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CONVERGENCE THEOREMS FOR VARIATIONAL INEQUALITIES
EQUILIBRIUM PROBLEMS AND NONEXPANSIVE MAPPINGS BY

HYBRID METHOD

Shahram Saeidi

Abstract. In this paper, we introduce iterative schemes for finding a common
element of the set of common fixed points for a left amenable semigroup of non-
expansive mappings, the set of solutions of the variational inequalities for a family
of α-inverse-strongly monotone mappings and the set of solutions of a system of
equilibrium problems in a Hilbert space. We establish weak and strong conver-
gence theorems for the sequences generated by our proposed schemes. Moreover,
we present various applications to the additive semigroup of nonnegative real
numbers and families of strictly pseudocontractive mappings.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a Hilbert space H . A mapping T of
C into C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

We denote by Fix(T ) the set of fixed points of T .
T is strictly pseudocontractive if there exists κ with 0 ≤ κ < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

If k = 0, then T is nonexpansive.
Let F : C×C → R be a bifunction. The equilibrium problem for F is to determine

its equilibrium points, i.e., the set

EP (F ) := {x ∈ C : F (x, y) ≥ 0, ∀y ∈ C}.
Received February 12, 2010, accepted May 20, 2011.
Communicated by Wataru Takahashi.
2010 Mathematics Subject Classification: 47H09, 47H10, 47J20, 43A07, 47H20, 74G15.
Key words and phrases: Amenable semigroup, Equilibrium problem, Inverse-strongly monotone mapping,
Iteration, Nonexpansive mapping, Projection.

1057



1058 Shahram Saeidi

Let G = {Fi}i∈I be a family of bifunctions from C × C to R. The system of
equilibrium problems for G = {Fi}i∈I is to determine common equilibrium points for
G = {Fi}i∈I , i.e., the set

(1.1) EP (G) := {x ∈ C : Fi(x, y) ≥ 0, ∀y ∈ C, ∀i ∈ I}.
Many problems in applied sciences, such as monotone inclusion problems, saddle point
problems, variational inequality problems, minimization problems, Nash equilibria in
noncooperative games, vector equilibrium problems, as well as certain fixed point
problems reduce into finding some element of EP (F ); see [3, 10, 11]. The formulation
(1.1), extends this formalism to systems of such problems, covering in particular various
forms of feasibility problems [2, 9].

Recall that a mapping A : C → H is called α-inverse-strongly monotone [4], if
there exists a positive real number α such that

〈Ax−Ay, x− y〉 ≥ α‖Ax −Ay‖2, ∀x, y ∈ C.

It is easy to see that if A : C → H is α-inverse-strongly monotone, then it is a
1
α-Lipschitzian mapping.

Let A : C → H be a mapping. The classical variational inequality problem is to
find u ∈ C such that

(1.2) 〈Au, v − u〉 ≥ 0, ∀v ∈ C.

The set of solutions of variational inequality (1.2) is denoted by V I(C,A). Put A =
I − T , where T : C → H is a strictly pseudocontractive mapping with κ. It is known
that A is 1−κ

2 -inverse-strongly monotone and A−1(0) = Fix(T ) = {x ∈ C : Tx = x}.
Recently, weak and strong convergence theorems for finding a common element of

EP (F ), V I(C,A) and Fix(T ), have been studied by many authors (see e.g., [6, 7,
8, 12, 13, 15, 16, 18, 20, 21, 22, 25] and references therein).

In this paper, motivated by [18, 20], we introduce iterative algorithms for finding
a common element of the set of common fixed points for a left amenable semigroup of
nonexpansive mappings on C, the set of solutions of a system of equilibrium problems
EP (G) for a family G = {Fi : i = 1, . . . ,M} of bifunctions from C×C into R and the
set of solutions of variational inequalities V I(C,Aj) for a family {Aj : j = 1 . . .N}
of α-inverse-strongly monotone mappings from C into H . We establish some weak and
strong convergence theorems for the sequences generated by our proposed algorithms.
We obtain our strong convergence results via the hybrid method; see [16]. Various
applications to the additive semigroup of nonnegative real numbers and the families of
strictly pseudocontractive mappings are also presented.

2. PRELIMINARIES

Let C be a nonempty closed and convex subset of H . Let F : C × C → R be a
bifunction. Given any r > 0 and x ∈ H , the operator JF

r : H → C defined by
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JF
r (x) := {z ∈ C : F (z, y) +

1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

is called the resolvent of F .

Lemma 2.1. ([10]). Let C be a nonempty closed convex subset of H and let
F : C ×C → R satisfy
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim inf
t→0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for all x ∈ C, y 	−→ F (x, y) is convex and lower semicontinuous.
Then:

(1) JF
r is single-valued;

(2) JF
r is firmly nonexpansive, i.e.

‖JF
r x− JF

r y‖2 ≤ 〈JF
r x− JF

r y, x− y〉, ∀x, y ∈ H ;

(3) Fix(JF
r ) = EP (F );

(4) EP (F ) is closed and convex.

Recall the metric (nearest point) projection PC from a Hilbert space H onto a
closed convex subset C of H is defined as follows: given x ∈ H , PCx is the only
point in C with the property

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.
It is known that PC is a nonexpansive mapping and satisfies:

(2.1) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, ∀x, y ∈ H.

PC is characterized as follows:

y = PCx ⇐⇒ 〈x− y, y − z〉 ≥ 0, ∀z ∈ C.

In the context of the variational inequality problem, this implies that

(2.2) u ∈ V I(C,A) ⇐⇒ u = PC(u− λAu), ∀λ > 0.

