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AN ALGORITHM FOR SOLVING SOME NONLINEAR SYSTEMS WITH
APPLICATIONS TO EXTREMUM PROBLEMS

Anca Ciurte, Sergiu Nedevschi* and loan Rasa

Abstract. We consider a class of nonlinear systems for which a positive solution
exists and is unique. Such systems appear quite naturally in several applications
concerning difference equations. Moreover, certain extremum problems can be
reduced to solving these systems. In order to solve such problems we develop
a quasi-Newton algorithm which is very efficient just because the existence and
uniqueness of the solution are guaranteed. Several numerical examples illustrate
the general results.

1. INTRODUCTION

Consider the system

ai1z1 + ajpxe + - -+ appzy, = f(21)

a1 1 + agexy + - - - + agpy, = f(22)

(S¢)
an121 + Gpa®2 + - - 4 Aty = f(T5)
1 >0,20>0,...,2, >0,
where a;; > 0,4,5=1,...,n,and f : (0, +00) — (0,+400) is a continuous function.

It appears quite naturally in several applications related to
- second, third and fourth order difference equations;
- three-point boundary value problems;
- Dirichlet problems for partial difference equations;
- periodic solutions for difference equations;
- numerical solutions for differential equations;
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- steady states of complex dynamical networks.

For details see [7], where even more general systems are considered. Deep results
concerning the iteration methods for weakly nonlinear systems Az = ®(z) can be found
in [1] and the references therein; in [1] A is a complex matrix and ¢ : D C C* — C"
is a continuously differentiable function defined on a domain DD, all of them subject to
suitable assumptions.

When f(x) = 27 for some given ¢ € R, we use the notation (.S;) instead of (Sy).
It was proved in [7, Theorem 3.1] that for ¢ > 1 the system (.S,) has a unique solution.

In Section 2 we present sufficient conditions on f guaranteeing the existence and
uniqueness of the solution to Sy. These conditions are satisfied, in particular, by
f(z) =2 for g € (—o0, —1] U (1, +00).

A quasi-Newton algorithm for solving an extremum problem associated with (Sy)
is described in Section 3. It is very efficient, when the solution exists and is unique, for
example under the assumptions of Theorems 1 and 2. This existence and uniqueness
property is really important: as G. J. McLachlan and Th. Krishnan say on page 90 of
their book [5], who knows what pitfalls there may be when the algorithm is used in
more complicated settings where multiple extremum points are present.

The Newton algorithm corresponding to our special setting is also described and
compared with the quasi-Newton algorithm. For both of them the general convergence
theorems can be applied. As proved in Section 2, our special setting has an essential
feature: existence and uniqueness of the solution, and usually this particularity leads
to better results.

Extremum problems which lead naturally to (Sy) are presented in Sections 3 and 4.

Numerical examples can be found in Section 5.

2. EXISTENCE AND UNIQUENESS

Let
Sit=ai1+ -+ aip, t=1,...,n,

M= 1mins;, vV :i=Iaxs;.
(2 (2
Theorem 1. Let g : (0,+00) — (0, 400) be continuous and strictly increasing.

Suppose there exist zy > 0, zo > 0 such that g(z1) = u, g(z2) = v. Let f(x) = zg(x),
x> 0. Then (Sf) has a unigue solution.

Proof. Since f is strictly increasing, (S¢) can be written under the form

a11f_1(y1) + -+ alnf_l(yn) =1

anl‘f_l(yl) +---+ annf_l(yn) =Yn
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where y; = f(z;),1=1,...,n.

