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LIPSCHITZ CONTINUITY OF AN APPROXIMATE SOLUTION MAPPING
TO EQUILIBRIUM PROBLEMS

X. B. Li, S. J. Li* and C. R. Chen

Abstract. In this paper, with respect to Hausdorff metric, we establish the Lip-
schitz continuity of an approximate solution mapping for a parametric scalar
equilibrium problem. Simultaneously, we give some applications to parametric
optimization problems and parametric variational inequalities. Our main results
are new and strengthen some results in the recent literature.

1. INTRODUCTION

The equilibrium problems provide a unifying framework for investigating a large
variety of problems of variational analysis such as variational inequalities, optimization
problems and minimax problems. Especially, a great deal of research has been devoted
to finding the existence of solutions to equilibrium problems in various versions; see,
for example, [8, 10, 16, 25, 28] and the references therein. Among many desirable
properties of equilibrium problems, the stability analysis of solutions is an essential
topic in optimization theory and applications. Stability may be understood as lower
or upper semicontinuity, continuity, and Lipschitz or Hölder continuity. The semi-
continuities, especially the lower semicontinuity, of solution mappings for parametric
equilibrium problems and parametric variational inequalities have been of increasing
interest in the literature, such as [1, 3, 4, 11-15, 17, 21-23, 26, 31]. On the other hand,
Hölder continuity of solutions to parametric vector equilibrium problems has also been
discussed recently, see [2, 5, 6, 11, 12, 24, 29], although there may be less works in
the literature devoted to this property than to semicontinuity.
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In [2, 5-7, 11, 12, 29, 30], by the assumptions of strong monotonicity and/or
strong pseudomonotonicity, the authors obtained the Hölder continuity of solutions to
parametric equilibrium problems under the case that the solution is unique in some
neighborhood of a given point, namely the solution map is single-valued. However,
for a parametric equilibrium problem, generally speaking, the solution mapping is set-
valued. Naturally, it is a need to study the Hölder continuous properties of the set-valued
solution mappings. Very recently, by using the different assumptions,which is weaker
than pseudomonotonicity, Li et al. [20, 24] have studied Hölder continuity of the
solution mappings for parametric generalized vector equilibrium problems when they
are set-valued ones. Furthermore, Li and Li [27] defined another concept of strong
monotonicity and obtained Hölder continuity of the solution mappings for a parametric
weak vector equilibrium problems by a scalarization method.

On the other hand, exact solutions of the problems may not exist in many practical
problems because the data of the problems are not sufficiently “regular”. Moreover,
these mathematical models are solved usually by numerical methods (iterative proce-
dures or heuristic algorithms) which produce approximations to the exact solutions.
So it is impossible to obtain an exact solution of many practical problems. Naturally,
investigating approximate solutions of parametric equilibrium problems is of interest
in both practical applications and computations. However, to the best of our knowl-
edge, there was only a few results devoted to this direction in the literature. In [19],
Kimura and Yao have established the existence results for two types of approximate
generalized vector equilibrium problems, and further obtained the semicontinuity of
approximate solution mappings. In [18], Khanh and Luu have discussed the semiconti-
nuity of the approximate solution mappings of parametric multivalued quasivariational
inequalities in topological vector spaces. In [4], Anh and Khanh have considered two
kinds of approximate solution mappings to parametric generalized vector quasiequilib-
rium problems and established the sufficient conditions for Hausdorff semicontinuity
(or Berge semicontinuity). In [27], Li and Li have investigated the Hausdorff continu-
ity (or Berge continuity) of the approximate solution mapping for a parametric scalar
equilibrium problem. By using a scalarization method, they obtained a sufficient condi-
tion of the lower semicontinuity of the approximate solution mapping for a parametric
vector equilibrium problem.