A set-valued mapping T : H → 2H is said to be monotone, if for all x, y ∈ H , f ∈ Tx,
and g ∈ Ty imply that 〈f − g, x− y〉 ≥ 0. A monotone mapping T : H → 2H is said
to be maximal, if the graph G(T ) of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping is maximal, if and only
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if for (x, f) ∈ H × H , 〈f − g, x− y〉 ≥ 0, ∀(y, g) ∈ G(T ) imply that f ∈ Tx. Let
A : C → H be an α-inverse-strongly monotone mapping and let NCv be the normal
cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C},
and define

Tv =
{
Av +NCv, v ∈ C;

∅, v �∈ C.
Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A) (see [13, 17]).
It is easy to show that for given λ ∈ [0, 2α], the mapping (I − λA) : C → H is
nonexpansive.

The following lemma is well known; see, for instance, [24].

Lemma 2.2. Let C be a closed convex subset of H and T : C → C a nonexpansive
mapping with Fix(T ) �= ∅. If {xn} is a sequence in C weakly converging to x and
if {(I − T )xn} converges strongly to y, then (I − T )x = y.

Lemma 2.3. ([22]). Let C be a nonempty closed convex subset of H . Let {xn}
be a sequence in H . Suppose that, for all y ∈ C,

‖xn+1 − y‖ ≤ ‖xn − y‖,
for every n ∈ N. Then, {PC(xn)} converges strongly to some z ∈ C.

Let S be a semigroup. We denote by l∞(S) the Banach space of all bounded real
valued functions on S with supremum norm. For each s ∈ S, we define ls and rs on
l∞(S) by (lsf)(t) = f(st) and (rsf)(t) = f(ts) for each t ∈ S and f ∈ l∞(S). Let
X be a subspace of l∞(S) containing 1 and let X ∗ be its topological dual. An element
µ of X∗ is said to be a mean on X if ‖µ‖ = µ(1) = 1. We often write µt(f(t))
instead of µ(f) for µ ∈ X∗ and f ∈ X . Let X be left invariant (resp. right invariant),
i.e. ls(X) ⊂ X (resp. rs(X) ⊂ X) for each s ∈ S. A mean µ on X is said to be
left invariant (resp. right invariant) if µ(lsf) = µ(f) (resp. µ(rsf) = µ(f)) for each
s ∈ S and f ∈ X . X is said to be left (resp. right) amenable if X has a left (resp.
right) invariant mean. X is amenable if X is both left and right amenable. As is well
known, l∞(S) is amenable when S is a commutative semigroup or a solvable group.
A net {µα} of means on X is said to be left regular if limα ‖l∗sµα − µα‖ = 0 for each
s ∈ S, where l∗s is the adjoint operator of ls; see, for instance, [14].

Let C be a nonempty closed and convex subset of H . A family S = {T (s) : s ∈ S}
is called a nonexpansive semigroup on C if for each s ∈ S the mapping T (s) : C → C
is nonexpansive and T (st) = T (s)T (t) for each s, t ∈ S. We denote by Fix(S) the
set of common fixed points of S . For a nonexpansive mapping T : C → C , we denote
by Fε(T ) the ε-approximate fixed points of T ; i.e., Fε(T ) = {x ∈ C : ‖x−Tx‖ ≤ ε}.
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If C is bounded, then Fε(T ) �= ∅, for each ε > 0 (see [24]). For D ⊂ C, we denote
Fε(T ;D) = Fε(T ) ∩D.

The open ball of radius r centered at 0 is denoted by Br. For a subset A of H , we
denote by coA the closed convex hull of A.

The following lemmas can be found in [23, 14, 19].

Lemma 2.4. Let f be a function of semigroup S into a Banach space E such that
the weak closure of {f(t) : t ∈ S} is weakly compact and let X be a subspace of
l∞(S) containing 1 and all the functions t→ 〈f(t), x ∗〉 with x∗ ∈ E∗. Then, for any
µ ∈ X∗, there exists a unique element fµ in E such that

〈fµ, x
∗〉 = µt〈f(t), x∗〉

for all x∗ ∈ E∗. Moreover, if µ is a mean on X then∫
f(t)dµ(t) ∈ co{f(t) : t ∈ S}.

We can write fµ by
∫
f(t)dµ(t).

Lemma 2.5. Let C be a closed convex subset of a Hilbert space H , S = {T (s) :
s ∈ S} be a nonexpansive semigroup from C into C such that Fix(S) �= ∅ and let
X be a subspace of l∞(S) such that 1 ∈ X and let the mapping t 	→ 〈T (t)x, y〉 be
an element of X for each x ∈ C and y ∈ H , and let µ be a mean on X .

If we write T (µ)x instead of
∫
Ttxdµ(t), then the following hold.

(i) T (µ) is a nonexpansive mapping from C into C.
(ii) T (µ)x = x for each x ∈ Fix(S).
(iii) T (µ)x ∈ co{Ttx : t ∈ S} for each x ∈ C.
(iv) If µ is left invariant, then T (µ) is a nonexpansive retraction fromC onto Fix(S).

