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TWO GENERALIZED STRONG CONVERGENCE THEOREMS OF
HALPERN’S TYPE IN HILBERT SPACES AND APPLICATIONS

Wataru Takahashi, Ngai-Ching Wong* and Jen-Chih Yao

Abstract. Let C be a closed convex subset of a real Hilbert space H . Let A
be an inverse-strongly monotone mapping of C into H and let B be a maximal
monotone operator on H such that the domain of B is included in C . We introduce
two iteration schemes of finding a point of (A+B)−10, where (A+B)−10 is the
set of zero points of A+B. Then, we prove two strong convergence theorems of
Halpern’s type in a Hilbert space. Using these results, we get new and well-known
strong convergence theorems in a Hilbert space.

1. INTRODUCTION

Let H be a Hilbert space and let C be a nonempty closed convex subset of H .
Let N and R be the sets of positive integers and real numbers, respectively. Let
f : C ×C → R be a bifunction and let A be a nonlinear mapping of C into H . Then,
a generalized equilibrium problem (with respect to C) is to find x̂ ∈ C such that

f(x̂, y) + 〈Ax̂, y − x̂〉 ≥ 0, ∀y ∈ C.(1.1)

The set of such solutions x̂ is denoted by EP (f, A), i.e.,

EP (f, A) = {x̂ ∈ C : f(x̂, y) + 〈Ax̂, y − x̂〉 ≥ 0, ∀y ∈ C}.

In the case of A = 0, EP (f, A) is denoted by EP (f). In the case of f = 0, EP (f, A)
is also denoted by V I(C, A). This is the set of solutions of the variational inequality
for A; see [15] and [19]. Let T be a mapping of C into H . We denote by F (T ) the
set of fixed points of T . A mapping T : C → H is nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.
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For a nonexpansive mapping T : C → C, the iteration procedure of Halpern’s type is
as follows: u ∈ C, x1 ∈ C and

xn+1 = αnu + (1− αn)Txn, ∀n ∈ N,

where {αn} is a sequence in [0, 1]; see [10]. Let α > 0 be a given constant. A
mapping A : C → H is said to be α-inverse-strongly monotone if

〈x − y, Ax− Ay〉 ≥ α ‖Ax − Ay‖2 , ∀x, y ∈ C.

A multi-valued mapping B on H is said to be monotone if 〈x − y, u − v〉 ≥ 0 for all
x, y ∈ dom(B), u ∈ Bx, and v ∈ By, where dom(B) is the domain of B. A monotone
operator B on H is said to be maximal if its graph is not properly contained in the graph
of any other monotone operator on H . For a maximal monotone operator B on H and
r > 0, we may define a single-valued operator Jr = (I+rB)−1 : H → dom(B), which
is called the resolvent of B for r > 0. The resolvent of B for r > 0 is nonexpansive,
see [23]. A mapping U : C → H is a strict pseudo-contraction [7] if there is k ∈ R

with 0 ≤ k < 1 such that

‖Ux− Uy‖2 ≤ ‖x − y‖2 + k‖(I − U)x− (I − U)y‖2, ∀x, y ∈ C.

We call such U a k-strict pseudo-contraction. A k-strict pseudo-contraction U : C → H
is nonexpansive if k = 0. A mapping T : C → H is quasi-nonexpansive if F (T ) 	= ∅
and

‖Tu − v‖ ≤ ‖u − v‖, ∀u ∈ C, v ∈ F (T ).

If S : C → H is a nonexpansive mapping, then I −S is 1
2 -inverse-strongly monotone,

where I is the identity mapping. A nonexpansive mapping S : C → H with F (S) 	= ∅
is quasi-nonexpansive; see [23]. We also know that if U : C → H is a k-strict pseudo-
contraction with 0 ≤ k < 1, then A = I − U is a 1−k

2 -inverse-strongly monotone
mapping; see, for instance, Marino and Xu [14]. Zhou [29] proved the following strong
convergence theorem of Halpern’s type for strict pseudo-contractions in a Hilbert space.

Theorem 1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let k be a real number with 0 ≤ k < 1 and let U : C → H be a k-strict
pseudo-contraction such that F (U) 	= ∅. Let {xn} ⊂ C be a sequence generated by
u ∈ C, x1 = x ∈ C and{

yn = PC [βnxn + (1− βn)Uxn],
xn+1 = αnu + (1 − αn)yn, ∀n ∈ N,

where {αn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

αn → 0,

∞∑
n=1

αn = ∞,

∞∑
n=1

|αn − αn+1| < ∞,
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k ≤ βn ≤ b < 1, and
∞∑

n=1

|βn − βn+1| < ∞.

Then, {xn} converges strongly to z0 = PF (U )u, where PF (U ) is the metric projection
of H onto F (U).

In this paper, motivated by the generalized equilibrium problem and Zhou’s theorem
(Theorem 1), we first pove a strong convergence theorem for finding a zero point of
A + B, where A is an inverse-strongly monotone mapping of C into H and B is a
maximal monotone operator on H such that the domain of B is included in C. For
eample, if A = I − U , where U is a strict pseodo-contraction, and B is the indicator
function of C, then this result generalizes Zhou’s one. Furthermore, we prove another
strong convergence theorem which is different from the above form in a Hilbert space.
Using these results, we get new and well-known strong convergence theorems in a
Hilbert space.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖, respectively.
For x, y ∈ H and λ ∈ R, we have from [23] that

(2.1) ‖λx + (1− λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1− λ)‖x− y‖2.

