0, δ > 0, which does not exhibit a polynomial
growth from below.

We introduce the following truncation-perturbation of f(t, x):

(5) f̂(t, x) =

{
f(t, 0), if x ≤ 0
f(t, x) + xp−1 if x>0

.

This is a Carathéodory function. Let F̂ (t, x) =
∫ b
0 f̂(t, s)ds. Hypothesis H(i) and

(5) imply that

(6) F̂ (t, x) ≤ α1(t)(1 + xp) for a.a. t∈T, all x ≥ 0 with α1 ∈ L1(T )+.
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This growth restriction on F̂ (t, ·), the fact that f(·, x) ∈ L1(T ) for all x ≥ 0, and
hypothesis H(ii) permit the introduction of the functional ϕ̂ : W 1,p

per (0, b) −→ R defined
by

ϕ̂(u) =
1
p
‖u′‖p

p +
1
p
‖u‖p

p −
∫ b

0
F̂

(
t, u(t)

)
dt for all u ∈ W 1,p

per (0, b).

Proposition 3.3. If hypotheses H hold, then ϕ̂ is coercive, i.e., ϕ̂(u) −→ +∞ as
‖u‖ → ∞.

Proof. We argue indirectly. So, suppose that the result is not true. Then we can
find {un}n≥1 ⊆ W 1,p

per (0, b) such that

(7) ‖un‖ −→ ∞ and ϕ̂(un) ≤ M1 for some M1 >0, all n≥1.

We have

(8)
1
p

(‖u′
n‖p

p + ‖un‖p
p

) ≤ M1 +
∫ b

0
F̂ (t, un)dt for all n≥1.

Note that

F̂
(
t, un(t)

)
= F̂

(
t, u+

n (t)
)

+ f(t, 0)
(−u−

n (t)
)

for a.a. t∈T, all n≥1

(see (5))

and
f(t, x)
xp−1

≥ f(t, 1) for a.a. t∈T, all x ∈ (0, 1],

⇒ f(t, x) ≥ f(t, 1)xp−1 for a.a. t∈T, all x ∈ (0, 1],

⇒ f(t, 0) ≥ 0 for a.a. t∈T.(9)

It follows that

F̂
(
t, un(t)

) ≤ F̂
(
t, u+

n (t)
) ≤ α(t)

(
1 + |un(t)|p) a.a. t ∈ T,

(see [6]).
So, if we use this fact in (8), then

(10)
1
p

(‖u′
n‖p

p + ‖un‖p
p

) ≤ M1 +
∫ b

0
F̂ (t, u+

n )dt

≤ c1(1 + ‖un‖p
∞) for some c1 >0, all n≥1.

From (10) and since ‖un‖ → ∞ (see (7)), we see that ‖un‖∞ → ∞. Let yn =
un

‖un‖∞ , n≥1. Then ‖yn‖∞ = 1 for all n≥1 and from (10), we have

1
p

(‖y′n‖p
p + ‖yn‖p

p

) ≤ c1

( 1
‖un‖p∞

+ 1
)

for all n≥1,

⇒ {yn}n≥1 ⊆ W 1,p
per (0, b) is bounded.
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By passing to a suitable subsequence if necessary, we may assume that

(11) yn
w−→ y in W 1,p

per (0, b) and yn −→ y in C(T ) with ‖y‖∞ = 1.

If F (t, x) =
∫ x
0 f(t, s)ds, then from (7) we have

(12)

1
p

(‖y′n‖p
p + ‖yn‖p

p

) ≤ M1

‖un‖p∞
+

∫ b

0

F̂ (t, un)
‖un‖p∞

dt

=
M1

‖un‖p∞
+

∫
{un>0}

(F (t, un)
‖un‖p∞

+
1
p
yp
n

)
dt

+
∫
{un≤0}

f(t, 0)
‖un‖p∞

undt (see (5))

≤ M1

‖un‖p∞
+

1
p
‖y+

n ‖p
∞ +

∫ b

0

F (t, u+
n )

‖un‖p∞
dt for all n≥1

(see (9)).
First assume that {u+

n }n≥1 ⊆ C(T ) is bounded. Then y ≤ 0. Hypothesis H(i)
implies that

(13) F (t, x) ≤ α2(t)(1 + xp) for a.a. t∈T, all x ≥ 0 with α2 ∈ L1(T )+.