Let m := pz1, M :=vzy. Then 0 < m < M, f(z1) = m, f(22) = M. Consider
the set
(1) K={yeR":m<y; <M,j=1,...,n},

and the function F' : K — R"™,

) Fy) =D _ayf i), > anif ;) |, y€K.
=1 j=1

Let y € K. Then
FoHm) < fHy) < F7HM), G =1,
which entails
m=pz = pf " (m) < sif Hm) < aif () <
j=1
<sif M) <vfH(M)=ve=M

for each i = 1,...,n. So we have
n
m<> aif Ny <M, i=1,...,n,
j=1

which means that F(y) € K.
Summing-up, K is compact and convex, F is continuous, and F(K) C K. Now
Brouwer’s Theorem guarantees the existence of y € K with F(y) = y; obviously

(f7*(w1),---, [ (yn)) is a solution of (Sy).

Suppose that v = (uq,...,u,) and v = (vy,...,v,) are two distinct solutions.
Then for each ¢ = 1,...,n we have
@1 + -+ UpGin = f(u;)
3)
viag + -+ vpain = f(vs).
Let
LU Uy up  up .
min — = —, max— = —, i.e.,
NV Uy v U5 Vi
“4)

. U, u
R . Sy e T
i v T Uk

IN
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From 3) we get fori =1,...,n,

upaik + ujai; = fu;) — Z g
[y
(5)
vpaik + vjai; = f(v;) — Z VG-
[y

Since v and v are distinct solutions, it is easy to see that

Ur Uy
Vg Uy

>0

and so a;; and a;; can be determined from (5). If we do this, and if we take into
account that a;; > 0 and a;; > 0, we get

v f(us) — uif(vi) = Y (ww; — wjvr)aq > 0,
[y
upf (vi) = o f(ws) = Y (vpu, — vpur)ag > 0,
I£5.k
foralli=1,...,n.

Combined with (4), this yields

(6) vjf(ui) > ujf(”i); ukf(vz) > 'ka(ui)v i=1,...,n

Accordingly, we get
vjuig(us) > ujvig(vy);  urvrg(ve) > veurg(ug),

which entails g(u;) > g(v;) and g(vx) > g(ux). Since g is strictly increasing, we get
u; > vj and vy > ug. Thus u;v > vjug, and this contradicts (4).
So Theorem 1 is proved.

Example 1. Let ¢ > 1 and g(z) = 297!, 2 > 0. Then f(x) = 29. According to
Theorem 1, the system (.5;) has a unique solution. As mentioned in the Introduction,
this result was obtained in [7, Theorem 3.1].

Theorem 2. Let h : (0,400) — (0,4+00) be continuous and decreasing. Let
f(z) = %m) x > 0, and suppose there exist 0 < m < M such that f~1(m) = &,

Y (M) = “t. Then (Sf) has a unique solution.

Proof. By using m and M, let us consider the set KX and the function F' given by
(1) and (2). As in the proof of Theorem 1, one can verify that F(K) C K. Then the
existence of a solution to (S) follows from Brouwer’s Theorem.
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Suppose that (S) has two distinct solutions « and v. As in the proof of Theorem
1, we derive the inequalities (6). Now they imply
D Flug) f(%‘)j flow) _ fluw)

Uj Uy Vi Uk

Since %m) is strictly decreasing, we get u; < v; and v; < uy, which gives h(u;) >

h(vy) and h(vr) > h(ug). Therefore u, f(u;) > v f(v;) and v f (vg) > upf(uy), ie-
(8) wjog f(ug) f(or) > vjug f(vg) f(ug).

On the other hand, from (6) we deduce

9) v f(uk) > u;f(ve), wrf(v;) > vif(uy)

which contradicts (8). This concludes the proof of Theorem 2.

Example 2. Let ¢ < —1 and h(x) = 29"%, > 0. The assumptions of Theorem
2 are satisfied with

e (qu uq> 1/(¢°~1) M= (quq2>1/(q2—1) '

Consequently, (S,) has a unique solution.
Example 3. Let now ¢ = —1. The system (.5;) becomes

a1172 + a1pr129 + -+ a1 T1T, = 1
(10) : ,
n1T1Tn + Ap222ZTn + -+ appx;, =1
1 >0,...,2, >0.