Motivated by the work reported in [4, 19, 18, 27], this paper aims to estab-
lish the Lipschitz continuity of the approximate solution mappings for a parametric
scalar equilibrium problem (PSEP). Our sufficient conditions for Lipschitz continuity
of the approximate solution mappings are different from the corresponding ones in
[2, 11, 12, 24, 29]. In this paper, the crucial assumptions are not strong monotonicity
and/or strong pseudomonotonicity but concavity and Lipschitz continuity. Our main
proof methods are also different from the corresponding ones in [2, 11, 12, 24, 29].
By using the monotonicity of the approximate solution mappings (with respect to the
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set-inclusion) for (PSEP), we established the Lipschitz continuity of the approximate
solution mappings for (PSEP). Our consequences are new and strengthen the corre-
sponding results in [4, 19, 27].

The rest of the paper is organized as follows. In Section 2, we discuss the Lipschitz
continuity of the approximate solution mapping for (PSEP), and give some examples to
illustrate our results. In Section 3, by the results of Section 2, we give some applications
to optimization problems and variational inequalities.

2. LIPSCHITZ CONTINUITY OF AN APPROXIMATE SOLUTION MAPPING TO (PSEP)

In this section, we consider the following parametric scalar equilibrium problem of
finding x̄ ∈ E such that

(PSEP) f(x̄, y, µ) + ε ≥ 0, ∀y ∈ E,

where f : E×E×M → R, E is a nonempty convex compact subset of X , M ⊂ Y is
a nonempty compact subset and ε is a nonnegative real number; X, Y are two normed
spaces.

For any ε ≥ 0 and µ ∈ M , by Sε(µ) denotes the approximate solution set of
(PSEP), i.e.,

Sε(µ) = {x̄ ∈ E : f(x̄, y, µ) + ε ≥ 0, ∀y ∈ E}.
Throughout this section, we assume that Sε(µ) �= ∅ for any ε ≥ 0 and µ ∈ M .

Lemma 2.1. If for every y ∈ E and µ ∈ M , f(·, y, µ) is upper semicontinuous on
E , then for any ε ≥ 0, the approximate solution set S ε(µ) of (PSEP) is a compact set.

Proof. Since E is a compact set, it suffices to show that Sε(µ) is a closed set of E

for any given µ ∈ M . Indeed, take any sequence xn ∈ Sε(µ) with xn → x0. Then, it
follows from the definition of Sε(µ) that xn ∈ E and for any y ∈ E , f(xn, y, µ)+ε ≥ 0.
Then, xn → x0 ∈ E and f(x0, y, µ) + ε ≥ supn→∞f(xn, y, µ) + ε ≥ 0 since E is a
compact subset and f(·, y, µ) is upper semicontinuous. So, x0 ∈ Sε(µ) and the proof
is complete.

Before formulating the main results of this section, let us recall the definition of
Hausdorff metric between two nonempty closed bounded subsets A, B ⊂ X :

H(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)},

where d(a, B) := infb∈B ‖a − b‖.
Lemma 2.2. Let ε0 > 0. Suppose that the following conditions are satisfied:

(i) For each y ∈ E , µ ∈ M , f(·, y, µ) is upper semicontinuous on E;
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(ii) For each y ∈ E , µ ∈ M , f(·, y, µ) is a concave function, i.e., for any x1, x2 ∈ E

and any λ ∈ [0, 1], f(λx1+(1−λ)x2, y, µ)≥λf(x1, y, µ)+(1−λ)f(x2, y, µ);
(iii) There exists a constant γ > 0 such that S ε0(µ) ⊂ γB for any µ ∈ M , where B

is a unit ball of the origin.

Then, there exists a constant a > 0 such that the approximate solution mapping
S·(·) of (PSEP) satisfies the following condition: ∀ε 1, ε2 ∈ [0, ε0] : ε21 + ε22 �= 0,
∀µ ∈ M ,

H(Sε1(µ), Sε2(µ)) ≤ a

max{ε1, ε2}|ε1 − ε2|.(1)

Proof. (a) We claim that there exists a constant a > 0 such that

H(Sε(µ), S0(µ)) ≤ a, ∀ε ∈ (0, ε0], ∀µ ∈ M.(2)

For any ε ∈ (0, ε0] and µ ∈ M , by the definitions of S·(µ), we get

S0(µ) ⊂ Sε(µ) ⊂ Sε0(µ).