All Hilbert spaces satisfy Opial’s condition, that is,

lim inf
n→∞ ‖xn − u‖ < lim inf

n→∞ ‖xn − v‖

if xn ⇀ u and u 	= v; see [16]. Let C be a nonempty closed convex subset of a
Hilbert space H . The nearest point projection of H onto C is denoted by PC , that
is, ‖x − PCx‖ ≤ ‖x − y‖ for all x ∈ H and y ∈ C. Such PC is called the metric
projection of H onto C. We know that the metric projection PC is firmly nonexpansive,
i.e.,

(2.2) ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x− y〉

for all x, y ∈ H . Furthermore 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and y ∈ C;
see [21]. Let α > 0 be a given constant. A mapping A : C → H is said to be α-inverse-
strongly monotone if 〈x − y, Ax − Ay〉 ≥ α ‖Ax − Ay‖2 for all x, y ∈ C. It is known
that ‖Ax − Ay‖ ≤ (1/α) ‖x − y‖ for all x, y ∈ C if A is α-inverse-strongly monotone;
see, for example, [25]. Let B be a mapping of H into 2H . The effective domain of
B is denoted by dom(B), that is, dom(B) = {x ∈ H : Bx 	= ∅}. A multi-valued
mapping B on H is said to be monotone if 〈x − y, u − v〉 ≥ 0 for all x, y ∈ dom(B),
u ∈ Bx, and v ∈ By. A monotone operator B on H is said to be maximal if its
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graph is not properly contained in the graph of any other monotone operator on H .
For a maximal monotone operator B on H and r > 0, we may define a single-valued
operator Jr = (I + rB)−1 : H → dom(B), which is called the resolvent of B for r.
Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}. It is
known that the resolvent Jr is firmly nonexpansive and B−10 = F (Jr) for all r > 0.
It is also known that ‖Jλx − Jµx‖ ≤ (|λ − µ| /λ) ‖x − Jλx‖ holds for all λ, µ > 0
and x ∈ H ; see [9, 21] for more details. As a matter of fact, we know the following
lemma [20].

Lemma 2. Let H be a real Hilbert space and let B be a maximal monotone
operator on H . For r > 0 and x ∈ H , define the resolvent J rx. Then the following
holds:

s − t

s
〈Jsx − Jtx, Jsx − x〉 ≥ ‖Jsx − Jtx‖2

for all s, t > 0 and x ∈ H .

Furthermore, for a mapping A of C into H , we know that F (Jλ(I − λA)) =
(A + B)−10 for all λ > 0; see [4]. We also know the following lemmas:

Lemma 3. ([18]). Let {xn} and {yn} be bounded sequences in a Banach space and
let {βn} be a sequence in [0, 1] such that 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1 − βn)yn + βnxn for all n ∈ N and lim supn→∞(‖yn+1 − yn‖ −
‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 4. ([2, 28]). Let {sn} be a sequence of nonnegative real numbers, let {αn}
be a sequence in [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with
lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

3. INVERSE-STRONGLY MONOTONE MAPPINGS

Let H be a Hilbert space and let C be a nonempty closed convex subset of H .
A mapping U : C → H is called a widely strict pseudo-contraction if there is a real
number k ∈ R with k < 1 such that

(3.1) ‖Ux − Uy‖2 ≤ ‖x − y‖2 + k‖(I − U)x − (I − U)y‖2

for all x, y ∈ C. Such a mapping U is called a widely k-strict pseudo-contraction.
We know that a widely k-strict pseudo-contraction is a strict pseudo-contraction [7] if
0 ≤ k < 1. A widely k-strict pseudo-contraction is also a nonexpansive mapping if
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k = 0. Conversely, we have that if T : C → H is a nonexpansive mapping, then for
any n ∈ N, U = 1

1+nT + n
1+nI is a widely (−n)-strict pseudo-contraction. As in Zhou

[29], we obtain the following result.

Lemma 5. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H . Let k < 1 and let U : C → H be a widely k-strict pseudo-contraction such that
F (U) 	= ∅ and let PC be the metric projection of H onto C. Then, F (PCU) = F (U).

Proof. Take z, v ∈ C with PCUz = z and Uv = v. Then we obtain from (2.1)
and (2.2) that

2‖z − v‖2 = 2‖PCUz − PCUv‖2

≤ 2〈Uz − Uv, PCUz − PCUv〉
= 2〈Uz − v, z − v〉
= ‖Uz − v‖2 + ‖v − z‖2 − ‖Uz − z‖2 − ‖v − v‖2

and hence
‖z − v‖2 + ‖Uz − z‖2 ≤ ‖Uz − v‖2.

Since U is a widely strict pseudo-contraction, we have that

‖z − v‖2 + ‖Uz − z‖2 ≤ ‖Uz − v‖2 ≤ ‖z − v‖2 + k‖z − Uz‖2

and hence (1− k)‖Uz − z‖2 ≤ 0. From 1− k > 0, we have ‖Uz − z‖2 ≤ 0 and then
Uz = z. This completes the proof.

