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AN ALGORITHM FOR SOLVING SOME NONLINEAR SYSTEMS WITH

APPLICATIONS TO EXTREMUM PROBLEMS

Anca Ciurte, Sergiu Nedevschi* and Ioan Rasa

Abstract. We consider a class of nonlinear systems for which a positive solution

exists and is unique. Such systems appear quite naturally in several applications

concerning difference equations. Moreover, certain extremum problems can be

reduced to solving these systems. In order to solve such problems we develop

a quasi-Newton algorithm which is very efficient just because the existence and

uniqueness of the solution are guaranteed. Several numerical examples illustrate

the general results.

1. INTRODUCTION

Consider the system

(Sf)





a11x1 + a12x2 + · · ·+ a1nxn = f(x1)
a21x1 + a22x2 + · · ·+ a2nxn = f(x2)
...

an1x1 + an2x2 + · · ·+ annxn = f(xn)
x1 > 0, x2 > 0, . . . , xn > 0,

where aij > 0, i, j = 1, . . . , n, and f : (0, +∞) → (0, +∞) is a continuous function.
It appears quite naturally in several applications related to

- second, third and fourth order difference equations;

- three-point boundary value problems;

- Dirichlet problems for partial difference equations;

- periodic solutions for difference equations;

- numerical solutions for differential equations;
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- steady states of complex dynamical networks.

For details see [7], where even more general systems are considered. Deep results

concerning the iteration methods for weakly nonlinear systemsAx = Φ(x) can be found
in [1] and the references therein; in [1] A is a complex matrix and Φ : D ⊂ Cn → Cn

is a continuously differentiable function defined on a domain D, all of them subject to
suitable assumptions.

When f(x) = xq for some given q ∈ R, we use the notation (Sq) instead of (Sf).
It was proved in [7, Theorem 3.1] that for q > 1 the system (Sq) has a unique solution.
In Section 2 we present sufficient conditions on f guaranteeing the existence and

uniqueness of the solution to Sf . These conditions are satisfied, in particular, by

f(x) = xq for q ∈ (−∞,−1]∪ (1, +∞).
A quasi-Newton algorithm for solving an extremum problem associated with (Sf)

is described in Section 3. It is very efficient, when the solution exists and is unique, for

example under the assumptions of Theorems 1 and 2. This existence and uniqueness

property is really important: as G. J. McLachlan and Th. Krishnan say on page 90 of

their book [5], who knows what pitfalls there may be when the algorithm is used in

more complicated settings where multiple extremum points are present.

The Newton algorithm corresponding to our special setting is also described and

compared with the quasi-Newton algorithm. For both of them the general convergence

theorems can be applied. As proved in Section 2, our special setting has an essential

feature: existence and uniqueness of the solution, and usually this particularity leads

to better results.

Extremum problems which lead naturally to (Sf)are presented in Sections 3 and 4.
Numerical examples can be found in Section 5.

2. EXISTENCE AND UNIQUENESS

Let

si := ai1 + · · ·+ ain, i = 1, . . . , n,

µ := min
i

si, ν := max
i

si.

Theorem 1. Let g : (0, +∞) → (0, +∞) be continuous and strictly increasing.
Suppose there exist z1 > 0, z2 > 0 such that g(z1) = µ, g(z2) = ν. Let f(x) = xg(x),
x > 0. Then (Sf ) has a unique solution.

Proof. Since f is strictly increasing, (Sf) can be written under the form




a11f
−1(y1) + · · ·+ a1nf−1(yn) = y1
...

an1f
−1(y1) + · · ·+ annf−1(yn) = yn
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where yi = f(xi), i = 1, . . . , n.

Let m := µz1, M := νz2. Then 0 < m ≤ M , f(z1) = m, f(z2) = M . Consider

the set

(1) K := {y ∈ Rn : m ≤ yj ≤ M, j = 1, . . . , n} ,

and the function F : K → Rn,

(2) F (y) :=




n∑

j=1

a1jf
−1(yj), . . . ,

n∑

j=1

anjf
−1(yj)


 , y ∈ K.