By Lemma 2.1, S0(µ), Sε(µ) and Sε0(µ) are compact sets. Then, it follows from the
definition of Hausdorff metric that

(3)
H(S0(µ), Sε(µ)) ≤ H(S0(µ), Sε0(µ))

≤ sup
x∈Sε0(µ)

sup
y∈Sε0 (µ)

‖x − y‖.

Therefore, let a = 2γ , this together with (3) yield (2) by virtue of (iii).
(b) By virtue of Lemma 2.1, Sε(µ) is compact for any ε ≥ 0 and µ ∈ M . Thus,

we only need to verify that S·(µ) satisfies (1). Obviously, the conclusion is trivially
if ε1 = ε2. Without loss of generality, we assume that ε1 < ε2. By the definition of
S·(µ), we get Sε1(µ) ⊂ Sε2(µ). Thus, we only need to show that for any x̄2 ∈ Sε2(µ),
there exists x̄1 ∈ Sε1(µ) satisfying

‖x̄2 − x̄1‖ ≤ a

ε2
|ε2 − ε1|.(4)

Let x̄2 ∈ Sε2(µ) and pick x̄0 ∈ S0(µ) such that

‖x̄2 − x̄0‖ ≤ a.

Then, for any y ∈ E , we have

f(x̄2, y, µ) + ε2 ≥ 0(5)

and
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f(x̄0, y, µ) ≥ 0.(6)

After multiplying (5) by ε1
ε2

and (6) by ε2−ε1
ε2

and summing, we get

ε1
ε2

f(x̄2, y, µ) + ε1 +
ε2 − ε1

ε2
f(x̄0, y, µ) ≥ 0.(7)

Then, it follows from (ii) and (7) that

f(
ε1
ε2

x̄2 +
ε2 − ε1

ε2
x̄0, y, µ) + ε1 ≥ 0,

which implies
x̄1 :=

ε1
ε2

x̄2 +
ε2 − ε1

ε2
x̄0 ∈ Sε1(µ).

Thus,
‖x̄2 − x̄1‖ =

ε2 − ε1
ε2

‖x̄2 − x̄0‖
≤ a

ε2
|ε2 − ε1|.

So, (4) holds and the proof is complete.

Theorem 2.1. Let 0 < ε̃ < ε0. Suppose that the following conditions are satisfied:
(i) For each y ∈ E , µ ∈ M , f(·, y, µ) is upper semicontinuous on E;
(ii) For each y ∈ E , µ ∈ M , f(·, y, µ) is a concave function;
(iii) There exists a constant γ > 0 such that S ε0(µ) ⊂ γB for any µ ∈ M , where B

is a unit ball of the origin.

Then, there exists a constant a > 0 such that the approximate solution mapping
S·(·) of (PSEP) satisfies the following Lipschitz condition: ∀ε 1, ε2 ∈ [ε̃, ε0], ∀µ ∈ M ,

H(Sε1(µ), Sε2(µ)) ≤ a

ε̃
|ε1 − ε2|.(8)

Proof. Since ε̃ ≤ max{ε1, ε2}, it follows from (1) that (8) holds.

Remark 2.1. The assumption (iii) of Theorem 2.1 is an upper estimate of Sε0(M) :=⋃
µ∈M Sε0(µ) and seems to be very strict. But the assumption (iii) is filled under the

following case: “For each x, y ∈ E, f(x, y, ·) is continuous on M”. Indeed, by The-
orem 3.1 in [26], Sε0(·) is upper semicontinuous on M . Then, by Proposition 11 in
Section 1 of Chapter 3 [9], Sε0(M) is a compact subset of E since M is a compact
subset.
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Remark 2.2. When f(x, y, µ) = f(x, y), i.e., f(x, y, µ) does not depend on µ,
the (PSEP) reduces to the model discussed in [19]. In [19], Kimura and Yao discussed
the upper semicontinuity and lower semicontinuity of the approximate solution set S(·)
of (PSEP). However, in Theorem 2.1, we obtained the Lipschitz continuity of the
approximate solution set S·(µ) for (PSEP) which strengthen the corresponding ones
of [19]. Simultaneously, the assumptions and proof method of Theorem 2.1 are very
different from the corresponding ones in [19].