3. STRONG CONVERGENCE

The following is our main strong convergence result.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H , let
S = {T (t) : t ∈ S} be a nonexpansive semigroup on C, let G = {F j : j = 1, . . . ,M}
be a finite family of bifunctions from C × C into R which satisfy (A1)-(A4), let
A = {Ak : k = 1 . . .N} be a finite family of α-inverse-strongly monotone mappings
from C into H , and let F := ∩N

k=1V I(C,Ak) ∩ Fix(S) ∩EP (G) �= ∅.
Let X be a left invariant subspace of l∞(S) such that 1 ∈ X , and the function

t 	−→ 〈T (t)x, y〉 is an element of X for each x ∈ C and y ∈ H; and let {µn} be a
left regular sequence of means on X .
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Let {αn} be a sequence in [a, 1] for some a ∈ (0, 1), let {λk,n}N
k=1 be sequences

in [c, d] ⊂ (0, 2α) and let {rj,n}M
j=1 be sequences in (0,∞) such that lim infn rj,n > 0

for every j ∈ {1, . . . ,M}.
If {xn} is the sequence generated by x1 = x ∈ H ,



yn = (1− αn)xn + αnT (µn)vn,

vn = PC(I − λN,nAN ) . . .PC(I − λ2,nA2)PC(I − λ1,nA1)un,

un = JFM
rM,n

. . .JF2
r2,n

JF1
r1,n

xn,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn(x), ∀n ≥ 1,

then the sequences {xn} and {yn} converge strongly to PF (x).

Proof. Take

J k
n := JFk

rk,n
. . .JF2

r2,n
JF1

r1,n
, ∀k ∈ {1, . . . ,M},

J 0
n := I,

and

Pk
n := PC(I − λk,nAk) . . .PC(I − λ2,nA2)PC(I − λ1,nA1), ∀k ∈ {1, . . . , N},

P0
n := I.

So, we can write
yn = (1− αn)xn + αnT (µn)PN

n JM
n xn.

We shall divide the proof into several steps.

Step 1. The sequence {xn} is well defined.

Proof of Step 1. The sets Cn and Qn are closed and convex subsets of H for
every n ∈ N; see [20]. So, Cn ∩Qn is a closed convex subset of H for any n ∈ N.
Let p ∈ F . Since, for each k ∈ {1, . . . ,M}, JFk

rk,n
is nonexpansive, and from Lemma

2.1 we have

(3.1) ‖un − p‖ = ‖JM
n xn − p‖ = ‖JM

n xn −JM
n p‖ ≤ ‖xn − p‖.

On the other hand, since Ak : C → H is α-inverse-strongly monotone and λk,n ∈
[c, d] ⊂ [0, 2α], PC(I − λk,nAk) is nonexpansive. Thus PN

n is nonexpansive. From
(2.2), we have PN

n p = p. It follows that

(3.2) ‖vn − p‖ = ‖PN
n un − PN

n p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖.
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So, we have

(3.3)

‖yn − p‖ = ‖(1− αn)(xn − p) + αn(T (µn)vn − p)‖
≤ (1− αn)‖xn − p‖ + αn‖T (µn)vn − p‖
≤ (1− αn)‖xn − p‖ + αn‖vn − p‖
≤ ‖xn − v‖.

It follows that p ∈ Cn; thus, F ⊂ Cn, for every n ∈ N. Next, we show by induction
that

F ⊂ Cn ∩Qn

for each n ∈ N. Since F ⊂ C1 and Q1 = H , we get F ⊂ C1 ∩Q1. Suppose that F ⊂
Ck ∩Qk for k ∈ N. Then, there exists xk+1 ∈ Ck ∩Qk such that xk+1 = PCk∩Qk

(x).
Therefore, for each z ∈ Ck ∩Qk, we have

〈xk+1 − z, x− xk+1〉 ≥ 0.

So, we get
F ⊂ Ck ∩Qk ⊂ Qk+1.

From this and F ⊂ Cn (∀n), we have

F ⊂ Ck+1 ∩Qk+1.

This means that the sequence {xn} is well defined.

Step 2. The sequences {xn}, {yn}, {J k
nxn}M

k=1 and {Pk
nun}N

k=1 are bounded and

(3.4) lim
n→∞ ‖xn − x‖ = c, for some c ∈ R.

Proof of Step 2. From xn+1 = PCn∩Qn(x), we have

‖xn+1 − x‖ ≤ ‖z − x‖, ∀z ∈ Cn ∩Qn.

Since PF (x) ∈ F ⊂ Cn ∩Qn, we have

(3.5) ‖xn+1 − x‖ ≤ ‖PF(x) − x‖,

for every n ∈ N. Therefore {xn} is bounded. So, from (3.1), (3.2) and (3.3), the
sequences {J k

n xn}M
k=1, {Pk

nun}N
k=1 and {yn} are also bounded.

It is easy to show that xn = PQn(x). From this and xn+1 ∈ Qn, we have

‖x− xn‖ ≤ ‖x− xn+1‖,
for every n ∈ N. Since {xn} is bounded, there exists c ∈ R such that (3.4) holds.
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Step 3. limn→∞ ‖xn − xn+1‖ = 0.
Proof of Step 3. Since xn = PQn(x), xn+1 ∈ Qn and (xn + xn+1)/2 ∈ Qn, we

have
‖x− xn‖2 ≤ ‖x− xn + xn+1

2
‖2

= ‖1
2
(x− xn) +

1
2
(x− xn+1‖2

=
1
2
‖x− xn‖2 +

1
2
‖x− xn+1‖2 − 1

4
‖xn − xn+1‖2.

So, we get
1
4
‖xn − xn+1‖2 ≤ 1

2
‖x− xn+1‖2 − 1

2
‖x− xn‖2.

From (3.4), we obtain limn→∞ ‖xn − xn+1‖2 = 0.

Step 4. limn→∞ ‖xn − yn‖ = 0.

Proof of Step 4. From xn+1 ∈ Cn, we have

‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ ≤ 2‖xn − xn+1‖.
Now, apply Step 3.

Step 5. limn→∞ ‖J k
n xn − J k+1

n xn‖ = 0, ∀k ∈ {0, 1, . . . ,M − 1}.