Let y ∈ K. Then

f−1(m) ≤ f−1(yj) ≤ f−1(M), j = 1, . . . , n,

which entails

m = µz1 = µf−1(m) ≤ sif
−1(m) ≤

n∑

j=1

aijf
−1(yj) ≤

≤ sif
−1(M) ≤ νf−1(M) = νz2 = M

for each i = 1, . . . , n. So we have

m ≤
n∑

j=1

aijf
−1(yj) ≤ M, i = 1, . . . , n,

which means that F (y) ∈ K.
Summing-up, K is compact and convex, F is continuous, and F (K) ⊂ K. Now

Brouwer’s Theorem guarantees the existence of y ∈ K with F (y) = y; obviously(
f−1(y1), . . . , f−1(yn)

)
is a solution of (Sf).

Suppose that u = (u1, . . . , un) and v = (v1, . . . , vn) are two distinct solutions.
Then for each i = 1, . . . , n we have

(3)

{
u1ai1 + · · ·+ unain = f(ui)

v1ai1 + · · ·+ vnain = f(vi).

Let

(4)

min
i

ui

vi
=

uj

vj
, max

i

ui

vi
=

uk

vk
, i.e.,

uj

vj
≤ ul

vl
≤ uk

vk
, l = 1, . . . , n.
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From (3) we get for i = 1, . . . , n,

(5)





ukaik + ujaij = f(ui) −
∑

l 6=j,k

ulail

vkaik + vjaij = f(vi) −
∑

l 6=j,k

vlail.

Since u and v are distinct solutions, it is easy to see that

∣∣∣∣
uk uj

vk vj

∣∣∣∣ > 0

and so aik and aij can be determined from (5). If we do this, and if we take into

account that aik > 0 and aij > 0, we get

vjf(ui) − ujf(vi) −
∑

l 6=j,k

(ulvj − ujvl)ail > 0,

ukf(vi) − vkf(ui) −
∑

l 6=j,k

(vluk − vkul)ail > 0,

for all i = 1, . . . , n.

Combined with (4), this yields

(6) vjf(ui) > ujf(vi); ukf(vi) > vkf(ui), i = 1, . . . , n.

Accordingly, we get

vjujg(uj) > ujvjg(vj); ukvkg(vk) > vkukg(uk),

which entails g(uj) > g(vj) and g(vk) > g(uk). Since g is strictly increasing, we get
uj > vj and vk > uk. Thus ujvk > vjuk, and this contradicts (4).

So Theorem 1 is proved.

Example 1. Let q > 1 and g(x) = xq−1, x > 0. Then f(x) = xq. According to

Theorem 1, the system (Sq) has a unique solution. As mentioned in the Introduction,
this result was obtained in [7, Theorem 3.1].

Theorem 2. Let h : (0, +∞) → (0, +∞) be continuous and decreasing. Let
f(x) = h(x)

x , x > 0, and suppose there exist 0 < m ≤ M such that f−1(m) = M
ν ,

f−1(M) = m
µ . Then (Sf) has a unique solution.

Proof. By using m and M , let us consider the set K and the function F given by

(1) and (2). As in the proof of Theorem 1, one can verify that F (K) ⊂ K. Then the

existence of a solution to (Sf ) follows from Brouwer’s Theorem.
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Suppose that (Sf) has two distinct solutions u and v. As in the proof of Theorem

1, we derive the inequalities (6). Now they imply

(7)
f(uj)

uj
>

f(vj)
vj

,
f(vk)

vk
>

f(uk)
uk

.

Since
f(x)

x is strictly decreasing, we get uj < vj and vk < uk , which gives h(uj) ≥
h(vj) and h(vk) ≥ h(uk). Therefore ujf(uj) ≥ vjf(vj) and vkf(vk) ≥ ukf(uk), i.e.,

(8) ujvkf(uj)f(vk) ≥ vjukf(vj)f(uk).

On the other hand, from (6) we deduce

(9) vjf(uk) > ujf(vk), ukf(vj) > vkf(uj)

which contradicts (8). This concludes the proof of Theorem 2.