We also know that a mapping A : C → H is called inverse-strongly monotone if
there exisis α > 0 such that

(3.2) α‖Ax − Ay‖2 ≤ 〈x − y, Ax− Ay〉
for all x, y ∈ C. Such a mapping A is called α-inverse strongly monotone. Recently,
Hojo, Takahashi and Yao [11] also introduced a class of nonlinear mappings in a
Hilbert space which contains the class of generalized hybrid mappings: A mapping
U : C → H is called extended hybrid if there are α, β, γ ∈ R such that

(3.3)

α(1 + γ) ‖Ux − Uy‖2 + (1 − α(1 + γ))‖x− Uy‖2

≤ (β + αγ)‖Ux− y‖2 + (1− (β + αγ))‖x− y‖2

−(α − β)γ‖x− Ux‖2 − γ‖y − Uy‖2

for all x ∈ C. Such a mapping U is called (α, β, γ)-extended hybrid. In [11],
they proved the following theorem which represents a relation between the class of
generalized hybrid mappings and the class of extended hybrid mappings in a Hilbert
space; see also [12] and [26].
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Theorem 6. Let C be a nonempty closed convex subset of a Hilbert space H and
let α, β and γ be real numbers with γ 	= −1. Let T and U be mappings of C into H
such that U = 1

1+γ T + γ
1+γ I . Then, for 1+γ > 0, T : C → H is an (α, β)-generalized

hybrid mapping if and only if U : C → H is an (α, β, γ)-extended hybrid mapping.
In this case, F (T ) = F (U).

Now, we deal with some properties for inverse-strongly monotone mappings in a
Hilbert space.

Lemma 7. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H . Let α > 0 and let A, U and T be mappings of C into H such that U = I − A

and T = 2α U + (1 − 2α)I . Then, the following are equivalent:
(a) A is an α-inverse-strongly monotone mapping, i.e.,

α‖Ax − Ay‖2 ≤ 〈x − y, Ax − Ay〉, ∀x, y ∈ C;

(b) U is a widely (1− 2α)-strict pseudo-contraction, i.e.,

‖Ux − Uy‖2 ≤ ‖x − y‖2 + (1 − 2α)‖(I − U)x − (I − U)y‖2, ∀x, y ∈ C;

(c) U is a (1, 0, 2α− 1)-extended hybrid mapping, i.e.,

2α‖Ux − Uy‖2 + (1− 2α)‖x − Uy‖2

≤ (2α− 1)‖Ux− y‖2 + 2(1 − α)‖x − y‖2

− (2α − 1)‖x − Ux‖2 − (2α − 1)‖y − Uy‖2, ∀x, y ∈ C;

(d) T is a nonexpansive mapping.

In this case, Z(A) = F (U) = F (T ), where Z(A) = {u ∈ C : Au = 0}.

Proof. Let us show (a) ⇐⇒ (b). We have that for all x, y ∈ C,

α‖Ax−Ay‖2 ≤ 〈x − y, Ax − Ay〉
⇐⇒2α‖Ax − Ay‖2 ≤ 2〈x − y, Ax − Ay〉
⇐⇒2α‖Ax − Ay‖2 ≤ ‖x − y‖2 + ‖Ax− Ay‖2 − ‖x − Ax − (y − Ay)‖2

⇐⇒‖x − Ax − (y − Ay)‖2 ≤ ‖x − y‖2 + (1− 2α)‖Ax− Ay‖2

⇐⇒‖Ux − Uy‖2 ≤ ‖x − y‖2 + (1 − 2α)‖(I − U)x− (I − U)y‖2.

Let us show (b) ⇐⇒ (c). Since

‖(I−U)x − (I − U)y‖2 = ‖x − y − (Ux− Uy)‖2

= ‖x − y‖2 + ‖Ux − Uy‖2 − 2〈x − y, Ux− Uy〉
= ‖x − y‖2 + ‖Ux − Uy‖2

− ‖x − Uy‖2 − ‖y − Ux‖2 + ‖x− Ux‖2 + ‖y − Uy‖2,
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for all x, y ∈ C, we have that

‖Ux − Uy‖2 ≤ ‖x − y‖2 + (1 − 2α)‖(I − U)x − (I − U)y‖2

⇐⇒‖Ux − Uy‖2 ≤ ‖x− y‖2 + (1− 2α)(‖x− y‖2 + ‖Ux − Uy‖2

− ‖x − Uy‖2 − ‖y − Ux‖2 + ‖x − Ux‖2 + ‖y − Uy‖2)
⇐⇒2α‖Ux − Uy‖2 + (1− 2α)‖x− Uy‖2

≤ (2α − 1)‖Ux− y‖2 + 2(1− α)‖x− y‖2

− (2α − 1)‖x− Ux‖2 − (2α − 1)‖y − Uy‖2.

Let us show (b) ⇐⇒ (d). We have that for all x, y ∈ C,

‖Tx− Ty‖2 ≤ ‖x − y‖2

⇐⇒‖2αUx + (1− 2α)x− 2αUy − (1 − 2α)y‖2 ≤ ‖x − y‖2

⇐⇒2α‖Ux − Uy‖2 + (1− 2α)‖x− y‖2

− 2α(1 − 2α)‖(I − U)x− (I − U)y‖2 − ‖x − y‖2 ≤ 0
⇐⇒2α‖Ux − Uy‖2 − 2α‖x− y‖2

− 2α(1 − 2α)‖(I − U)x− (I − U)y‖2 ≤ 0
⇐⇒‖Ux − Uy‖2 − ‖x− y‖2 − (1− 2α)‖(I − U)x − (I − U)y‖2 ≤ 0
⇐⇒‖Ux − Uy‖2 ≤ ‖x− y‖2 + (1− 2α)‖(I − U)x − (I − U)y‖2.

Finally, let us show Z(A) = F (U) = F (T ). In fact, we have that for u ∈ C,

Au = 0 =⇒ Uu = u − Au = u =⇒ Tu = 2αUu + (1− 2α)u = u.

We can also show the reverse implication. This completes the proof.

Remark 1. Let α > 0 and let A : C → H be α-inverse-strongly monotone. Then,
it is obvious that for any β ∈ R with 0 < β ≤ 2α, A is β

2 -inverse-strongly monotone.
So, we have from Lemma 3.1 that

T = I − βA = I − β(I − U) = βU + (1− β)I

is nonexpansive.