Proof of Step 5. Let p ∈ F and k ∈ {0, 1, . . . ,M − 1}. Since J Fk+1
rk+1,n is firmly

nonexpansive, we obtain

‖p−J k+1
n xn‖2

= ‖JFk+1
rk+1,np− J

Fk+1
rk+1,nJ k

nxn‖2

≤ 〈JFk+1
rk+1,nJ k

nxn − p,J k
nxn − p〉

=
1
2
(‖JFk+1

rk+1,nJ k
n xn − p‖2 + ‖J k

n xn − p‖2 − ‖J k
nxn − J

Fk+1
rk+1,nJ k

n xn‖2).

It follows that

‖J k+1
n xn − p‖2 ≤ ‖xn − p‖2 − ‖J k

nxn − J k+1
n xn‖2.

Therefore, by the convexity of ‖.‖2, we have

‖yn − p‖2 ≤ (1 − αn)‖xn − p‖2 + αn‖T (µn)vn − p‖2

≤ (1 − αn)‖xn − p‖2 + αn‖J k+1
n xn − p‖2

≤ (1 − αn)‖xn − p‖2 + αn(‖xn − p‖2 − ‖J k
nxn −J k+1

n xn‖2)

= ‖xn − p‖2 − αn‖J k
n xn − J k+1

n xn‖2.
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Since {αn} ⊂ [a, 1], we get

a‖J k
n xn − J k+1

n xn‖2 ≤ αn‖J k
n xn − J k+1

n xn‖2

≤ ‖xn − p‖2 − ‖yn − p‖2 ≤ ‖xn − yn‖(‖xn − p‖ + ‖yn − p‖).
From this and Step 4, we get the desired result.

Step 6. limn→∞ ‖Pk
nun − Pk+1

n un‖ = 0, ∀k ∈ {0, 1, . . . , N − 1}.

Proof of Step 6. Since {Ak : k = 1 . . .N} are α-inverse-strongly monotone, by
the the choice of {λk,n} for given p ∈ F and k ∈ {0, 1, . . . , N − 1} we have

‖Pk+1
n un − p‖2

= ‖PC(I − λk+1,nAk+1)Pk
nun − PC(I − λk+1,nAk+1)p‖2

≤ ‖(I − λk+1,nAk+1)Pk
nun − (I − λk+1,nAk+1)p‖2

≤ ‖Pk
nun − p‖2 + λk+1,n(λk+1,n − 2α)‖Ak+1Pk

nun − Ak+1p‖2

≤ ‖xn − p‖2 + c(d− 2α)‖Ak+1Pk
nun −Ak+1p‖2.

From this, we have

‖yn − p‖2 ≤ (1−αn)‖xn−p‖2 + αn‖T (µn)PN
n un − p‖2

≤ (1−αn)‖xn − p‖2 + αn‖Pk+1
n un−p‖2

≤ (1−αn)‖xn−p‖2+αn(‖xn−p‖2+c(d−2α)‖Ak+1Pk
nun−Ak+1p‖2)

= ‖xn − p‖2 + c(d− 2α)αn‖Ak+1Pk
nun − Ak+1p‖2.

So,
c(2α− d)αn‖Ak+1Pk

nun −Ak+1p‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖).
Since αn ⊂ [a, 1], we obtain

(3.6) ‖Ak+1Pk
nun −Ak+1p‖ → 0 (n→ ∞).

From (2.1) and the fact that I − λk+1,nAk+1 is nonexpansive, we have

‖Pk+1
n un − p‖2

= ‖PC(I − λk+1,nAk+1)Pk
nun − PC(I − λk+1,nAk+1)p‖2

≤ 〈(Pk
nun − λk+1,nAk+1Pk

nun) − (p− λk+1,nAk+1p),Pk+1
n un − p〉

=
1
2
{‖(Pk

nun − λk+1,nAk+1Pk
nun) − (p− λk+1,nAk+1p)‖2 + ‖Pk+1

n un − p‖2

−‖(Pk
nun − λk+1,nAk+1Pk

nun)− (p− λk+1,nAk+1p)− (Pk+1
n un − p)‖2}



1066 Shahram Saeidi

≤ 1
2
{‖Pk

nun − p‖2 + ‖Pk+1
n un − p‖2

−‖Pk
nun −Pk+1

n un − λk+1,n(Ak+1Pk
nun −Ak+1p)‖2}

=
1
2
{‖Pk

nun − p‖2 + ‖Pk+1
n un − p‖2 − ‖Pk

nun − Pk+1
n un‖2

+2λk+1,n〈Pk
nun −Pk+1

n un, Ak+1Pk
nun − Ak+1p〉

−λ2
k+1,n‖Ak+1Pk

nun − Ak+1p‖2}.
This implies that

‖Pk+1
n un − p‖2 ≤ ‖Pk

nun − p‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun −Pk+1

n un, Ak+1Pk
nun − Ak+1p〉

−λ2
k+1,n‖Ak+1Pk

nun − Ak+1p‖2

≤ ‖xn − p‖2 − ‖Pk
nun −Pk+1

n un‖2

+2λk+1,n〈Pk
nun −Pk+1

n un, Ak+1Pk
nun − Ak+1p〉.