So, we have∫ b

0

F (t, u+
n )

‖un‖p∞
dt ≤

∫ b

0

α2(t)
( 1
‖un‖p∞

+ (y+
n )p

)
dt (see(13))

≤ c2

( 1
‖un‖p∞

+ ‖y+
n ‖p

∞
)

for some c2>0, all n≥1,

⇒ lim sup
n→∞

∫ b

0

F (t, u+
n )

‖un‖p∞
dt ≤ 0 (see (11) and recall y ≤ 0).

Then passing to the limit as n→∞ in (12) and using (11), we obtain

1
p

(‖y′n‖p
p + ‖y‖p

p

) ≤ 0,

⇒ y = 0, which contradicts (11).

Hence we may assume that ‖u+
n ‖ → ∞. From (5) we have

(14)
1
p
‖(y+

n )′‖p
p ≤ M1

‖u+
n ‖p∞

+
∫ b

0

F (t, u+
n )

‖u+
n ‖p∞

dt for all n≥1 (see (9)).
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Since F (t, 0) = 0, we have

(15)
∫ b

0

F (t, u+
n )

‖u+
n ‖p∞

dt=
∫
{y+=0}

F (t, u+
n )

‖u+
n ‖p∞

dt +
∫
{y>0}∩{yn>0}

F (t, u+
n )

(u+
n )p

(y+
n )pdt

for all n≥1.
We know that y+

n −→ y+ in C(T ) (see (11)). Therefore, using (13) we have

(16)
∣∣∣ ∫

{y+=0}

F (t, u+
n )

‖u+
n ‖p∞

dt
∣∣∣ ≤ ∫

{y+=0}
α2(t)

( 1
‖u+

n ‖p∞
+ (y+

n )p
)

dt −→ 0 as n→∞.

Note that

u+
n (t) −→ +∞ for all t ∈ {y>0} and χ{y>0}∩{yn>0}(t) −→ χ{y>0}(t)

for a.a. t∈T .
Here by χA we indicate the characteristic function of a set A ⊆ T , i.e.,

χA(t) =
{

1 if t ∈ A
0 if t∈T \ A

.

Let t ∈ {ϑ>−∞} \ N , |N |1 = 0 be such that f(t,x)
xp−1 −→ ϑ(t)+ as x → +∞ (see

hypotheses H(ii) and (iii)). Then given any ε>0 we can find M2 = M2(ε, t)>0 such
that

f(t, x) ≤ (
ϑ(t) + ε

)
xp−1 for all x ≥ M2,

⇒ F (t, x) ≤ 1
p

(
ϑ(t) + ε

)
xp for all x ≥ M2,

⇒ F (t, x)
xp

≤ 1
p

(
ϑ(t) + ε

)
for all x ≥ M2,

⇒ lim sup
x→+∞

F (t, x)
xp

≤ 1
p

(
ϑ(t) + ε

)
.

Since ε>0 was arbitrary, we let ε −→ 0+ to infer that

lim sup
x→+∞

F (t, x)
xp

≤ 1
p

ϑ(t) for a.a. t ∈ {ϑ>−∞}.