Using Lemma 7, we can get the following important result.

Lemma 8. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H . Let k be a real number with k < 1 and let A, U and T be mappings of C into
H such that U = I −A and T = (1− k)U + kI . Then, the following are equivalent:

(a) A is a 1−k
2 -inverse-strongly monotone mapping;

(b) U is a widely k-strict pseudo-contraction;
(c) U is a (1, 0,−k)-extended hybrid mapping;
(d) T is a nonexpansive mapping.
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In this case, Z(A) = F (U) = F (T ).

Proof. Putting α = 1−k
2 for k < 1, we have α > 0. Furthermore, we have

1 − 2α = 1− (1− k) = k.

This means (a) ⇐⇒ (b). Similarly, we obtain (b) ⇐⇒ (c) ⇐⇒ (d).

Remark 2. Let k be a real number with k < 1. If U is a widely k-strict pseudo-
contraction, then for any t ∈ R with k ≤ t < 1, U is a widely t-strict pseudo-
contraction. So, we have from Lemma 8 that

T = (1− t)U + tI

is nonexpansive.

4. MAIN RESULTS

In this section, we first prove a strong convergence theorem which generalizes
Zhou’s theorem (Theorem 1) in a Hilbert space.

Theorem 9. Let H be a real Hilbert space and let C be a closed convex subset of
H . Let α > 0. Let A be an α-inverse-strongly monotone mapping of C into H and let
B be a maximal monotone operator on H such that the domain of B is included in C.
Let Jλ = (I +λB)−1 be the resolvent of B for λ > 0. Suppose that (A+B)−10 	= ∅.
Let u ∈ C, x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = αnu + (1− αn)Jλn(xn − λnAxn)
for all n ∈ N, where {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α,

∞∑
n=1

|λn − λn+1| < ∞,

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞, and
∞∑

n=1

|αn+1 − αn| < ∞.

Then {xn} converges strongly to a point z0 of (A + B)−10, where z0 = P(A+B)−10u.
Proof. Put yn = Jλn(xn − λnAxn) and let z ∈ (A + B)−10. Then, we have

from z = Jλn(z − λnAz) that

‖yn − z‖2 = ‖Jλn(xn − λnAxn) − z‖2

= ‖Jλn(xn − λnAxn) − Jλn(z − λnAz)‖2

≤ ‖(xn − λnAxn) − (z − λnAz)‖2

= ‖(xn − z) − λn(Axn − Az)‖2(4.1)
= ‖xn − z‖2 − 2λn 〈xn − z, Axn − Az〉 + λ2

n ‖Axn − Az‖2

≤ ‖xn − z‖2 − 2λnα ‖Axn − Az‖2 + λ2
n ‖Axn − Az‖2

= ‖xn − z‖2 + λn(λn − 2α) ‖Axn − Az‖2

≤ ‖xn − z‖2 .
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From xn+1 = αnu + (1 − αn)yn, we have

‖xn+1 − z‖ = ‖αn(u − z) + (1− αn)(yn − z)‖
≤ αn ‖u − z‖ + (1− αn) ‖xn − z‖ .

Putting K = max{‖u− z‖, ‖x1 − z‖}, we have that ‖xn − z‖ ≤ K for all n ∈ N. In
fact, it is obvious that ‖x1 − z‖ ≤ K. Suppose that ‖xk − z‖ ≤ K for some k ∈ N.
Then, we have that

‖xk+1 − z‖ ≤ αk‖u − z‖ + (1− αk)‖xk − z‖
≤ αkK + (1 − αk)K
= K.

By induction, we obtain that ‖xn − z‖ ≤ K for all n ∈ N. Then, {xn} is bounded.
Furthermore, {Axn} and {yn} are bounded. Putting un = xn − λnAxn, we have

xn+2 − xn+1 = (αn+1 − αn)u + (1 − αn+1)Jλn+1(xn+1 − λn+1Axn+1)
− (1− αn)Jλn(xn − λnAxn)

= (αn+1 − αn)u + (1 − αn+1){Jλn+1(xn+1 − λn+1Axn+1)
− Jλn+1un + Jλn+1un − Jλnun + Jλnun} − (1 − αn)Jλnun.

So, we have from Lemma 2 that

‖xn+2 − xn+1‖
≤ |αn+1 − αn| ‖u‖+ (1− αn+1)‖xn+1 − λn+1Axn+1 − (xn − λnAxn)‖

+ (1− αn+1)‖Jλn+1un − Jλnun‖ + |αn+1 − αn|‖Jλnun‖
≤ |αn+1 − αn| ‖u‖+ (1− αn+1)‖(I − λn+1A)xn+1 − (I − λn+1A)xn

+ (I − λn+1A)xn − (xn − λnAxn)‖
+ (1− αn+1)‖Jλn+1un − Jλnun‖ + |αn+1 − αn|‖Jλnun‖

≤ |αn+1 − αn| ‖u‖+ (1− αn)‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖
+ |αn+1 − αn|‖Jλnun‖ + ‖Jλn+1un − Jλnun‖

≤ |αn+1 − αn| ‖u‖+ (1− αn)‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖

+ |αn+1 − αn|‖Jλnun‖ +
|λn+1 − λn|

λn+1
‖Jλn+1un − un‖

≤ |αn+1 − αn| ‖u‖+ (1− αn)‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖

+ |αn+1 − αn|‖Jλnun‖ +
|λn+1 − λn|

a
‖Jλn+1un − un‖.