From this, we have

‖yn − p‖2 ≤ (1 − αn)‖xn − p‖2 + αn‖Pk+1
n un − p‖2

≤ (1 − αn)‖xn − p‖2 + αn{‖xn − p‖2 − ‖Pk
nun −Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun − Ak+1p〉}

≤ ‖xn − p‖2 − αn‖Pk
nun − Pk+1

n un‖2

+2λk+1,n‖Pk
nun −Pk+1

n un‖‖Ak+1Pk
nun −Ak+1p‖,

which implies that

a‖Pk
nun −Pk+1

n un‖2 ≤ αn‖Pk
nun −Pk+1

n un‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

+2λk+1,n‖Pk
nun −Pk+1

n un‖‖Ak+1Pk
nun −Ak+1p‖.

Hence it follows from Step 4 and (3.6) that ‖Pk
nun − Pk+1

n un‖ → 0.

Step 7. limn→∞ ‖xn − T (t)xn‖ = 0, ∀t ∈ S.

Proof of Step 7. Let p ∈ F and put

M0 = max{‖xn − p‖ : n ∈ N}.
Set D = {y ∈ C : ‖y − p‖ ≤ M0}. We remark D is a bounded closed convex set,
{xn} ⊆ D and it is invariant under the mappings {J k

n : k = 1, . . . ,M and n ∈ N},
{Pk

n : k = 1, . . . , N and n ∈ N} and S . We will show that
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(3.7) lim sup
n→∞

sup
y∈D

‖T (µn)y − T (t)T (µn)y‖ = 0, ∀t ∈ S.

Our proof of (3.7) follows the lines of a proof in [1]. Let ε > 0. By [5, Theorem 1.2],
there exists δ > 0 such that

(3.8) {coFδ(T (t);D) + Bδ} ∩ C ⊆ Fε(T (t);C), ∀t ∈ S.

By [5, Corollary 1.1], there also exists a natural number N such that

(3.9) ‖ 1
N + 1

N∑
i=0

T (tis)y − T (t)(
1

N + 1

N∑
i=0

T (tis)y)‖ ≤ δ,

for all t, s ∈ S and y ∈ D. Let t ∈ S. Since {µn} is left regular, there exists n0 ∈ N

such that ‖µn − l∗
ti
µn‖ ≤ δ/(M0 + ‖p‖) for n ≥ n0 and i = 1, . . . , N . Then we have

(3.10)

sup
y∈D

‖T (µn)y −
∫

1
N + 1

N∑
i=0

T (tis)ydµn(s)‖

= sup
y∈D

sup
‖z‖=1

|(µn)s〈T (s)y, z〉 − (µn)s〈 1
N + 1

N∑
i=0

T (tis)y, z〉|

≤ 1
N + 1

N∑
i=0

sup
y∈D

sup
‖z‖=1

|(µn)s〈T (s)y, z〉 − (l∗tiµn)s〈T (s)y, z〉|

≤ max
i=1,...,N

‖µn − l∗tiµn‖(M0 + ‖p‖) ≤ δ, ∀n ≥ n0.

On the other hand, noting Lemma 2.4, we have
∫

1
N + 1

N∑
i=0

T (tis)ydµn(s) ∈ co{ 1
N + 1

N∑
i=0

T (t)i(T (s)y) : s ∈ S}.

From (3.8), (3.9), (3.10) and the above, we have

T (µn)y =
∫

1
N + 1

N∑
i=0

T (tis)ydµn(s) + (T (µn)y −
∫

1
N + 1

N∑
i=0

T (tis)ydµn(s))

∈ {co{ 1
N + 1

N∑
i=0

T (tis)y : s ∈ S}+ Bδ} ∩C

⊆ {coFδ(T (t);D) + Bδ} ∩C ⊆ Fε(T (t);C),

for all y ∈ D and n ≥ n0. Therefore

lim sup
n

sup
y∈D

‖T (t)T (µn)y − T (µn)y‖ ≤ ε.
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Since ε > 0 is arbitrary, we get (3.7).
Now, observe that

a‖xn − T (µn)vn‖ ≤ αn‖xn − T (µn)vn‖
= ‖xn − yn‖ → 0, as n→ ∞.

So,
‖xn − T (µn)vn‖ → 0, as n→ ∞. (3.11)

Let t ∈ S and ε > 0. Then there exists δ > 0 which satisfies (3.8). From (3.7)
and (3.11), there exists k0 ∈ N such that T (µn)y ∈ Fδ(T (t);D), ∀y ∈ D, and
‖xn − T (µn)vn‖ < δ for all n > k0. Therefore,

xn = T (µn)vn + (xn − T (µn)vn)

∈ {Fδ(T (t);D) + Bδ} ∩C ⊆ Fε(T (t);C),

for all n > k0. This shows that lim supn ‖xn − T (t)xn‖ ≤ ε, and since ε > 0 is
arbitrary, we get limn→∞ ‖xn − T (t)xn‖ = 0.

Step 8. The weak ω-limit set of {xn}, ωw(xn), is a subset of F .

Proof of Step 8. Let z0 ∈ ωw(xn) and let {xnm} be a subsequence of {xn} weakly
converging to z0. From Steps 5 and 6, we obtain also that

J k
nm
xnm ⇀ z0,

for all k ∈ {1, . . . ,M}, and
Pk

nm
unm ⇀ z0,

for all k ∈ {1, . . . , N}. In particular, unm ⇀ z0 and vnm ⇀ z0. We need to show that
z0 ∈ F . First, we note from xnm ⇀ z0 and Lemma 2.2, z0 ∈ Fix(S).

Now, we prove z0 ∈ ∩N
i=1V I(C,Ai). For this purpose, let k ∈ {1, . . . , N} and Tk

be the maximal monotone mapping defined by

Tkx =

{
Akz +NCz, z ∈ C;
∅, z �∈ C.

For any given (z, u) ∈ G(Tk), hence u − Akz ∈ NCz. Since Pk
nun ∈ C, by the

definition of NC , we have

(3.12) 〈z −Pk
nun, u− Akz〉 ≥ 0.