Example 2. Let q < −1 and h(x) = xq+1, x > 0. The assumptions of Theorem
2 are satisfied with

m =
(
µq2

νq
)1/(q2−1)

, M =
(
µqνq2

)1/(q2−1)
.

Consequently, (Sq) has a unique solution.

Example 3. Let now q = −1. The system (Sq) becomes

(10)





a11x
2
1 + a12x1x2 + · · ·+ a1nx1xn = 1

...

an1x1xn + an2x2xn + · · ·+ annx2
n = 1

x1 > 0, . . . , xn > 0.

The ith equation is

aiix
2
i + xi

n∑

j=1
j 6=i

aijxj − 1 = 0.

Since xi > 0, we get

(11) xi =
2

((∑n
j=1,j 6=i aijxj

)2
+ 4aii

)1/2

+
∑n

j=1,j 6=i aijxj

.

Let U := {x ∈ Rn|0 ≤ xi ≤ 1√
aii

, i = 1, . . . , n}. Consider the function G : U →
Rn, G(x) = (G1(x), . . . , Gn(x)), where Gi(x) is the right-hand side of (11). Then
obviously the system (10) is equivalent to the equation

(12) G(x) = x, x ∈ U.
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On the other hand, it is easy to see that G(U) ⊂ U . Since G is continuous and U is

compact and convex, Brouwer’s Theorem implies the existence of a solution to (12).

So the existence of a solution to (Sq) is proved also for q = −1.
The uniqueness of the solution follows from Theorem 2, since the corresponding

proof of the uniqueness does not require the existence of m and M .

Remark 1. For −1 < q ≤ 1 it is easy to construct systems of type (Sq) having
several solutions; see also [7, Rem. 3.4].

3. A QUASI-NEWTON ALGORITHM FOR THE SYSTEM (Sf)

Assume that aji = aij , i, j = 1, . . . , n. For |q| > 1 consider the function

fq(x) :=
n∑

i,j=1

aijxixj −
2

q + 1

n∑

i=1

xq+1
i ,

defined on the set Pn := {x ∈ Rn|x1 > 0, . . . , xn > 0}.
For q = −1 let f−1(x) :=

∑n
i,j=1 aijxixj −2

∑n
j=1 logxj defined on the same set Pn.

For all q ∈ (−∞,−1]∪ (1, +∞) we have

∂fq(x)
∂xi

= 2
n∑

j=1

aijxj − 2x
q
i , i = 1, . . . , n,

so that the unique stationary point of fq is the unique solution of the system (Sq). By
examining the behavior of fq near the boundary of Pn we see that for q > 1 fq attains

a maximum, while for q ≤ −1 it attains a minimum in Pn.

Theorem 3. A quasi-Newton algorithm for finding the extremum points of fq is

described by

(13) x(k+1)
r = x(k)

r


1 +

∑n
j=1 arjx

(k)
j −

(
x

(k)
r

)q

q
(
x

(k)
r

)q
− arrx

(k)
r


 , k ≥ 0,

for r = 1, . . . , n.

Proof. Let t ∈ Pn be given. The construction of the quasi-Newton algorithm is

based on approximating fq in a neighborhood of t by a ”restricted” polynomial w of

the form described in (14). Of course, the approximation by a complete polynomial of

second degree will lead to the Newton algorithm; see, e.g., [6, Sect. 3.4]. See also

Remarks 3 and 4 below.
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Consequently, we shall determine a function

(14) w(x) =
n∑

i=1

vix
2
i + 2

n∑

i=1

uixi + c

such that

(15) w(t) = fq(t)

(16)
∂w

∂xi
(t) =

∂fq

∂xi
(t), i = 1, . . . , n,

(17)
∂2w

∂x2
i

(t) =
∂2fq

∂x2
i

(t), i = 1, . . . , n.

From (17) we get

(18) vi = aii − qtq−1
i , i = 1, . . . , n.

Now (16) and (18) imply

(19) ui =
n∑

j=1

aij tj − aiiti + (q − 1)tqi , i = 1, . . . , n.

The number c can be determined from (15), and the resulting function w approximates

fq in the neighborhood of t.