Also, if t ∈ {ϑ = −∞} \ N , |N |1 = 0 is such that f(t,x)
xp−1 −→ −∞ = ϑ(t) as

x → +∞, then for every ξ>0, we can find M3 = M3(ξ, t)>0 such that

f(t, x) ≤ −ξxp−1 for all x ≥ M3,

⇒ F (t, x)
xp

≤ −ξ

p
for all x ≥ M3,

⇒ lim sup
x→+∞

F (t, x)
xp

≤ −ξ

p
for a.a. t ∈ {ϑ = −∞}.
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Since ξ was arbitrary, we let ξ → +∞ and have

lim
x→+∞

F (t, x)
xp

= −∞ =
ϑ(t)
p

for a.a. t ∈ {ϑ = −∞}.

Therefore, finally we have

(17) lim sup
x→+∞

F (t, x)
xp

≤ 1
p
ϑ(t) a.e. on T.

Because of (13) we can use Fatou’s lemma and (17) and obtain

(18)
lim sup

n→∞

∫
{y>0}∩{yn>0}

F (t, u+
n )

(u+
n )p

(y+
n )pdt

≤ 1
p

∫
{y>0}

ϑypdt =
1
p

∫
{y+ �=0}

ϑ(y+)pdt.

So, if in (15) we pass to the limit as n→∞ and use (16) and (18), we have

(19) lim sup
n→∞

∫ b

0

F (t, u+
n )

‖u+
n ‖p∞

dt ≤ 1
p

∫
{y+ �=0}

ϑ(y+)pdt.

We return to (14), take limits as n→∞ and use (11) and (19). We obtain

(20)
1
p
‖(y+)′‖p

p ≤ 1
p

∫
{y+ �=0}

ϑ(y+)pdt.

If y+ = 0, then from (12) in the limit as n→∞, we have

1
p
‖y−‖p ≤ 0, i.e., y− = 0.

Therefore y = 0, a contradiction to (11).
So, y+ �= 0. Then from (20) and since in (4) the minimized function is p-

homogeneous, it follows that λ̂0(ϑ) ≤ 0, a contradiction to hypothesis H(iii). This
proves that ϕ̂ is coercive.

Proposition 3.4. If hypotheses H hold, then ϕ̂ is sequentially weakly lower semi-
continuous.

Proof. Recall that in a Banach space the norm functional is sequentially weakly
lower semicontinuous and by the Sobolev embedding theorem W

1,p
per (0, b) is embedded

compactly into C(T ). Therefore, in order to show the sequential weak lower semi-
continuity of ϕ̂, it suffices to show that the integral functional IF̂ : W

1,p
per (0, b) −→ R

defined by I
F̂
(u) = − ∫ b

0 F̂
(
t, u(t)

)
dt for all u ∈ W 1,p

per (0, b), is sequentially weakly
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lower semicontinuous. To this end, let un
w−→ u in W 1,p

per (0, b). Then un −→ u in
C(T ) and so u±

n −→ u± in C(T ). We have:

(21)
−

∫ b

0
F̂ (t, un)dt

= −
∫ b

0
F (t, u+

n )dt − 1
p
‖u+

n ‖p
p −

∫ b

0
f(t, 0)(−u−

n )dt for all n≥1

(see (5)).
Note that

(22)
1
p
‖u+

n ‖p
p −→ 1

p
‖u+‖p

p and
∫ b

0
f(t, 0)(−u−

n )dt −→
∫ b

0
f(t, 0)(−u−)dt.

Also, (13) permits the use of Fatou’s lemma and we have

(23)

lim inf
n→∞

(
−

∫ b

0
F (t, u+

n )dt
)

= − lim sup
n→∞

∫ b

0
F (t, u+

n )dt

≥ −
∫ b

0
lim sup

n→∞
F (t, u+

n )dt

= −
∫ b

0
F (t, u+)dt.

From (21) through (23) it follows that

lim inf
n→∞ I

F̂
(un) ≥ −

∫ b

0
F (t, u+)dt − 1

p
‖u+‖p

p −
∫ b

0
f(t, 0)(−u−)dt = I

F̂
(u),

⇒ I
F̂
(·) is sequentially weakly lower semicontinuous,

⇒ ϕ̂ is sequentially weakly lower semicontinuous.