On the other hand, since P k
nun = PC(Pk−1

n un − λk,nAkPk−1
n un), we have

〈z −Pk
nun,Pk

nun − (Pk−1
n un − λk,nAkPk−1

n un)〉 ≥ 0.

So
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〈z −Pk
nun,

Pk
nun − Pk−1

n un

λk,n
+AkPk−1

n un〉 ≥ 0.

By (3.12) and the α-inverse monotonicity, we have

〈z − Pk
nm
unm , u〉 ≥ 〈z −Pk

nm
unm , Akz〉

≥ 〈z − Pk
nm
unm , Akz〉

−〈z −Pk
nm
unm ,

Pk
nm
unm − Pk−1

nm
unm

λk,nm

+ AkPk−1
nm

unm〉
= 〈z − Pk

nm
unm , Akz −AkPk

nm
unm〉

+〈z −Pk
nm
unm , AkPk

nm
unm − AkPk−1

nm
unm〉

−〈z −Pk
nm
unm ,

Pk
nm
unm − Pk−1

nm
unm

λk,nm

〉
≥ 〈z − Pk

nm
unm , AkPk

nm
unm −AkPk−1

nm
unm〉

−〈z −Pk
nm
unm ,

Pk
nm
unm − Pk−1

nm
unm

λk,nm

〉.

Since ‖Pk
nJM

n xn − Pk−1
n JM

n xn‖ → 0, Pk
nm
unm ⇀ z0 and {Ak : k = 1, . . . , N} are

Lipschitz continuous, we have

lim
m→∞〈z − Pk

nm
unm , u〉 = 〈z − z0, u〉 ≥ 0.

Again since Tk is maximal monotone, hence 0 ∈ Tkz0. This shows that z0 ∈
V I(C,Ak). From this, it follows that

z0 ∈ ∩N
i=1V I(C,Ai).

Now, we note that by (A2) for given y ∈ C and k ∈ {0, 1, . . . ,M − 1}, we have

1
rk+1,n

〈y −J k+1
n xn,J k+1

n xn − J k
nxn〉 ≥ Fk+1(y,J k+1

n xn).

Thus

(3.13) 〈y − J k+1
nm

xnm ,
J k+1

nm
xnm −J k

nm
xnm

rk+1,nm

〉 ≥ Fk+1(y,J k+1
nm

xnm).

By condition (A4), Fi(y, .), ∀i, is lower semicontinuous and convex, and thus weakly
semicontinuous. Step 5 and condition lim infn rj,n > 0 imply that

J k+1
nm

xnm − J k
nm
xnm

rk+1,nm

→ 0,

in norm. Therefore, letting m → ∞ in (3.13) yields
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Fk+1(y, z0) ≤ lim
m
Fk+1(y,J k+1

nm
xnm) ≤ 0,

for all y ∈ C and k ∈ {0, 1, . . . ,M − 1}. Replacing y with yt := ty + (1− t)z0 with
t ∈ (0, 1) and using (A1) and (A4), we obtain

0 = Fk+1(yt, yt) ≤ tFk+1(yt, y) + (1 − t)Fk+1(yt, z0) ≤ tFk+1(yt, y).

Hence Fk+1(ty + (1 − t)z0, y) ≥ 0, for all t ∈ (0, 1) and y ∈ C. Letting t → 0+ and
using (A3), we conclude Fk+1(z0, y) ≥ 0, for all y ∈ C and k ∈ {0, . . . ,M − 1}.
Therefore

z0 ∈
M⋂

k=1

EP (Fk) = EP (G).

Step 9. The sequences {xn} and {yn} converge strongly to PF(x).

Proof of Step 9. Let z0 ∈ ωw(xn) and let {xnm} be a subsequence of {xn} weakly
converging to z0. From (3.5) and Step 8, we have

‖x− PF (x)‖ ≤ ‖x− z0‖ ≤ lim infm→∞ ‖x− xnm‖
≤ lim supm→∞ ‖x− xnm‖ ≤ ‖x− PF(x)‖.

Hence
lim

m→∞ ‖x− xnm‖ = ‖x− z0‖ = ‖x− PF (x)‖.
Since z0 ∈ F and H is a Hilbert space, we obtain

xnm −→ z0 = PF (x).

Since z0 ∈ ωw(xn) was arbitrary, we get xn −→ PF (x).

4. WEAK CONVERGENCE

The following is a weak convergence theorem.

Theorem 4.1. Let C, S , G, A, F , X , {µn}, {λk,n}N
k=1 and {rn,j}M

j=1 be as in
Theorem 3.1. Let {αn} be a sequence in [a, b] for some a, b ∈ (0, 1).

If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,


xn+1 = (1− αn)xn + αnT (µn)vn,

vn = PC(I − λN,nAN ) . . .PC(I − λ2,nA2)PC(I − λ1,nA1)un,

un = JFM
rM,n

. . . JF2
r2,n

JF1
r1,n

xn,

then the sequence {xn} converges weakly to z0 ∈ F , where z0 = limn→∞ PF(xn).
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Proof. We will apply the notations used in proof of Theorem 3.1.

Step 1. {xn} is bounded and limn→∞ ‖xn − p‖ exists for all p ∈ F .

Proof of Step 1. Let p ∈ F . Then

(4.1)

‖xn+1 − p‖ = ‖(1 − αn)(xn − p) + αn(T (µn)vn − p)‖
≤ (1 − αn)‖xn − p‖ + αn‖T (µn)vn − p‖
≤ (1 − αn)‖xn − p‖ + αn‖vn − p‖
≤ ‖xn − p‖.