Using Lemma 4, we obtain that

(4.2) ‖xn+2 − xn+1‖ → 0.
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We also have from (2.1) that

‖xn+1 − xn‖2 = ‖αn(u − xn) + (1 − αn)(yn − xn)‖2

= αn‖u − xn‖2 + (1 − αn)‖yn − xn‖2 − αn(1 − αn)‖u − yn‖2

and hence

(1 − αn)‖yn − xn‖2 = ‖xn+1 − xn‖2

− αn‖u − xn‖2 + αn(1− αn)‖u − yn‖2

From αn → 0, we get

(4.3) yn − xn → 0.

From
∑∞

n=1 |λn −λn+1| < ∞, we have that {λn} is a Cauchy sequence. So, we have
λn → λ0 ∈ [a, 2α]. Putting un = xn − λnAxn and yn = Jλn(I − λnA)xn, we have
from Lemma 2 that

‖Jλ0(I − λ0A)xn − yn‖ = ‖Jλ0(I − λ0A)xn − Jλn(I − λnA)xn‖
= ‖Jλ0(I − λ0A)xn − Jλ0(I − λnA)xn

+ Jλ0(I − λnA)xn − Jλn(I − λnA)xn‖(4.4)
≤ ‖(I − λ0A)xn − (I − λnA)xn‖ + ‖Jλ0un − Jλnun‖
≤ |λ0 − λn|‖Axn‖ +

|λ0 − λn|
λ0

‖Jλ0un − un‖ → 0.

We also have from (4.3) and (4.4) that

(4.5) ‖xn − Jλ0(I − λ0A)xn‖ ≤ ‖xn − yn‖ + ‖yn − Jλ0(I − λ0A)xn‖ → 0.

We will use (4.4) and (4.5) later.
Put z0 = P(A+B)−10u. Let us show that lim supn→∞ 〈u − z0, yn − z0〉 ≤ 0.

Put A = lim supn→∞ 〈u − p0, yn − p0〉. Then without loss of generality, there exists
a subsequence {yni} of {yn} such that A = limi→∞ 〈u − p0, yni − p0〉 and {yni}
converges weakly some point w ∈ C. From ‖xn − yn‖ → 0, we also have that {xni}
converges weakly to w ∈ C. On the other hand, from λn → λ0 ∈ [a, 2α], we have
λni → λ0 ∈ [a, 2α]. Using (4.4), we have that

‖Jλ0(I − λ0A)xni − yni‖ → 0.

Furthermore, using (4.5), we have that

‖xni − Jλ0(I − λ0A)xni‖ → 0.
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Since Jλ0(I − λ0A) is nonexpansive, we have w = Jλ0(I − λ0A)w. This means that
0 ∈ Aw + Bw. So, we have

A = lim
i→∞

〈u − z0, yni − z0〉 = 〈u − z0, w − z0〉 ≤ 0.

Since xn+1 − z0 = αn(u − z0) + (1− αn)(yn − z0), we have

‖xn+1 − z0‖2 ≤ (1− αn)2 ‖yn − z0‖2 + 2〈αn(u − z0), xn+1 − z0〉(4.6)

≤ (1− αn) ‖yn − z0‖2

+ 2αn〈u − z0, xn+1 − xn + xn − yn + yn − z0〉.
Putting sn = ‖xn − z0‖2, γn = 2〈u− z0, xn+1 −xn + xn − yn + yn − z0〉 and βn = 0
in Lemma 4, from

∑∞
n=1 αn = ∞ and (4.6) we have that xn → z0. This completes

the proof.

Next, we prove another strong convergence theorem which is related to [19].

Theorem 10. Let C be a closed convex subset of a real Hilbert space H . Let
α > 0 and let A be an α-inverse-strongly monotone mapping of C into H and let B
be a maximal monotone operator on H such that the domain of B is included in C.
Let Jλ = (I +λB)−1 be the resolvent of B for λ > 0. Suppose that (A+B)−10 	= ∅.
Let u ∈ C, x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)(αnu + (1 − αn)Jλn(xn − λnAxn))

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α, lim
n→∞(λn − λn+1) = 0,

0 < c ≤ βn ≤ d < 1, lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞.

Then {xn} converges strongly to a point z0 of (A + B)−10, where z0 = P(A+B)−10u.

Proof. Let z ∈ (A + B)−10. From z = Jλn(z − λnAz), we obtain that

‖Jλn(xn − λnAxn) − z‖2

= ‖Jλn(xn − λnAxn) − Jλn(z − λnAz)‖2

≤ ‖(xn − λnAxn) − (z − λnAz)‖2

= ‖(xn − z) − λn(Axn − Az)‖2(4.7)

= ‖xn − z‖2 − 2λn 〈xn − z, Axn − Az〉 + λ2
n ‖Axn − Az‖2

≤ ‖xn − z‖2 − 2λnα ‖Axn − Az‖2 + λ2
n ‖Axn − Az‖2

= ‖xn − z‖2 + λn(λn − 2α) ‖Axn − Az‖2

≤ ‖xn − z‖2 .
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Let yn = αnu + (1 − αn)Jλn(xn − λnAxn). Then we have

‖yn − z‖ = ‖αn(u − z) + (1− αn)(Jλn(xn − λnAxn) − z)‖
≤ αn ‖u − z‖ + (1− αn) ‖xn − z‖ .

Using this, we get

‖xn+1 − z‖
= ‖βn(xn − z) + (1 − βn)(yn − z)‖
≤ βn ‖xn − z‖ + (1 − βn) ‖yn − z‖
≤ βn ‖xn − z‖ + (1 − βn)(αn ‖u − z‖ + (1− αn) ‖xn − z‖)
= (1− αn(1 − βn))‖xn − z‖ + αn(1 − βn)‖u − z‖.