Remark 2.3. In Theorem 2.1, we have obtained actually that for any ε̃ satisfying
0 < ε̃ < ε0 and µ ∈ M , the approximate solution mapping S·(µ) of (PSEP) is Lipschitz
continuous on [ε̃, ε0]. However, ε̃ can not be equal to zero, namely, S·(µ) may not be
Lipschitz continuous on [0, ε0]. The following example explains the case.

Example 2.1. Let ε0 > 0 and small. Let X = Z = R, E = [0, 1], M = [1, 2]
and f(x, y, µ) = µ(−x2 − y2 + 1). Obviously, all assumptions of Theorem 2.1 are
satisfied. It is easy to show that the solution mapping S of (PSEP) is given by

Sε(µ) = [0,

√
ε

µ
], ∀µ ∈ M, ∀ε ∈ [0, ε0].

However, for any µ ∈ M , S·(µ) is not Lipschitz on [0, ε0]. Indeed, taking µ = 1 and
x1 =

√
ε1 ∈ Sε1(1) as a selection, there is no L > 0 such that

d(x1, S0(1)) ≤ Lε1,

for every 0 < ε1 ≤ ε0.

Theorem 2.2. Suppose that all conditions of Lemma 2.1 are satisfied, and (iii) is
replaced by: (iii′) For each x, y ∈ E , f(x, y, ·) is �-Lipschitz on M . Then for any
ε ∈ (0, ε0], there exists a constant κ > 0 such that the approximate solution mapping
Sε(·) of (PSEP) satisfying the following Lipschitz condition:

H(Sε(µ1), Sε(µ2)) ≤ κ�

ε
‖µ1 − µ2‖, ∀µ1, µ2 ∈ M.(9)

Suppose furthermore that there exists a constant ε̃ > 0 such that ε̃ < ε 0. Then there
exists a constant κ̃ ≥ κ such that the approximate solution mapping S ·(·) of (PSEP)
satisfying the following Lipschitz condition:

H(Sε(µ1), Sε(µ2)) ≤ κ̃�

ε̃
‖µ1 − µ2‖, ∀ε ∈ [ε̃, ε0], ∀µ1, µ2 ∈ M.(10)

Proof. By virtue of Lemma 2.1, for any ε ∈ (0, ε0] and µ ∈ M , Sε(µ) is a compact
subset of E. Thus, (9) and (10) are well-defined.

(a) First, we verify that (9) holds. For any µ1, µ2 ∈ M , there are two cases to be
considered.
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Case 1. ‖µ1 − µ2‖ ≤ ε
� . The conclusion (9) is trivial if µ1 = µ2. Thus, we

assume without loss of generality that µ1 �= µ2. Let r := �‖µ1 − µ2‖. Obviously,
0 < r ≤ ε. Let x̄ ∈ Sε−r(µ1) be arbitrarily given. Then, for any y ∈ E , we get

x̄ ∈ E and f(x̄, y, µ1) + ε − r ≥ 0.

Therefore,

f(x̄, y, µ2) + f(x̄, y, µ1) − f(x̄, y, µ2) ≥ −ε + r.(11)

From the Lipschitz continuity of f(x, y, ·) on M , we get

|f(x, y, µ1) − f(x, y, µ2)| ≤ �‖µ1 − µ2‖ = r.(12)

Thus, (11) and (12) together yield that

f(x̄, y, µ2) ≥ −ε, ∀y ∈ E,

that is x̄ ∈ Sε(µ2). So for r defined above and µ1 close enough to µ2,

Sε−r(µ1) ⊂ Sε(µ2).

Therefore, by Remark 2.1 and (1)

(13)

sup
x̄2∈Sε(µ1)

inf
x̄1∈Sε(µ2)

‖x̄2 − x̄1‖ ≤ sup
x̄2∈Sε(µ1)

inf
x̄1∈Sε−r(µ1)

‖x̄2 − x̄1‖

≤ H(Sε(µ1), Sε−r(µ1))

≤ ar

max{ε, ε − r}
=

a�

ε
‖µ1 − µ2‖.