Next we prove the differentiability of the functional ϕ̂.

Proposition 3.5. If hypotheses H hold, then ϕ̂ ∈ C 1(W 1,p
per (0, b)).

Proof. From the definition of ϕ̂ it is clear that it suffices to show that the functional
u −→ ∫ b

0 F̂
(
t, u(t)

)
dt, u ∈ W 1,p

per (0, b) is C1. To this end let u, h ∈ W 1,p
per (0, b) and let

w(h) =
∫ b

0

(
F̂ (t, u + h) − F̂ (t, u)− f̂(t, u)h

)
dt.

We have

F̂
(
t, u(t) + h(t)

) − F̂
(
t, u(t)

)
=

∫ 1

0

d
dr

F̂
(
t, u(t) + rh(t)

)
dr

=
∫ 1

0
f̂
(
t, u(t) + rh(t)

)
h(t)dr.
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Therefore

(24) |w(h)| ≤
∫ b

0

∫ 1

0

∣∣f̂(
t, u(t) + rh(t)

)− f̂
(
t, u(t)

)∣∣|h(t)|drdt.

Because of (5), we have

(25) f̂
(
t, u(t)+rh(t)

)
=

{
f(t, 0) if t∈{u + rh ≤ 0}
f
(
t, u(t)+rh(t)

)
+

(
u(t) + rh(t)

)p−1 if t∈{u + rh>0} .

By virtue of hypothesis H(ii) for a.a. t∈{u + rh>0} and all r ∈ [0, 1], we have

(26)

f
(
t, u(t) + rh(t)

) ≥ f(t, ‖u + rh‖∞)

(
u(t) + rh(t)

)p−1

‖u + rh‖p−1∞

≥ f(t, ‖u‖∞+‖h‖∞)
‖u‖∞+‖h‖∞

(
u(t)+rh(t)

)p−1 (recall r∈ [0, 1])

≥ −2p−2

∣∣f(t, ‖u‖∞ + ‖h‖∞)
∣∣

‖u‖∞ + ‖h‖∞ (‖u‖p−1
∞ + ‖h‖p−1

∞ ),

⇒ f
(
t, u(t) + rh(t)

) ≥ α3(t)

for a.a. t∈{u + rh>0}, all r ∈ [0, 1], with α3 ∈ L1(T ).
In addition, hypothesis H(i) implies that for a.a. t∈{u+ rh>0}, all r ∈ [0, 1], we

have

(27)

f
(
t, u(t) + rh(t)

) ≤ α(t)
(
1 +

(
u(t) + rh(t)

)p−1
)

≤ α(t)
(
1 + 2p−2(‖u‖∞ + ‖h‖∞)

)
,

⇒ f
(
t, u(t) + rh(t)

) ≤ α4(t)

for a.a. t∈{u + rh>0}, all r ∈ [0, 1], with α4 ∈ L1(T ).
Recalling that f(·, 0) ∈ L1(T ), from (25) through (27), we infer that

(28)
∣∣f̂(

t, u(t)+ rh(t)
)∣∣ ≤ α5(t) for a.a. t∈T, all r ∈ [0, 1], with α5 ∈ L1(T ).

From (24) we have

|w(h)| ≤
∫ b

0

∫ 1

0

∣∣f̂(
t, u(t) + rh(t)

) − f̂
(
t, u(t)

)∣∣‖h‖∞drdt

≤ c3

∫ 1

0

∫ b

0

∣∣f̂(
t, u(t) + rh(t)

) − f̂
(
t, u(t)

)∣∣dtdr‖h‖
for some c3>0 (by Fubini’s theorem)

≤ c3

∫ 1

0
‖N

f̂
(u + rh) − N

f̂
(u)‖1dr‖h‖
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where N
f̂
(v)(·) = f̂

(·, v(·)) for all v ∈ W 1,p
per (0, b).