The i*" equation is

n
2
i T; + x; E QijTj — 1=0.
=1
J#i

Since x; > 0, we get

() 2 = 2

1/2

5 .
<<Z§L1,j7&z‘ aijxj> + 40,“‘) + Z?::L’j¢z‘ Q55

Let U :={z e R"0 < z; < \/%7,1 = 1,...,n}. Consider the function G : U —
R™, G(z) = (G1(z),...,Gn(x)), where G;(x) is the right-hand side of (11). Then
obviously the system (10) is equivalent to the equation

(12) Gx)==z, zeUl.
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On the other hand, it is easy to see that G(U) C U. Since G is continuous and U is
compact and convex, Brouwer’s Theorem implies the existence of a solution to (12).
So the existence of a solution to (.5,) is proved also for ¢ = —1.

The uniqueness of the solution follows from Theorem 2, since the corresponding
proof of the uniqueness does not require the existence of m and M.

Remark 1. For —1 < ¢ < 1 it is easy to construct systems of type (S;) having
several solutions; see also [7, Rem. 3.4].

3. A QUASI-NEWTON ALGORITHM FOR THE SYSTEM (.S¥)

Assume that aj; = a;j, i,j = 1,...,n. For |g| > 1 consider the function
n 2 n
+1
fq(z) = Z QijTxj — P z],
ij=1 i=1

defined on the set P, := {z € R"|z1 > 0,...,x, > 0}.
For g = —1let f1(x) =30, ; aijviw; —2 3 ", logx; defined on the same set P,.
For all ¢ € (—o0, —1] U (1, +00) we have

0 fq(z) S .
HCT 93wy — 248, i=1,...
8xz~ ‘= aijT; Z;y 1 ) » 1,

so that the unique stationary point of f; is the unique solution of the system (S;). By
examining the behavior of f, near the boundary of P, we see that for ¢ > 1 f, attains
a maximum, while for ¢ < —1 it attains a minimum in P,,.

Theorem 3. A quasi-Newton algorithm for finding the extremum points of f, is
described by

noo B ()
(13) (I;(k"'l) _ x(k) 1 I Z]:l aT’ij:j <xr )

T T ) k Z 07
q <x£’k)>q - arrxg’k)

forr=1,...,n.

Proof. Lett € P, be given. The construction of the quasi-Newton algorithm is
based on approximating f, in a neighborhood of ¢ by a “restricted” polynomial w of
the form described in (14). Of course, the approximation by a complete polynomial of
second degree will lead to the Newton algorithm; see, e.g., [6, Sect. 3.4]. See also
Remarks 3 and 4 below.
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Consequently, we shall determine a function

(14) w(z) = Zn:vzx? + QZn:uixi +c
i=1 =1

such that

(15) w(t) = fy(t)

(16) g;(t):gﬁ(t), i=1,...,n,

a7 a0 -5h0. i1

From (17) we get
(18) vi:aii—qtg_l, ’i=1,...,n.

Now (16) and (18) imply
n

(19) U; :Zaijtj—aiiti—i—(q—l)t?, 1=1,...,n.
j=1

The number ¢ can be determined from (15), and the resulting function w approximates
fq in the neighborhood of t.

Let 29 € P, be given. We construct the iterates () as follows. Suppose (k)
was determined. Consider the function w associated to ¢ = z(%); its extremum point is

Then we take 2(**1) to be this point; see also [6, Sect. 3.4]. According to (18) and
(19) we get

k k E)\?
(k+1) _ ?:1 arjxﬁ‘ ) — arrxg’ ) + (q - 1) ((L‘§= )>
q\Zr — Qypy
for r = 1,...,n. This is equivalent to (13).

Corollary 1. Suppose that for the sequence (x(k))k>0 given by (13) one has

(20) lim x(k):xﬁ>0, r=1,...,n.

M
k—oo

Then x* = (z7, ..., x}) is a solution of the system (S;).