Let x(0) ∈ Pn be given. We construct the iterates x(j) as follows. Suppose x(k)

was determined. Consider the function w associated to t = x(k); its extremum point is

(
−u1

v1
, . . . ,−un

vn

)
.

Then we take x(k+1) to be this point; see also [6, Sect. 3.4]. According to (18) and

(19) we get

x(k+1)
r =

∑n
j=1 arjx

(k)
j − arrx

(k)
r + (q − 1)

(
x

(k)
r

)q

q
(
x

(k)
r

)q−1
− arr

for r = 1, . . . , n. This is equivalent to (13).

Corollary 1. Suppose that for the sequence
(
x(k)

)
k≥0

given by (13) one has

(20) lim
k→∞

x(k)
r = x∗

r > 0, r = 1, . . . , n.

Then x∗ = (x∗
1, . . . , x

∗
n) is a solution of the system (Sq).
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Proof. Indeed, under the assumption (20) we get from (13):
n∑

j=1

arjx
∗
j = (x∗

r)
q , r = 1, . . . , n.

Remark 2. Our extensive numerical experiments show that the algorithm described

in Theorem 3 converges whenever one starts with small values (if q ≤ −1), respec-
tively large values (if q > 1) of x

(0)
1 , . . . , x

(0)
n , even if the matrix (aij)i,j=1,...,n is not

symmetric and n is large; see Figure 1.

Remark 3. Obviously the algorithm can be generalized in order to approximate the

solution of (Sf ). It becomes

(21) x(k+1)
r = x(k)

r


1 +

∑n
j=1 arjx

(k)
j − f(x(k)

r )(
f ′(x(k)

r )− arr

)
x

(k)
r


 , r = 1, . . . , n,

and provides the extremum point of the function

F (x1, . . . , xn) :=
n∑

i,j=1

aijxixj − 2
n∑

i=1

ϕ(xi)

where ϕ′(s) = f(s), s ∈ (0, +∞).

Remark 4. In order to find the extremum point of the above function F we can

use also the Newton algorithm (see, e.g., [6, Sect. 3.4.]). In our specific setting it can

be described as follows.

Let x = (x1, . . . , xn)t be a column vector. Consider the matrix

A(x) :=




a11 − f ′(x1) a12 . . . a1n

a21 a22 − f ′(x2) . . . a2n
...

an1 an2 . . . ann − f ′(xn)




and let Φ(x) := (f(x1) − x1f
′(x1), . . . , f(xn) − xnf ′(xn))t.

Starting with an initial solution x(0), the iterations are described by

(22) x(k+1) :=
(
A(x(k))

)−1
Φ(x(k)), k ≥ 0.

Since the quasi-Newton algorithm (21) does not require to invert matrices, it is

simpler than the Newton algorithm (22). Being more precise, the Newton algorithm

requires a smaller number of iterations, especially in the case of small systems. For

large problems, the quasi-Newton algorithm is more efficient with respect to the com-

puting time. Figure 1 displays the computing times with (21) and respectively (22) for

f(x) = x−10. The involved matrices and initial solutions are randomly generated, with

increasing dimensions.
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Fig. 1. Computing times with (21) and respectively (22).

4. AN EXTREMUM PROBLEM

Let ci = (ci1, . . . , cim) ∈ Rm, cij > 0, i = 1, . . . , n; j = 1, . . . , m. Let pi > 0 be
also given, i = 1, . . . , n.

Consider the function

f(x1, . . . , xm) =
n∏

i=1

(ci1x1 + · · ·+ cimxm)pi

defined for x ∈ Rm with x1 > 0, . . . , xm > 0 and
∑m

j=1 x2
j = 1.

Then log f(x) =
∑n

i=1 pi log(ci1x1 + · · · + cimxm) and the Lagrange function as-
sociated with log f(x) is L =

∑n
i=1 pi log si − λ(x2

1 + · · · + x2
m − 1), where si :=

ci1x1 + · · ·+ cimxm.

The stationary points for L are solutions of

(23)





p1
s1

c11 + p2
s2

c21 + · · ·+ pn

sn
cn1 = 2λx1

...
p1
s1

c1m + p2
s2

c2m + · · ·+ pn

sn
cnm = 2λxm

x2
1 + · · ·+ x2

m = 1.