From (28) and the dominated convergence theorem, we see that∫ 1

0
‖N

f̂
(u + rh)− N

f̂
(u)‖1dr −→ 0 as ‖h‖ → ∞,

⇒ |w(h)|
‖h‖ −→ 0 as ‖h‖ → ∞,

⇒ ϕ̂′(u) = A(u) − N
f̂
(u).

But A(·) is continuous and from the above argument it is clear that N
f̂
(·) is

continuous too. Therefore ϕ̂ ∈ C1(W 1,p
per (0, b)).

Now we are ready to produce nontrivial positive solutions for problem problem (1).

Proposition 3.6. If hypotheses H hold, then problem (1) has a solution u 0 ∈
Ĉ+ \ {0}.

Proof. Propositions 3.3, 3.4, and the Weierstrass theorem imply that there is a
u0 ∈ W 1,p

per (0, b) such that

(29) ϕ̂(u0) = inf
[
ϕ̂(u) : u ∈ W 1,p

per (0, b)
]
= m̂.

Note that, if u−
0 �= 0, then

ϕ̂(u+
0 ) =

1
p
‖(u+

0 )′‖p
p +

1
p
‖u+

0 ‖p
p −

∫ b

0

F̂ (t, u+
0 )dt

=
1
p
‖(u+

0 )′‖p
p −

∫ b

0
F (t, u+

0 )dt (see (5))

<
1
p
‖u′

0‖p
p +

1
p
‖u−

0 ‖p
p −

∫ b

0
F (t, u+

0 )dt −
∫ b

0
f(t, 0)(−u−

0 )dt

(see (9))
= ϕ̂(u0),

which contradicts (29) (recall u+
0 ∈ W 1,p

per (0, b)). Therefore u−0 = 0 and so u0 ≥ 0.
Next we show that u0 �= 0. By virtue of hypothesis H(iv) and the definition of

λ̂1(ϑ0) (see (4)), we see that we can find û ∈ W 1,p
per (0, b) such that

(30) ‖û′‖p
p −

∫
{û�=0}

ϑ0|û|pdt<0 and ‖û‖p = 1.

Replacing û with |û| ∈ W 1,p
per (0, b) if necessary, we may assume that û ≥ 0, û �= 0

(see (30)).
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For x>0, we have

(31)

F (t, x) =
∫ 1

0

d
dr

F (t, rx)dr =
∫ 1

0
f(t, rx)xdr,

⇒ F (t, x)
xp

=
∫ 1

0

f(t, rx)
xp−1

dr ≥ f(t, x)
xp−1

∫ 1

0
rp−1dr =

1
p

f(t, x)
xp−1

(see hypothesis H(ii)),

⇒ lim inf
x→0+

F (t, x)
xp

≥ 1
p
ϑ0(t) for a.a. t∈T.

For r ∈ (0, 1] small, we will have rû(t) ∈ [0, 1] for all t∈T . Then

(32)

F
(
t, rû(t)

)
rp

=
1
rp

∫ rû(t)

0
f(t, s)ds ≥ 1

rp

∫ rû(t)

0
f(t, 1)sp−1ds

(see hypothesis H(ii)),

≥ 1
p
f(t, 1)û(t)p

≥ −1
p
f(t, 1)‖û‖p

∞.

By hypothesis −1
pf(·, 1)‖û‖p∞ ∈ L1(T ). Because of (32), we can apply Fatou’s

lemma and using (31), we obtain

lim inf
r→0+

∫
{û�=0}

F (t, rû)
rp

dt ≥ 1
p

∫
{û�=0}

ϑ0û
pdt

⇒ 1
p
‖û′‖p

p −
∫ b

0

F (t, rû)
rp

dt<0 for r ∈ (0, 1) small (see (30)),

⇒ ϕ̂(rû)<0 for r ∈ (0, 1) small (recall û ≥ 0),
⇒ m̂ = ϕ̂(u0)<0 = ϕ̂(0) (see (29)),
⇒ u0 �= 0.