Putting K = max{‖x1 − z‖, ‖u− z‖}, we have that ‖xn − z‖ ≤ K for all n ∈ N. In
fact, it is obvious that ‖x1 − z‖ ≤ K. Suppose that ‖xk − z‖ ≤ K for some k ∈ N.
Then, we have that

‖xk+1 − z‖ ≤ (1− αk(1 − βk))‖xk − z‖ + αk(1 − βk)‖u − z‖
≤ (1− αk(1 − βk))K + αk(1− βk)K = K.

By induction, we obtain that ‖xn − z‖ ≤ K for all n ∈ N. Then, {xn} is bounded.
Furthermore, {Axn}, {yn} and {Jλn(xn − λnAxn)} are bounded. Putting un =
xn − λnAxn, we have

yn+1 − yn = (αn+1 − αn)u + (1− αn+1)Jλn+1(xn+1 − λn+1Axn+1)

− (1− αn)Jλn(xn − λnAxn)

= (αn+1 − αn)u + (1− αn+1){Jλn+1(xn+1 − λn+1Axn+1)

− Jλn+1un + Jλn+1un − Jλnun + Jλnun} − (1− αn)Jλnun.

So, we have from Lemma 2 that

‖yn+1 − yn‖ ≤ |αn+1 − αn|‖u‖
+ (1− αn+1)‖xn+1 − λn+1Axn+1 − (xn − λnAxn)‖
+ (1− αn+1)‖Jλn+1un − Jλnun‖ + |αn+1 − αn|‖Jλnun‖

≤ |αn+1 − αn|‖u‖+ ‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖
+ |αn+1 − αn|‖Jλnun‖ + ‖Jλn+1un − Jλnun‖

≤ |αn+1 − αn|‖u‖+ ‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖

+ |αn+1 − αn|‖Jλnun‖ +
|λn+1 − λn|

λn+1
‖Jλn+1un − un‖.
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It follows that
lim sup

n→∞
(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

From Lemma 3, we get

(4.8) yn − xn → 0.

Consequently, we obtain

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1− βn)‖yn − xn‖ = 0.

Take λ0 ∈ [a, 2α]. Putting un = xn−λnAxn and yn = αnu+(1−αn)Jλn(I−λnA)xn,
we have from Lemma 2 that

‖αnu + (1 − αn)Jλ0(I − λ0A)xn − yn‖
= (1 − αn)‖Jλ0(I − λ0A)xn − Jλn(I − λnA)xn‖
= (1 − αn)‖Jλ0(I − λ0A)xn − Jλ0(I − λnA)xn

+ Jλ0(I − λnA)xn − Jλn(I − λnA)xn‖(4.9)
≤ (1 − αn){‖(I − λ0A)xn − (I − λnA)xn‖ + ‖Jλ0un − Jλnun‖}
≤ (1 − αn){|λ0 − λn|‖Axn‖+

|λ0 − λn|
λ0

‖Jλ0un − un‖}.

We also have

‖xn − Jλ0(I − λ0A)xn‖
≤ ‖xn − yn‖ + ‖yn − (αnu + (1− αn)Jλ0(I − λ0A)xn)‖

+ ‖αnu + (1 − αn)Jλ0(I − λ0A)xn − Jλ0(I − λ0A)xn‖(4.10)
= ‖xn − yn‖ + ‖yn − (αnu + (1− αn)Jλ0(I − λ0A)xn)‖

+ αn‖u − Jλ0(I − λ0A)xn‖.
We will use (4.9) and (4.10) later.

Put z0 = P(A+B)−10u. Let us show that lim supn→∞ 〈u − z0, yn − z0〉 ≤ 0.
Put A = lim supn→∞ 〈u − p0, yn − p0〉. Then without loss of generality, there exists
a subsequence {yni} of {yn} such that A = limi→∞ 〈u − p0, yni − p0〉 and {yni}
converges weakly some point w ∈ C. From ‖xn − yn‖ → 0, we also have that
{xni} converges weakly to w ∈ C. On the other hand, since {λn} ⊂ (0,∞) satisfies
0 < a ≤ λn ≤ 2α, there exists a subsequence {λnij

} of {λni} such that {λnij
}

converges to a number λ0 ∈ [a, 2α]. Using (4.9), we have that

‖αnij
u + (1 − αnij

)Jλ0(I − λ0A)xnij
− ynij

‖ → 0.

Furthermore, using (4.10), we have that
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‖xnij
− Jλ0(I − λ0A)xnij

‖
≤ ‖xnij

− ynij
‖ + ‖ynij

− {αnij
u + (1 − αnij

)Jλ0(I − λ0A)xnij
}‖

+ αnij
‖u − Jλ0(I − λ0A)xnij

‖ → 0.

Since Jλ0(I − λ0A) is nonexpansive, we have w = Jλ0(I − λ0A)w. This means that
0 ∈ Aw + Bw. So, we have

A = lim
j→∞

〈u − z0, ynij
− z0〉 = 〈u − z0, w − z0〉 ≤ 0.

Since yn − p0 = αn(u − p0) + (1− αn)(Jλn(xn − λnAxn) − p0), we have

‖yn − p0‖2 − 2αn 〈u − p0, yn − p0〉
= (1− αn)2 ‖Jλn(xn − λnAxn) − p0‖2 − α2

n ‖u − p0‖2

≤ (1− αn)2 ‖Jλn(xn − λnAxn) − p0‖2

and hence

‖yn − p0‖2 ≤ (1− αn)2 ‖Jλn(xn − λnAxn) − p0‖2 + 2αn 〈x − p0, yn − p0〉 .