Due to the symmetry between µ1 and µ2, the same estimate is also valid, i.e.,

sup
x̄1∈Sε(µ2)

inf
x̄2∈Sε(µ1)

‖x̄1 − x̄2‖ ≤ a�

ε
‖µ1 − µ2‖.(14)

Thus, by the definition of Hausdorff metric, (13) and (14) together implies

H(Sε(µ1), Sε(µ2)) ≤ a�

ε
‖µ1 − µ2‖.(15)

Case 2. ‖µ1 − µ2‖ > ε
� . Noting that M is a compact subset, let us consider the

finite open covering of the set of M by the open balls of the radius ε
4� . Let µ1, µ2 be

two centers of the open balls. The number of these balls will be denoted by N and
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their centers by {νi : i = 1, ..., N}. Obviously, {νi : i = 1, ..., N} includes two points
µ1, µ2. Then the sequence of points {νim : m = 1, ..., L, L ≤ N} exists such that

νi1 = µ1, νim = µ2

and

‖νim − νim+1‖ ≤ ε

2�
.

Therefore, it follows from the triangle inequality of Hausdorff metric and (15) that

(16)

H(Sε(µ1), Sε(µ2)) ≤
L∑

m=1

H(Sε(νim), Sε(νim+1))

≤ a�

ε

L∑
m=1

‖νim − νim+1‖

≤ L
a�

ε
• ε

2�

≤ N
a�

ε
• ε

2�

≤ N
a�

2ε
‖µ1 − µ2‖.

Let κ := max{a, Na/2}. Thus, from (15) and (16), we have that (9) holds.
(b) Now, we show that (10) is satisfied. For any µ1, µ2 ∈ M and ε ∈ [ε̃, ε0], there

are also two cases to be considered.
If ‖µ1 − µ2‖ ≤ ε

� , then it follows from (15) that

(17)
H(Sε(µ1), Sε(µ2)) ≤ a�

ε
‖µ1 − µ2‖

≤ a�

ε̃
‖µ1 − µ2‖

since ε̃ ≤ ε.
If ‖µ1 −µ2‖ > ε

� , then we consider the finite open covering of the set of M by the
open balls of the radius ε̃

4� since M is a compact subset. The number of these balls
will be denoted by Ñ . Then Ñ ≥ N (N is defined as above) since ε̃ ≤ ε. Following
the proof of Case 2 in (a), ε̃ < ε and (16), one has

(18)

H(Sε(µ1), Sε(µ2)) ≤ Ñ
a�

ε̃
• ε̃

2�

≤ Ñ
a�

ε̃
• ε

2�

≤ Ñ
a�

2ε̃
‖µ1 − µ2‖.
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Thus, (17) and (18) together yield that (10) holds by letting κ̃ := max{a, Ña/2} ≥ κ

and the proof is complete.

The following example is given to illustrate that the concavity of f(·, y, µ) in
Theorem 2.2 is essential.

Example 2.2. Let ε > 0 and small. Let X = Z = R, E = [1, 2], M = [0, 1] and
f(x, y, µ) = µx(x − y) − ε. Then, all conditions of Theorem 2.2 except for (ii) are
satisfied. Direct computation shows that Sε(0) = [1, 2] and Sε(µ) = {2}, ∀µ ∈ (0, 1].
Clearly, we see that Sε(·) is even not l.s.c at µ = 0. Hence the assumption (ii) in
Theorem 2.2 is essential.

The following example illustrates that Theorem 2.2 is applicable.

Example 2.3. Let X = Z = R, E = [0, 1], M = [0, 1
2 ] and f(x, y, µ) = y−x+µ.

Then, it is clear that all assumptions of Theorem 2.1 hold and Theorem 2.1 is applicable.
Moreover, it follows from direct computation that for any ε ∈ (0, ε0], Sε(µ) = [0, µ+ε],
∀µ ∈ M . Thus, the approximate solution mapping Sε(·) of (PSEP) satisfies (9).