1144 Anca Ciurte, Sergiu Nedevschi and Ioan Rasa

Proof. Indeed, under the assumption (20) we get from (13):
n
Zarjx;‘» =(z)?, r=1,...,n.
j=1

Remark 2. Our extensive numerical experiments show that the algorithm described
in Theorem 3 converges whenever one starts with small values (if ¢ < —1), respec-
tively large values (if ¢ > 1) of x(10)7 . .,x%o), even if the matrix (a;;); j=1
symmetric and n is large; see Figure 1.

-----

Remark 3. Obviously the algorithm can be generalized in order to approximate the
solution of (S¢). It becomes

n () (k)
S _ g [ im0ty = )
' ' (7@ —am) 2t )
and provides the extremum point of the function

n n
F(ml, ceey xn) = Z Qi i L5 — 2 Z @(mz)
=1

1,5=1

21

where ¢'(s) = f(s), s € (0,400).

Remark 4. In order to find the extremum point of the above function F' we can
use also the Newton algorithm (see, e.g., [6, Sect. 3.4.]). In our specific setting it can
be described as follows.

Let x = (z1,...,%,)" be a column vector. Consider the matrix
air — f'(z1) a1z e ain
Alz) = azi azz — f’($2) S azn

Gnl Gn2 coe Qpp — ()

and let ®(z) := (f(z1) — 21/ (1), - - ., f(2n) — 2nf'(x0))".

Starting with an initial solution 29, the iterations are described by
-1
(22) ek = <A(x(k))> o(z®)y, k> 0.

Since the quasi-Newton algorithm (21) does not require to invert matrices, it is
simpler than the Newton algorithm (22). Being more precise, the Newton algorithm
requires a smaller number of iterations, especially in the case of small systems. For
large problems, the quasi-Newton algorithm is more efficient with respect to the com-
puting time. Figure 1 displays the computing times with (21) and respectively (22) for
f(x) = 2719, The involved matrices and initial solutions are randomly generated, with
increasing dimensions.
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45

—&— Newton algorithm
40 || —— quasi-Newton algorithm
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30+

25
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7 i

0 To0 U A00 300 400 500 600 700 800 900 1000
Matrix dimension

Fig. 1. Computing times with (21) and respectively (22).

4. AN EXTREMUM PROBLEM

Let ¢; = (city-- -, Cim) €ER™, ¢ >0,i=1,...,n; j=1,...,m. Let p; > 0 be
also given, t = 1,...,n.
Consider the function

n

fl1,.. . am) = H(Cz‘lﬂcl + - CimT )P
i=1

defined for € R™ with 21 > 0,..., 2y > 0 and 7, xj2 =1.
Then log f(z) = Y./, pilog(ciix1 + - - - + CimTy,) and the Lagrange function as-
sociated with log f(z) is L = Y. pilogs; — A(z} + - + 22, — 1), where s; :=
Ci1%1 + -+ CimTm.-

The stationary points for L are solutions of

Ben+ e+ + Lo =2Am
(23) b1 ‘ D2 Dn
5. C1m + 55 C2m + 4+ 5y Cm = 2 zp,
x%+...+x%n:1.
Multiply the i*" equation by 2;, i = 1, ..., m, and then add; the result will be

pr+oc Py =2

Lett; =B P:=p 4+ -+ pp.

Si

The first m equations of (23) become
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ciity + -+ cpitp = Py

(24) :
Cimt1 + -+ Cumtn = Py,

Fixani € {1,...,n}. Multiply the j** equation of (24) by ¢;;, 7 = 1,...,m, and add

to obtain

(25) (cilei)ts + -+ -+ (enlci)tn = Ps;

where (cjl¢;) == Y11 CjkCik.

Since s; = p;/ti, we get

(ciler)ts + -+ + (eplen)tn, = Ppltl_l

(26) :

(cilen)ts + - -+ (cnlen)tn = Pput,;t.

After dividing the " equation by Pp; we get a system of type (S,) with ¢ = —1.