From (4.7), we have

‖yn − p0‖2 ≤ (1 − αn)2 ‖xn − p0‖2 + 2αn 〈x − p0, yn − p0〉 .

This implies that

‖xn+1 − p0‖2

≤ βn ‖xn − p0‖2 + (1 − βn) ‖yn − p0‖2

≤ βn ‖xn − p0‖2 + (1 − βn)
(
(1− αn)2 ‖xn − p0‖2 + 2αn 〈x − p0, yn − p0〉

)
=

(
βn + (1− βn)(1− αn)2

) ‖xn − p0‖2 + 2(1− βn)αn 〈x − p0, yn − p0〉
≤ (1 − (1 − βn)αn) ‖xn − p0‖2 + 2(1− βn)αn 〈x − p0, yn − p0〉 .

By Lemma 4, we obtain that xn → p0. This completes the proof.

5. APPLICATIONS

Let H be a Hilbert space and let f be a proper lower semicontinuous convex
function of H into (−∞,∞]. Then, the subdifferential ∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + 〈z, y − x〉 ≤ f(y), y ∈ H}
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for all x ∈ H ; see, for instance, [23]. From Rockafellar [17], we know that ∂f is
maximal monotone. Let C be a nonempty closed convex subset of H and let iC be the
indicator function of C, i.e.,

iC(x) =

{
0, x ∈ C,

∞, x /∈ C.

Then, iC is a proper lower semicontinuous convex function of H into (−∞,∞] and
then the subdifferential ∂iC of iC is a maximal monotone operator. So, we can define
the resolvent Jλ of ∂iC for λ > 0, i.e.,

Jλx = (I + λ∂iC)−1x

for all x ∈ H . We have that for any x ∈ H and z ∈ C,

z = Jλx ⇐⇒ x ∈ z + λ∂iCz

⇐⇒ x ∈ z + λNCz

⇐⇒ x − z ∈ λNCz

⇐⇒ 1
λ
〈x − z, v − z〉 ≤ 0, ∀v ∈ C

⇐⇒ 〈x − z, v − z〉 ≤ 0, ∀v ∈ C

⇐⇒ z = PCx,

where NCz is the normal cone to C at z, i.e.,

NCz = {x ∈ H : 〈x, v − z〉 ≤ 0, ∀v ∈ C}.
Now, using Theorems 9 and 10, we can obtain strong convergence theorems for

finding a solution of the variational inequality in a Hilbert space.

Theorem 11. Let C be a closed convex subset of a real Hilbert space H . Let
α > 0 and let A be an α-inverse-strongly monotone mapping of C into H such that
V I(C, A) 	= ∅. Let u ∈ C, x1 = x ∈ C and let {xn} be a sequence in C generated
by

xn+1 = αnu + (1 − αn)PC(xn − λnAxn)

for all n ∈ N, where {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α, lim
n→∞

∞∑
n=1

|λn − λn+1| < ∞,

lim
n→∞αn = 0,

∞∑
n=1

αn = ∞ and lim
n→∞

∞∑
n=1

|αn − αn+1| < ∞.

Then {xn} converges strongly to a point z0 of V I(C, A), where z0 = PV I(C,A)u.
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Proof. Setting B = ∂iC in Theorem 9, we know that Jλn = PC for all λn > 0.
Furthermore, we have

z ∈ (A + ∂iC)−10 ⇐⇒ 0 ∈ Az + ∂iCz

⇐⇒ 0 ∈ Az + NCz

⇐⇒ −Az ∈ NCz

⇐⇒ 〈−Az, v − z〉 ≤ 0, ∀v ∈ C

⇐⇒ 〈Az, v − z〉 ≥ 0, ∀v ∈ C

⇐⇒ z ∈ V I(C, A).

So we obtain the desired result by Theorem 10.

As in the proof of Theorem 11, we get the following theorem.

Theorem 12. Let C be a closed convex subset of a real Hilbert space H . Let
α > 0 and let A be an α-inverse-strongly monotone mapping of C into H such that
V I(C, A) 	= ∅. Let u ∈ C, x1 = x ∈ C and let {xn} be a sequence in C generated
by

xn+1 = βnxn + (1− βn){αnu + (1− αn)PC(xn − λnAxn)}
for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α, lim
n→∞(λn − λn+1) = 0,

0 < c ≤ βn ≤ d < 1, lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞.

Then {xn} converges strongly to a point z0 of V I(C, A), where z0 = PV I(C,A)u.

Using Theorems 11 and 12, we can obtain strong convergence theorems for widely
strict pseudo-contractions in a Hilbert space.

Theorem 13. Let H be a real Hilbert space and let C be a closed convex subset
of H . Let k < 1. Let U be a widely k-strict pseudo-contraction of C into H such that
F (U) 	= ∅. Let u ∈ C, x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = αnu + (1 − αn)PC{(1 − tn)Uxn + tnxn}
for all n ∈ N, where {tn} ⊂ (−∞, 1) and {αn} ⊂ (0, 1) satisfy

k ≤ tn ≤ b < 1,

∞∑
n=1

|tn − tn+1| < ∞,

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞, and

∞∑
n=1

|αn+1 − αn| < ∞.

Then {xn} converges strongly to a point z0 of F (U), where z0 = PF (U )u.



Strong Convergence Theorems 1167

Proof. We know from Lemma 8 that I − U is 1−k
2 -inverse-strongly monotone.

Setting A = I − U , a = 1 − b, λn = 1 − tn and 2α = 1 − k in Theorem 11, we get
from k ≤ tn ≤ b < 1 that 0 < a ≤ λn ≤ 2α,

∞∑
n=1

|λn+1 − λn| =
∞∑

n=1

|tn+1 − tn| < ∞

and
I − λnA = I − (1 − tn)(I − U) = (1 − tn)U + tnI.