Combing Theorems 2.1 and 2.2, we can obtain the following result.

Theorem 2.3. Let 0 < ε̃ < ε0. Suppose that the following conditions are satisfied:
(i) For each y ∈ E , µ ∈ M , f(·, y, µ) is upper semicontinuous on E;
(ii) For each y ∈ E , µ ∈ M , f(·, y, µ) is a concave function;
(iii) For each x, y ∈ E , f(x, y, ·) is �-Lipschitz on M .

Then there exist constants a > 0 and κ̃ > 0 such that the approximate solution
mapping S·(·) of (PSEP) satisfying the following Lipschitz condition:

(19)
H(Sε1(µ1), Sε2(µ2))

≤ a

ε̃
|ε1 − ε2| + κ̃�

ε̃
‖µ1 − µ2‖, ∀ε1, ε2 ∈ [ε̃, ε0], ∀µ1, µ2 ∈ M.

Proof. Since

H(Sε1(µ1), Sε2(µ2)) ≤ H(Sε1(µ1), Sε1(µ2)) + H(Sε1(µ2), Sε2(µ2)),

it follows from (8) and (10) that (19) holds.

Remark 2.4. In [26], Li and Li have established the H-continuity and B-continuity
of the approximate solution mapping S·(·) for (PSEP), respectively. Herein, under
Hausdorff metric, the Lipschitz continuity of the solution mapping S·(·) is established
in Theorem 2.3.
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3. APPLICATIONS

As pointed out in Introduction, equilibrium problems contain many problems as
special cases, including optimization problems, variational inequalities, complementar-
ity problems, etc., we can derive from Theorems 2.1, 2.2 and 2.3 consequences for
such special cases. In this section, we only discuss classic optimization and variational
inequality problems.

3.1. Optimization Problems

Let X and Y be normed spaces, E ⊂ X be a nonempty convex compact subset,
M ⊂ Y be a nonempty compact subset and let ε be a nonnegative constant. Let f be
defined as

f(x, y, µ) = φ(y, µ)− φ(x, µ)

where φ : E × M → R is a function. Then (PSEP) reduces to the parametric opti-
mization problem of finding x̄ ∈ E such that

(POP) min{φ(x, µ) : x ∈ E}
For any ε ≥ 0 and µ ∈ M , by S̄ε(µ) denotes the approximate solution set of (PSEP),
i.e.,

S̄ε(µ) = {x̄ ∈ E : inf
y∈E

φ(y, µ) + ε ≥ φ(x̄, µ)}.

We assume that S̄ε(µ) �= ∅ for any ε ≥ 0 and µ ∈ M .

Corollary 3.1. Let 0 < ε̃ < ε0. Suppose that the following conditions are satisfied:
(i) For each y ∈ E , µ ∈ M , φ(·, µ) is lower continuous on E;
(ii) For each y ∈ E , µ ∈ M , φ(·, µ) is a convex function, i.e., for any x1, x2 ∈ E

and any λ ∈ [0, 1], φ(λx1 + (1 − λ)x2, µ) ≤ λφ(x1, µ) + (1− λ)φ(x2, µ);
(iii) For each x ∈ E , φ(x, ·) is �

2-Lipschitz on M .

Then
(a) for any ε ∈ (0, ε0], there exists a constant κ > 0 such that the approximate

solution mapping S̄ε(·) of (POP) satisfying the following Lipschitz condition:

H(S̄ε(µ1), S̄ε(µ2)) ≤ κ�

ε
‖µ1 − µ2‖, ∀µ1, µ2 ∈ M ;

(b) there exist constants a > 0 and κ̃ ≥ κ > 0 such that the approximate solution
mapping S̄·(·) of (POP) satisfying the following Lipschitz condition:

H(S̄ε1(µ1), S̄ε2(µ2)) ≤ a

ε̃
|ε1 − ε2|+ κ̃�

ε̃
‖µ1 − µ2‖, ∀ε1, ε2 ∈ [ε̃, ε0], ∀µ1, µ2 ∈ M.
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3.2. Variational Inequalities