We know that it has a unique solution with ¢; > 0, ..., ¢, > 0. From (24) we get the
stationary point x; the corresponding value of f is

;)
o1 \ti
5. EXAMPLES

Example 4. Let o; > 0,7 =1,2,.... Systems like

t1 t
(27) An | ¢ = | :
tn th
where
a1+ o —Q9 0 - 0 0
—Q2 a9 + a3 —Q3 . . 0 0
A, = 0 —a3 az+oay ... 0 0
0 0 0 cen —OQp Qpt Qpg

are inspired by the theory of snakes under the simplifying hypothesis that the snakes
acts only like a membrane, i.e. « > 0 and 8 = 0, see [4].
Since

1 1
detAk:al...akH(——i—---—i— ), k>1,
ag
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a classical result of Ostrowski (see [2, Chap. 16]) shows that the entries of A~! are
strictly positive. Now (27) becomes
t t1
(28) AL =
t

[y

3

ln

Setting ¢! = x; we get a system of type (S,), with ¢ = 1/p. If p € [-1,0)U(0, 1),
then ¢ € (—oo, —1] U (1, 400), and we can apply the algorithm (13) in order to solve
the system (28).

In particular, if ; = 1,7 = 1,2, ..., we are dealing with a second order Dirichlet
problem like that presented in [7, Section 2].

Example 5. When o = 0 and § > 0, we are lead to a system like (27), but with
B; > 0 and

B1+4B2+83 —2B2—2083 B3 0 0 0

—2B2—203 B2+4B3+B4 —2P3—204 Ba 0 0

B3 —2B3—2B4 B3+4Ba+B5 —2B4—205 Bs 0

An = 0 BA  —284-205 Pa-+4fs+Bs —265—2P6 .. 0
0 0 0 0 0 ﬂn+4ﬂn+1+ﬂn+2

Such a system can be solved as in Example 4.
In particular, if G; = 1,4 = 1,2,..., this is a fourth order difference equation of
type discussed in [7, Section 2].

Example 6. Here is an example when «; = 3; = 1. The system corresponding to

(27) is 12
8 =5 1 0 0 0\ /[t Ly
-5 8 -5 1 0 0 to 12
29) 1 =5 8 =5 1 0 ts | _| &7
0 1 -5 8 -5 1 ty £,
0 0 1 -5 8 —5]|| t (12
O 0 0 1 -5 8 t V2
Here p = —%; setting ti_l/ 2 = g, we get the following system of type (S,) with
q=1/p=-2:
0.3159 0.3708 0.3263 0.2451 0.1530 0.0650 T xl_Q
0.3708 0.7377 0.7222 0.5635 0.3576 0.1530 To x2_2
(30) 0.3263 0.7222 1.0005 0.8566 0.5635 0.2451 T3 _ xgzz
0.2451 0.5635 0.8566 1.0005 0.7222 0.3263 T4 Ty
0.1530 0.3576 0.5635 0.7222 0.7377 0.3708 T5 x5_2

0.0650 0.1530 0.2451 0.3263 0.3708 0.3159 Te xﬁ_Q
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Starting with the initial solution

0 = (0.00004 0.0001 0.0001 0.0002 0.0005 0.0001)
we obtain the solution of (30)

(1) = (0.9600 0.6962 0.6206 0.6206 0.6962 0.9600).
Now the solution of (29) is obtained from ¢; = x;Q, i=1,...,6:

t = (1.0850 2.0633 2.5963 2.5963 2.0633 1.0850).

Example 7. Let g(z) = e¢* — 1 and f(z) = zg(x), x € (0, +00). The assumptions
Theorem 1 are satisfied, hence the system Sy has a unique solution.
As an example, consider the system

22590 147.09 82.88 142.50 191.99 1 z1(e™ —1)
147.09 200.99 105.75 79.87 119.30 T2 xa(e™ —1)
82.88 105.75 98.93 47.69 40.64 xz3 | = | z3(e® —1)
142.50 79.87 47.69 152.40 139.01 T4 xq(e™ —1)
191.99 119.30 40.64 139.01 191.86 T5 x5(e™ — 1)

and choose the initial solution
z(0) = (61.27 30.08 79.81 79.56 78.10).
By using the quasi-Newton algorithm (21) we get the solution

(82 = (6.64 6.47 5.99 6.34 6.52).