From this, we obtain that {xn} is bounded and

(4.2) lim
n→∞ ‖xn − p‖ exists.

Step 2. limn→∞ ‖J k
n xn − J k+1

n xn‖ = 0, ∀k ∈ {0, 1, . . . ,M − 1}.

Proof of Step 2. For p ∈ F , as in Step 5 of Theorem 3.1, we get

‖J k+1
n xn − p‖2 ≤ ‖xn − p‖2 − ‖J k

nxn − J k+1
n xn‖2,

for all k ∈ {0, 1, . . . ,M − 1}. Therefore, by (4.1), we have

‖xn+1 − p‖2 ≤ (1 − αn)‖xn − p‖2 + αn‖vn − p‖2

≤ (1 − αn)‖xn − p‖2 + αn‖J k+1
n xn − p‖2

≤ (1 − αn)‖xn − p‖2 + αn{‖xn − p‖2 − ‖J k
nxn −J k+1

n xn‖2}
≤ ‖xn − p‖2 − a‖J k

nxn −J k+1
n xn‖2.

Applying (4.2), we have

a‖J k
nxn −J k+1

n xn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 → 0.

So, we get the desired result.

Step 3. limn→∞ ‖Pk
nun − Pk+1

n un‖ = 0, ∀k ∈ {0, 1, . . . , N − 1}.

Proof of Step 3. For p ∈ F and k ∈ {0, 1, . . . , N − 1}, as in Step 6 of Theorem
3.1, we get

‖Pk+1
n un − p‖2 ≤ ‖xn − p‖2 + c(d− 2α)‖Ak+1Pk

nun −Ak+1p‖2.
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From this and (4.1), we have

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + αn‖vn − p‖2

≤ (1− αn)‖xn − p‖2 + αn‖Pk+1
n un − p‖2

≤ (1− αn)‖xn − p‖2 + αn{‖xn − p‖2 + c(d− 2α)‖Ak+1Pk
nun −Ak+1p‖2}

= ‖xn − p‖2 + c(d− 2α)αn‖Ak+1Pk
nun −Ak+1p‖2.

So,
c(2α− d)αn‖Ak+1Pk

nun −Ak+1p‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 → 0.
Since 0 < a ≤ αn, we obtain
(4.3) ‖Ak+1Pk

nun −Ak+1p‖ → 0 (n→ ∞).

Again, like that in Step 6 of Theorem 3.1, we have

‖Pk+1
n un − p‖2 ≤ ‖xn − p‖2 − ‖Pk

nun −Pk+1
n un‖2

+2λk+1,n〈Pk
nun −Pk+1

n un, Ak+1Pk
nun − Ak+1p〉.

Then, from this and (4.1), we have

‖xn+1 − p‖2 ≤ (1 − αn)‖xn − p‖2 + αn‖Pk+1
n un − p‖2

≤ (1 − αn)‖xn − p‖2 + αn{‖xn − p‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun −Pk+1

n un, Ak+1Pk
nun −Ak+1p〉}

≤ ‖xn − p‖2 − a‖Pk
nun − Pk+1

n un‖2

+2λk+1,n‖Pk
nun −Pk+1

n un‖‖Ak+1Pk
nun −Ak+1p‖,

which implies that

a‖Pk
nun −Pk+1

n un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+2λk+1,n‖Pk
nun −Pk+1

n un‖‖Ak+1Pk
nun −Ak+1p‖.

Hence it follows from Step 1 and (4.3) that ‖Pk
nun − Pk+1

n un‖ → 0.

Step 4. limn→∞ ‖xn − T (µn)vn‖ = 0.

Proof of Step 4. Note that for p ∈ F we have

‖xn+1−p‖2 = ‖(1− αn)(xn − p)+αn(T (µn)vn − p)‖2

= (1−αn)‖xn−p‖2+αn‖T (µn)vn − p‖2−αn(1−αn)‖xn−T (µn)vn‖2

≤ (1 − αn)‖xn−p‖2+αn‖vn − p‖2−αn(1−αn)‖xn−T (µn)vn‖2

≤ ‖xn−p‖2 − αn(1 − αn)‖xn − T (µn)vn‖2.
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So, from (4.2), we have

a(1 − b)‖xn − T (µn)vn‖2 ≤ αn(1− αn)‖xn − T (µn)vn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 → 0, as n→ ∞.

Now, from a, b ∈ (0, 1) we obtain

‖xn − T (µn)vn‖ → 0, as n→ ∞.

Step 5. limn→∞ ‖xn − T (t)xn‖ = 0, for all t ∈ S.

Proof of Step 5. The proof is the same as Step 7 of Theorem 3.1; the only difference
is that the assertion (3.11) in that proof follows here from Step 4.

Step 6. {xn} converges weakly to z0 ∈ F , where z0 = limn→∞ PF (xn).

Proof of Step 6. Applying Steps 2, 3 and 5, by a proof similar to Step 8 of Theorem
3.1, we can show that the weak ω-limit set of {xn}, ωw(xn), is a subset of F .

Now, (4.2) and the Opial’s property of Hilbert space imply that ωw(xn) is singleton.
Therefore, xn ⇀ z0 for some z0 ∈ F .

Let zn = PF(xn). Since z0 ∈ F , we have

〈xn − zn, zn − z0〉 ≥ 0.

Using ‖xn+1−z0‖ ≤ ‖xn−z0‖ (∀n ∈ N) and Lemma 2.3, we have that {zn} converges
strongly to some y0 ∈ F . Since xn ⇀ z0, we have

〈z0 − y0, y0 − z0〉 ≥ 0.