From (29) and Proposition 3.5, we have

(33)

ϕ̂′(u0) = 0,

⇒ A(u0) = Nf(u0) with Nf(u)(·) = f
(·, u(·)) for all u ∈ W 1,p

per (0, b)

(recall u0 ≥ 0 and see (5)),

⇒
{

−(|u′
0(t)|p−2u′

0(t)
)′ = f

(
t, u0(t)

)
a.e. on T,

u0(0) = u0(b), u′
0(0) = u′

0(b) with u0 ∈ C1(T )

}
(see Kyritsi-Papageorgiou [7]).
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In fact we can improve the conclusion of this proposition, by strengthening a little
hypothesis H(i). So, the new hypotheses on f(t, x) are:

H′: f : T ×R −→ R is a Carathéodory function such that

(i) for all x ≥ 0, there exists M̂ >0 such that for all x ≥ M̂ , f(·, x) ∈ L∞(T )
and

f(t, x) ≤ α(t)(1 + xp−1) for a.a t∈T, all x ≥ 0, with α ∈ L1(T )+;

hypotheses H′(ii), (iii), (iv) are the same as the corresponding hypotheses H(ii),
(iii), (iv).

Proposition 3.7. If hypotheses H ′ hold, then problem (1) has a solution u0 ∈
intĈ+.

Proof. From Proposition 3.6 we already have a positive solution u0 ∈ Ĉ+ \ {0}.
By virtue of hypothesis H′(ii), for ξ ≥ max{M̂, ‖u0‖∞} and for a.a. t ∈ {u0>0}

we have

f
(
t, u0(t)

) ≥ f(t, ξ)
ξp−1

u0(t)p−1 ≥ −c3u0(t)p−1 for some c3>0

(see hypothesis H′(ii)).
Therefore from (33) we have(|u′

0(t)|p−2u′
0(t)

)′ ≤ c3u
′
0(t)

p−1 a.e. on T

(recall u′
0(t) = 0 a.e. on T{u0 = 0}, see [9]),

⇒ u0 ∈ intĈ+ (by Vazquez [10]).

4. UNIQUENESS OF POSITIVE SOLUTIONS

In this section we establish the uniqueness of the positive solution. In fact we show
that hypotheses H′(iii) and (iv) are both necessary and sufficient for the existence and
uniqueness of a positive solution for problem (1).

Proposition 4.1. If hypotheses H ′ hold, then problem (1) has a unique positive
solution u0 ∈ intĈ+.

Proof. Let u, v ∈ Ĉ+ \ {0} be two positive solutions for problem (1). From the
proof of Proposition 3.7, we have that u, v ∈ intĈ+. So,
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(34)

∫ b

0

f(t, u)
up−1

(up − vp)dt

= −
∫ b

0

(|u′|p−2u′)′(u − vp

up−1

)
dt

=
∫ b

0
|u′|p−2u′

(
u′ −

( vp

up−1

)′)
dt (by integration by parts)

= ‖u′‖p
p −

∫ b

0
|u′|p−2u′

( vp

up−1

)′
dt

= ‖u′‖p
p − ‖v′‖p

p +
∫ b

0
R(v, u)dt (see Section 2).

Similarly interchanging the roles of u and v, we obtain

(35)
∫ b

0

f(t, v)
vp

(vp − up)dt = ‖v′‖p
p − ‖u′‖p

p +
∫ b

0
R(u, v)dt.

Adding (34) and (35), we have

0 ≥
∫ b

0

(f(t, u)
up−1

− f(t, v)
vp−1

)
(up − vp)dt =

∫ b

0
[R(v, u) + R(u, v)]dt ≥ 0

(see hypothesis H′(ii) and recall R(u, v), R(v, u)≥ 0).
It follows that R(u, v) = R(v, u) = 0 and so u = kv for some k > 0 (see

Allegretto-Huang [2]). The fact that for a.a. t∈T , x −→ f(t,x)
xp−1 is strictly decreasing,

(see hypothesis H′(ii)), implies that k = 1 and so u = v. This proves the uniqueness
of the positive solution u0 ∈ intĈ+.