Example 8. Consider the function
f(xl, X9, 1‘3) = (1‘1 + 229 + 31‘3)4(61‘1 + 4z + 21‘3)2(41‘1 + 929 + 1‘3)3.

We want to find its maximum point subject to x% + x% + x% =1, 21,22, 23 > 0.
The system (26) becomes

0.3889 0.5556 0.6944 t ¢!
11111 3.1111 3.4444 ta | =1 t;°
0.9259 2.2963 3.6296 ts t3!

The algorithm (13), applied to this system, gives the solution

t1 = 1.1721, ¢, = 0.2960, t3 = 0.3353.
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Now (24) yields
(31) x1 = 04766, xz9 =0.7274 z3 = 0.4938.

This is the required maximum point.
It is instructive to have another look at our extremum problem. Indeed, it is equiv-
alent to the problem of finding the maximum point of

z(x1, x2)

= (21 + 222 + 31/1 — 22 — 23) (621 + dag +2¢/1 — 27 — 23)?
(4zy + 99 + /1 — 27 — 23)?

subject to x1 > 0, 3 > 0, 27 + 23 < 1.
Passing to polar coordinates
x1 = pcosl, x9=psingd, 0<p<1, 0<0<g

we obtain a function z having the graph as in Fig. 2.
The maximum point corresponds to

p=0.8696, 6 =0.9907,
which leads to (31).

Fig. 2. The graph of the function z.

6. CONCLUDING REMARKS

As seen above, the algorithm described in Theorem 3 and Remark 3 works very well
in order to solve systems of type (S¢) and the corresponding extremum problems. It
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provides an accurate approximation of the exact solution in a small number of iterations.
This is explained, apart from the convergence theorems for general systems of nonlinear
equations, by the essential feature of our special setting: the existence and uniqueness
of the solution, proved in our article. The rate of convergence is governed by the
general rules of quasi-Newton algorithms.

On the other hand, in the general setting of the Expectation -Maximization Algo-
rithm (see [5]), we developed in [3] a generalization of the EMML and ISRA algorithms
for solving the Positron Emission Tomography problem. Similar algorithms for solving
the system (Sy) will be discussed in a forthcoming paper.

REFERENCES

1. Z.-Z. Bai and X. Yang, On HSS-based iteration methods for weakly nonlinear systems,
Appl. Numer. Math., 59 (2009), 2923-2936.

2. R. Bellman, Introduction to Matrix Analysis, MacGraw-Hill, London, 1960.

3. A. Ciurte, S. Nedevschi and 1. Rasa, A generalization of the EMML and ISRA algorithms
for solving linear systems, J. Comput. Anal. Appl., 12 (2010), 799-816.

4. M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, Int. J. Com-
puter Vision, 1 (1988), 321-331.

5. G. J. McLachlan and Th. Krishnan, The EM Algorithm and Extensions, Wiley, 2008.

6. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation,
SIAM, 2005.

7. G. Zhang and W. Feng, On the number of positive solutions of a nonlinear algebraic
system, Linear Alg. Appl., 422 (2007), 404-421.

Anca Ciurte and Sergiu Nedevschi

Department of Computer Science

Technical University of Cluj-Napoca

400020 Cluj-Napoca

Romania

E-mail: Anca.Ciurte@cs.utcluj.ro
Sergiu.Nedevschi@cs.utcluj.ro

Joan Rasa

Department of Mathematics
Technical University of Cluj-Napoca
400020 Cluj-Napoca

Romania

E-mail: Ioan.Rasa@math.utcluj.ro