Multiply the ith equation by xi, i = 1, . . . , m, and then add; the result will be

p1 + · · ·+ pn = 2λ.

Let ti := pi
si
, P := p1 + · · ·+ pn.

The first m equations of (23) become
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(24)





c11t1 + · · ·+ cn1tn = Px1
...

c1mt1 + · · ·+ cnmtn = Pxm.

Fix an i ∈ {1, . . . , n}. Multiply the jth equation of (24) by cij , j = 1, . . . , m, and add

to obtain

(25) (c1|ci)t1 + · · ·+ (cn|ci)tn = Psi

where (cj|ci) :=
∑m

k=1 cjkcik.

Since si = pi/ti, we get

(26)





(c1|c1)t1 + · · ·+ (cn|c1)tn = Pp1t
−1
1

...

(c1|cn)t1 + · · ·+ (cn|cn)tn = Ppnt−1
n .

After dividing the ith equation by Ppi we get a system of type (Sq) with q = −1.
We know that it has a unique solution with t1 > 0, . . . , tn > 0. From (24) we get the
stationary point x; the corresponding value of f is

n∏

i=1

(
pi

ti

)pi

.

5. EXAMPLES

Example 4. Let αi > 0, i = 1, 2, . . . . Systems like

(27) An




t1
...

tn


 =




tp1
...

tpn




where

An =




α1 + α2 −α2 0 . . . 0 0
−α2 α2 + α3 −α3 . . . 0 0
0 −α3 α3 + α4 . . . 0 0
...

0 0 0 . . . −αn αn + αn+1




are inspired by the theory of snakes under the simplifying hypothesis that the snakes

acts only like a membrane, i.e. α > 0 and β = 0, see [4].
Since

detAk = α1 . . .αk+1

(
1
α1

+ · · ·+ 1
αk+1

)
, k ≥ 1,
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a classical result of Ostrowski (see [2, Chap. 16]) shows that the entries of A−1 are

strictly positive. Now (27) becomes

(28) A−1
n




tp1
...

tpn


 =




t1
...

tn


 .

Setting tpi = xi we get a system of type (Sq), with q = 1/p. If p ∈ [−1, 0)∪ (0, 1),
then q ∈ (−∞,−1] ∪ (1, +∞), and we can apply the algorithm (13) in order to solve
the system (28).

In particular, if αi = 1, i = 1, 2, . . . , we are dealing with a second order Dirichlet

problem like that presented in [7, Section 2].

Example 5. When α = 0 and β > 0, we are lead to a system like (27), but with
βi > 0 and

An =




β1+4β2+β3 −2β2−2β3 β3 0 0 ... 0

−2β2−2β3 β2+4β3+β4 −2β3−2β4 β4 0 ... 0

β3 −2β3−2β4 β3+4β4+β5 −2β4−2β5 β5 ... 0

0 β4 −2β4−2β5 β4+4β5+β6 −2β5−2β6 ... 0

...

0 0 0 0 0 ... βn+4βn+1+βn+2




Such a system can be solved as in Example 4.

In particular, if βi = 1, i = 1, 2, . . . , this is a fourth order difference equation of

type discussed in [7, Section 2].

Example 6. Here is an example when αi = βi = 1. The system corresponding to
(27) is

(29)




8 −5 1 0 0 0
−5 8 −5 1 0 0
1 −5 8 −5 1 0
0 1 −5 8 −5 1
0 0 1 −5 8 −5
0 0 0 1 −5 8







t1
t2
t3
t4
t5
t6




=




t
−1/2
1

t
−1/2
2

t
−1/2
3

t
−1/2
4

t
−1/2
5

t
−1/2
6




.