Let X be a normed space, X∗ be the topological dual space of X , Y be normed
spaces, E ⊂ X be a nonempty convex compact subset, M ⊂ Y be a nonempty compact
subset and let ε be a nonnegative constant. Let f be defined as

f(x, y, µ) = 〈g(x, µ), y− x〉,

where g : X×Λ → X∗ is a single-valued map. Then (PSEP) collapses to the parametric
variational inequality of finding x̄ ∈ E such that

(PVI) 〈g(x̄, µ), y − x̄〉 + ε ≥ 0, ∀y ∈ E.

Denote the solution set map of (PVI) by SI· (·). We also assume that SI
ε (µ) �= ∅ for

any ε ≥ 0 and µ ∈ M .

Corollary 3.2. Let 0 < ε̃ < ε0. Suppose that the following conditions are satisfied:

(i) For any y ∈ E , µ ∈ M , any sequence {xn} ⊂ E with xn → x0,

lim sup
n

〈g(xn, µ), y − xn〉 ≤ 〈g(x0, µ), y − x0〉;

(ii) For any y ∈ E , µ ∈ M , g(·, µ) is a affine function, i.e., for any x 1, x2 ∈ E and
any λ ∈ [0, 1], g(λx1 + (1 − λ)x2, µ) = λg(x1, µ) + (1 − λ)g(x2, µ);

(iii) For any µ ∈ M , g(·, µ) is monotone on E , i.e., for any x1, x2 ∈ E, 〈g(x1, µ)−
g(x2, µ), x1 − x2〉 ≥ 0;

(iv) For any x ∈ E , g(x, ·) is �-Lipschitz on M .

Then

(a) for any ε ∈ (0, ε0], there exists a constant κ > 0 such that the approximate
solution mapping S I

ε (·) of (PVI) satisfying the following Lipschitz condition:

H(SI
ε (µ1), SI

ε (µ2)) ≤ κ�ρ

ε
‖µ1 − µ2‖, ∀µ1, µ2 ∈ M ;

(b) there exist constants a > 0 and κ̃ ≥ κ > 0 such that the approximate solution
mapping S I· (·) of (PVI) satisfying the following Lipschitz condition:

H(SI
ε1(µ1), SI

ε2(µ2)) ≤ a

ε̃
|ε1 − ε2|+ κ̃�ρ

ε̃
‖µ1 − µ2‖, ∀ε1, ε2 ∈ [ε̃, ε0], ∀µ1, µ2 ∈ M,

where ρ := supx,y∈E ‖x − y‖ < ∞.
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Proof. To apply Theorems 2.2 and 2.3, we only need to verify that the concavity
and Lipschitz continuity of f . First, ∀µ ∈ M, ∀x1, x2, y ∈ E, ∀λ ∈ [0, 1],

f(λx1 + (1− λ)x2, y, µ)− (λf(x1, y, µ) + (1 − λ)f(x2, y, µ))

= 〈λg(x1, µ) + (1− λ)g(x2, µ), y − (λx1 + (1− λ)x2)〉
−λ〈g(x1, µ), y − x1〉 − (1 − λ)〈g(x2, µ), y − x2〉

= λ(1− λ)〈g(x1, µ)− g(x2, µ), x1 − x2〉
≥ 0,

where we used the assumptions (ii) and (iii). Since E is compact, ρ := supx,y∈E ‖x−
y‖ < ∞. Second, ∀x, y,∈ E, ∀µ1, µ2 ∈ M ,

|f(x, y, µ1) − f(x, y, µ2)| = |〈g(x, µ1), y − x〉 − 〈g(x, µ2), y − x〉|
≤ ‖g(x, µ1) − g(x, µ2)‖‖x− y‖
≤ �ρ‖µ1 − µ2‖.

Remark 3.5. If for any µ ∈ M , g(·, µ) is continuous on E , then the assumption
(i) of Corollary 3.2 holds.
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