Therefore, we obtain z0 = y0 = limn→∞ PF (xn).

5. APPLICATIONS

In this section, we deduce algorithms for a finite family of (non-self) strictly pseu-
docontractive mappings, as an application of the proposed algorithms. Moreover, we
present various applications to the additive semigroup of nonnegative real numbers.

Corollary 5.1. Let C, S , G, X , {µn}, {αn} and {rn,j}M
j=1 be as in Theorem 3.1.

Let ψ = {Tj : j = 1 . . .N} be a finite family of strictly pseudocontractive mappings
with 0 ≤ κ < 1 from C into C such that F := Fix(S) ∩ Fix(ψ) ∩ EP (G) �= ∅ and
{λk,n}N

k=1 be sequences in [c, d] ⊂ (0, 1− κ).
If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,
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


yn = (1 − αn)xn + αnT (µn)vn,

vn = ((1−λN,n)I+λN,nTN) . . . ((1−λ2,n)I+λ2,nT2)((1−λ1,n)I+λ1,nT1)un,

un = JFM
rM,n

. . .JF2
r2,n

JF1
r1,n

xn,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn(x),

then the sequences {xn} and {yn} converge strongly to PF (x).

Proof. Put Aj = I − Tj for every j ∈ {1, . . . , N}. Then Aj is 1−k
2 -inverse-

strongly monotone. We have that Fix(Tj) is the solution set of V I(C,Aj); i.e.,
Fix(Tj) = V I(C,Aj). Therefore, Fix(ψ) = ∩N

k=1V I(C,Ak) and it suffices to apply
Theorem 3.1.

Corollary 5.2. Let C, S , G, X , {µn}, {αn} and {rn,j}M
j=1 be as in Theorem 4.1.

Let ψ = {Tj : j = 1 . . .N} be a finite family of strictly pseudocontractive mappings
with 0 ≤ κ < 1 from C into C such that F := Fix(S) ∩ Fix(ψ) ∩ EP (G) �= ∅ and
{λk,n}N

k=1 be sequences in [c, d] ⊂ (0, 1− κ).
If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,




xn+1 = (1−αn)xn + αnT (µn)vn,

vn = ((1−λN,n)I+λN,nTN) . . . ((1− λ2,n)I+λ2,nT2)((1−λ1,n)I+λ1,nT1)un,

un = JFM
rM,n

. . .JF2
r2,n

JF1
r1,n

xn,

then the sequence {xn} converges weakly to z0 ∈ F , where z0 = limn→∞ PF(xn).

Remark 5.3. We may put
vn = PC(I − λN,n(I − TN )) . . .PC(I − λ2,n(I − T2))PC(I − λ1,n(I − T1))un,

in the schemes of Corollaries 4.1 and 4.2, and obtain schemes for families of non-self
strictly pseudocontractive mappings.

Corollary 5.4. Let C, G, A, {αn}, {rn,j}M
j=1 and {λk,n}N

k=1 be as in Theorem
3.1. Let S = {T (t) : t ∈ R+} be a strongly continuous semigroup of nonexpansive
mappings from C into C and F := ∩N

k=1V I(C,Ak) ∩ Fix(S) ∩ EP (G) �= ∅.
If {xn} is the sequence generated by x1 = x ∈ H ,



yn = (1 − αn)xn + αn
1
tn

∫ tn

0
T (s)vnds,

vn = PC(I − λN,nAN ) . . .PC(I − λ2,nA2)PC(I − λ1,nA1)un,

un = JFM
rM,n

. . .JF2
r2,n

JF1
r1,n

xn,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},

xn+1 = PCn∩Qn(x), ∀n ≥ 1,
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where {tn} is an increasing sequence in (0,∞) such that limn→∞ tn = ∞, then the
sequences {xn} and {yn} converge strongly to PF (x).

Proof. For n ∈ N, define µn(f) = 1
tn

∫ tn
0 f(t)dt for each f ∈ C(R+), where

C(R+) denotes the space of all real valued bounded continuous functions on R+ with
supremum norm. Then, {µn} is a regular sequence of means [24]. Further, for each
x ∈ C, we have T (µn)x = 1

tn

∫ tn
0 T (s)xds. Now, apply Theorem 3.1 to conclude the

result.

Corollary 5.5. Let C, G, A, {αn}, {rn,j}M
j=1 and {λk,n}N

k=1 be as in Theorem
4.1. Let S = {T (t) : t ∈ R+} be a strongly continuous semigroup of nonexpansive
mappings from C into C and F := ∩N

k=1V I(C,Ak) ∩ Fix(S) ∩ EP (G) �= ∅.
If {xn} is the sequence generated by x1 = x ∈ H ,


xn+1 = (1 − αn)xn + αnan

∫ ∞

0

exp(−ans)T (s)vnds,

vn = PC(I − λN,nAN ) . . .PC(I − λ2,nA2)PC(I − λ1,nA1)un,

un = JFM
rM,n

. . .JF2
r2,n

JF1
r1,n

xn, ∀n ≥ 1,

where {an} is a decreasing sequence in (0,∞) such that limn→∞ an = 0, then the
sequence {xn} converges weakly to z0 ∈ F , where z0 = limn→∞ PF (xn).

Proof. For each n ∈ N, define µn(f) = an

∫ ∞
0 exp(−ant)f(t)dt for each f ∈

C(R+). Then, {µn} is a regular sequence of means [24]. Further, for each x ∈ C, we
have T (µn)x = rn

∫ ∞
0 exp(−rnt)T (t)xdt. Now, apply Theorem 4.1 to conclude the

result.
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