Here p = −1
2 ; setting t

−1/2
i = xi, we get the following system of type (Sq) with

q = 1/p = −2:

(30)




0.3159 0.3708 0.3263 0.2451 0.1530 0.0650
0.3708 0.7377 0.7222 0.5635 0.3576 0.1530
0.3263 0.7222 1.0005 0.8566 0.5635 0.2451
0.2451 0.5635 0.8566 1.0005 0.7222 0.3263
0.1530 0.3576 0.5635 0.7222 0.7377 0.3708
0.0650 0.1530 0.2451 0.3263 0.3708 0.3159







x1

x2

x3

x4

x5

x6




=




x−2
1

x−2
2

x−2
3

x−2
4

x−2
5

x−2
6




.
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Starting with the initial solution

x(0) = (0.00004 0.0001 0.0001 0.0002 0.0005 0.0001)

we obtain the solution of (30)

x(31) = (0.9600 0.6962 0.6206 0.6206 0.6962 0.9600).

Now the solution of (29) is obtained from ti = x−2
i , i = 1, . . . , 6:

t = (1.0850 2.0633 2.5963 2.5963 2.0633 1.0850).

Example 7. Let g(x) = ex−1 and f(x) = xg(x), x ∈ (0, +∞). The assumptions
Theorem 1 are satisfied, hence the system Sf has a unique solution.

As an example, consider the system




225.90 147.09 82.88 142.50 191.99
147.09 200.99 105.75 79.87 119.30
82.88 105.75 98.93 47.69 40.64
142.50 79.87 47.69 152.40 139.01
191.99 119.30 40.64 139.01 191.86







x1

x2

x3

x4

x5




=




x1(ex1 − 1)
x2(ex2 − 1)
x3(ex3 − 1)
x4(ex4 − 1)
x5(ex5 − 1)




and choose the initial solution

x(0) = (61.27 30.08 79.81 79.56 78.10).

By using the quasi-Newton algorithm (21) we get the solution

x(82) = (6.64 6.47 5.99 6.34 6.52).

Example 8. Consider the function

f(x1, x2, x3) = (x1 + 2x2 + 3x3)4(6x1 + 4x2 + 2x3)2(4x1 + 9x2 + x3)3.

We want to find its maximum point subject to x2
1 + x2

2 + x2
3 = 1, x1, x2, x3 > 0.

The system (26) becomes




0.3889 0.5556 0.6944
1.1111 3.1111 3.4444
0.9259 2.2963 3.6296







t1
t2
t3


 =




t−1
1

t−1
2

t−1
3


 .

The algorithm (13), applied to this system, gives the solution

t1 = 1.1721, t2 = 0.2960, t3 = 0.3353.
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Now (24) yields

(31) x1 = 0.4766, x2 = 0.7274 x3 = 0.4938.

This is the required maximum point.

It is instructive to have another look at our extremum problem. Indeed, it is equiv-

alent to the problem of finding the maximum point of

z(x1, x2)

= (x1 + 2x2 + 3
√

1 − x2
1 − x2

2)
4(6x1 + 4x2 + 2

√
1 − x2

1 − x2
2)

2

(4x1 + 9x2 +
√

1 − x2
1 − x2

2)
3

subject to x1 > 0, x2 > 0, x2
1 + x2

2 < 1.
Passing to polar coordinates

x1 = ρ cosθ, x2 = ρ sinθ, 0 < ρ < 1, 0 < θ <
π

2
we obtain a function z having the graph as in Fig. 2.
The maximum point corresponds to

ρ = 0.8696, θ = 0.9907,

which leads to (31).

Fig. 2. The graph of the function z.

6. CONCLUDING REMARKS

As seen above, the algorithm described in Theorem 3 and Remark 3 works very well

in order to solve systems of type (Sf ) and the corresponding extremum problems. It
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provides an accurate approximation of the exact solution in a small number of iterations.

This is explained, apart from the convergence theorems for general systems of nonlinear

equations, by the essential feature of our special setting: the existence and uniqueness

of the solution, proved in our article. The rate of convergence is governed by the

general rules of quasi-Newton algorithms.

On the other hand, in the general setting of the Expectation -Maximization Algo-

rithm (see [5]), we developed in [3] a generalization of the EMML and ISRA algorithms

for solving the Positron Emission Tomography problem. Similar algorithms for solving

the system (Sf) will be discussed in a forthcoming paper.
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