Furthermore, putting B = ∂iC, we have from Lemma 5 that

z ∈ (A + ∂iC)−1 ⇐⇒ 0 ∈ Az + ∂iCz

⇐⇒ 0 ∈ z − Uz + NCz

⇐⇒ Uz − z ∈ NCz

⇐⇒ 〈Uz − z, v − z〉 ≤ 0, ∀v ∈ C

⇐⇒ PCUz = z

⇐⇒ Uz = z.

So, we obtain (A + ∂iC)−10 = F(U). Thus, we obtain the desired result by using
Theorem 11.

We obtain Zhou’s theorem (Theorem 1) by assumming 0 ≤ k < 1 in Theorem 13.
As in the proof of Theorem 13, we also get the following theorem.

Theorem 14. Let H be a real Hilbert space and let C be a closed convex subset
of H . Let k < 1. Let U be a widely k-strict pseudo-contraction of C into H such that
F (U) 	= ∅. Let u ∈ C, x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1 − βn)(αnu + (1− αn)PC{(1− tn)Uxn + tnxn}

for all n ∈ N, where {tn} ⊂ (−∞, 1), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

k ≤ tn ≤ b, lim
n→∞(tn − tn+1) = 0,

0 < c ≤ βn ≤ d < 1, lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞.

Then {xn} converges strongly to a point z0 of F (U), where z0 = PF (U )u.

Next, using Theorems 9 and 10, we consider the problem for finding a solution of
the generalized equilibrium problem in a Hilbert space. For solving the equilibrium
problem, let us assume that the bifunction f : C × C → R satisfies the following
conditions:
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(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

The following lemma appears implicitly in Blum and Oettli [5].

Lemma 15. ([Blum and Oettli]). Let C be a nonempty closed convex subset of H

and let f be a bifunction of C × C into R satisfying (A1) − (A4). Let r > 0 and
x ∈ H . Then, there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

The following lemma was also given in Combettes and Hirstoaga [8].

Lemma 16. Assume that f : C × C → R satisfies (A1) − (A4). For r > 0 and
x ∈ H , define a mapping Tr : H → C as follows:

Trx =
{

z ∈ C : f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}

for all x ∈ H . Then, the following hold:
(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H ,

‖Trx − Try‖2 ≤ 〈Trx − Try, x− y〉;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

We call such Tr the resolvent of f for r > 0. Using Lemmas 15 and 16, we know
the following lemma [20]. See [1] for a more general result.

Lemma 17. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let f : C×C → R satisfy (A1)−(A4). Let Af be a set-valued mapping
of H into itself defined by

Afx =

{
{z ∈ H : f(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C,

∅, x /∈ C.

Then, EP (f) = A−1
f 0 and Af is a maximal monotone operator with dom(A f ) ⊂ C.

Furthermore, for any x ∈ H and r > 0, the resolvent T r of f coincides with the
resolvent of Af , i.e.,

Trx = (I + rAf )−1x.
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Using Lemma 17, we obtain the following result.

Theorem 18. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let α > 0 and let A be an α-inverse- strongly monotone mapping of C into H . Let
f be a bifunction from C ×C to R satisfying (A1)− (A4) and let T λ be the resolvent
of f for λ > 0. Suppose that EP (f, A) 	= ∅. Let {xn} be a sequence in C generated
by u ∈ C, x1 = x ∈ C and

xn+1 = αnu + (1− αn)Tλn(I − λnA)xn, ∀n ∈ N,

where {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

0 < a ≤ λn ≤ 2α, lim
n→∞

∞∑
n=1

|λn − λn+1| < ∞,

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞, and
∞∑

n=1

|αn − αn+1| < ∞.

Then, {xn} converges strongly to PEP (f,A)u.

Proof. For the bifunction f , we can define Af in Lemma 17. Putting B = Af

in Theorem 9, we obtain from Lemma 17 that Jλn = Tλn for all n ∈ N. Furthermore,
we have that for λ > 0,

z ∈ (A + Af)−10 ⇐⇒ 0 ∈ Az + Afz

⇐⇒ 0 ∈ λAz + λAfz

⇐⇒ z − λAz ∈ z + λAfz

⇐⇒ z = Tλ(z − λAz)

⇐⇒ f(z, y) +
1
λ
〈y − z, z − (z − λAz)〉 ≥ 0, ∀y ∈ C

⇐⇒ f(z, y) + 〈y − z, Az〉 ≥ 0, ∀y ∈ C

⇐⇒ z ∈ EP (f, A).

So, we obtain the desired result by Theorem 9.

As in the proof of Theorem 18, we get the following theorem which is related to
[19, Theorem 4.1].

Theorem 19. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let α > 0 and let A be an α-inverse- strongly monotone mapping of C into H . Let
f be a bifunction from C ×C to R satisfying (A1)− (A4) and let T λ be the resolvent
of f for λ > 0. Suppose that EP (f, A) 	= ∅. Let {xn} be a sequence in C generated
by u ∈ C, x1 = x ∈ C and

xn+1 = βnxn + (1 − βn){αnu + (1− α)Tλn(I − λnA)xn}, ∀n ∈ N,
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where {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

0 < a ≤ λn ≤ 2α, lim
n→∞(λn − λn+1) = 0,

0 < c ≤ βn ≤ d < 1, lim
n→∞ αn = 0 and

∞∑
n=1

αn = ∞.

Then, {xn} converges strongly to PEP (f,A)u.
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