As we already mentioned, hypotheses H′(iii) and (iv) are also necessary for the
uniqueness of the positive solution u0 ∈ intĈ+.

Proposition 4.2. If f : T × R −→ R is a Carathéodory function satisfying hy-
potheses H ′(i), (ii), and problem (1) has a unique positive solution u0 ∈ Ĉ+ \ {0},
then λ̂0(ϑ0)<0<λ̂0(ϑ) where

ϑ0(t) = lim
x→0+

f(t, x)
xp−1

and ϑ(t) = lim
x→+∞

f(t, x)
xp−1

.

Proof. From Proposition 3.7, we know that u0 ∈ intĈ+. We have

λ̂0(ϑ0) ≤
‖u′

0‖p
p −

∫ b

0
ϑ0u

p
0dt

‖u0‖p
p

(see (4) and recall u0(t)>0 for all t∈T )
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=

∫ b

0
f(t, u0)u0dt −

∫ b

0
ϑ0u

p
0dt

‖u0‖p
p

<

∫ b

0
ϑ0u

p
0dt −

∫ b

0
ϑ0u

p
0dt

‖u0‖p
p

= 0 (see hypothesis H′(ii)).

So, we have proved that λ̂0(ϑ0)<0.
Let β(t) = f(t,‖u0‖∞+1)

(‖u0‖∞+1)p−1 . Then β ∈ L1(T ) (see hypothesis H′(i)). Let û1 ∈
intĈ+ be the Lp-normalized eigenfunction corresponding to the eigenvalue λ̂0(β) (see
Binding-Rynne [4]). For k > 0 large enough we will have u0 < kû1 = ũ1. As in the
proof of Proposition 4.1, we show that

(36)
∫ b

0

f(t, u0)
up−1

0

(up
0 − ũp

1)dt = ‖u′
0‖p

p − ‖ũ′
1‖p

p +
∫ b

0
R(ũ1, u0)dt.

(37)
∫ b

0

(
λ̂0(β) + β

)
(ũp

1 − up
0)dt = ‖ũ′

1‖p
p − ‖u′

0‖p
p +

∫ b

0
R(u0, ũ1)dt.

We add (36) and (37). Then

(38)
∫ b

0

(f(t, u0)
up−1

0

− (
λ̂0(β) + β

))
(up

0 − ũp
1)dt =

∫ b

0

[R(ũ1, u0) + R(u0, ũ1)]dt ≥ 0.

By virtue of hypothesis H′(ii) we have

(39)

f(t, u0)
up−1

0

>
f(t, ‖u0‖∞ + 1)
(‖u0‖∞ + 1)p−1

= β(t) a.e. on T,

⇒ f(t, u0)
up−1

0

− β(t)>0 a.e. on T.

Also since u0<ũ1, we have

(40) (up
0 − ũp

1)(t)<0 for all t∈T.

Using (39) and (40) in (38), we infer that λ̂0(β) > 0. But note that β ≥ ϑ (see
hypothesis H′(ii)) and so from (4) we have that 0<λ̂0(β) ≤ λ̂0(ϑ).

Summarizing the situation, we have the following definitive existence and unique-
ness theorem for problem (1).
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Theorem 4.3. If f : T×R −→ R is a Carathéodory function satisfying hypotheses
H ′(i), (ii), then problem (1) has a unique positive solution u0 ∈ intĈ+

if and only if

λ̂0(ϑ0)<0<λ̂0(ϑ),

where ϑ0(t) = lim
x→0+

f(t,x)
xp−1 and ϑ(t) = lim

x→+∞
f(t,x)
xp−1 .
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