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(4, 5)-CYCLE SYSTEMS OF COMPLETE MULTIPARTITE GRAPHS

Ming-Hway Huang and Hung-Lin Fu

Abstract. In 1981, Alspach conjectured that if 3 ≤ mi ≤ v, v is odd and
v(v−1)/2 = m1+m2+· · ·+mt , then the complete graph Kv can be decomposed
into t cycles of lengths m1, m2, . . . , mt respectively; if v is even, v(v − 2)/2 =
m1 + m2 + · · ·+ mt, then the complete graph minus a one-factor Kv − F can
be decomposed into t cycles of lengths m1, m2, . . . , mt respectively. In this
paper, we extend the study to the decomposition of the complete equipartite graph
Km(n). For mi ∈ {4, 5}, we prove that the trivial necessary conditions are also
sufficient.

1. INTRODUCTION

An H-decomposition of the graph G is a partition of E(G) such that each element
of the partition induces a subgraph isomorphic to a graph in H. If H just contains a
cycle Ck , such a decomposition is referred to as an k-cycle decomposition of G. k-
cycle decomposition of various graph have been considered by many authors. Necessary
and sufficient conditions for a complete graph of odd order, or for a complete graph of
even order minus a one-factor, to have decomposition into cycles of some fixed length
are now known; see [1,2,4,6,8,9,10,11,13] and references therein. Now, we extend the
decomposition of Kn to that of the complete equipartite graph Km(n), with m parts of
size n.

The obvious necessary conditions for the existence of a decomposition of the com-
plete equipartite graph Km(n) into cycles C1, C2, C3, . . . , Ct, of lengths m1, m2, m3,
. . . , mt, whose edges partition the edge set of Km(n) are

• 3 ≤ mi ≤ mn, for i = 1, 2, . . . , t;

• the degree of every vertex in Km(n) is even;

• m1 + m2 + · · ·+ mt = m(m−1)n2

2 .

Here we prove that the above necessary conditions are sufficient when mi ∈ {4, 5},
for i = 1, 2, . . . , t.

Received March 25, 2011, accepted April 26, 2011.
Communicated by Jen-Chih Yao.
2010 Mathematics Subject Classification: 05C38.
Key words and phrases: Cycle system; Alspach conjecture, Cycle decomposition.

999



1000 Ming-Hway Huang and Hung-Lin Fu

We start with some notations which will be used in what follows. A subgraph
of graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G); an induced
subgraph H of G is a subgraph of G such E(H) consists of all edges of G whose
end points belong to V (G). If S is a nonempty set of vertices of G, then the subgraph
of G induced by S is the induced subgraph of G with vertex set S. This induced
subgraph of G is denoted by G[S]. Similarly, if Si, Sj , Sk are three disjoint subsets of
V (G), then the subgraph of G with vertex sets Si ∪ Sj ∪ Sk and the edge set contains
all edges which are among the vertices in Si, Sj and Sk, respectively is denoted by
G[Si, Sj, Sk]. An (mr, ns)-cycle system of a graph G is a set consisting of r m-cycles
and s n-cycles whose edges partition E(G). For any non-negative integer v, define
Sm,n(v) = {(s, r)|ms+nr = v and r, s ≥ 0} and for a given graph G, define Tm,n(G)
= {(r, s)| there exists an (mr, ns)-cycle system of G}.

Let S be an n-element set. A latin square of order n based on S is an n×n array
in which each cell contains a single element from S, such that each element occurs
exactly once in each row and each column.

Before we consider (4r, 5s)-cycle system of Km(n), we need some 5-cycle packings
of complete graphs and complete multipartite graphs.

Theorem 1.1. ([12]). The minimum leaves of the maximum packings of K v with
5-cycles are as follows in Table 1. Here, F is a 1-factor, C i is a cycle of length i, 2C3

is a bowtie, Fi is a graph with v/2 + i edges and each vertex has odd degree.

Table 1. The minimum leaves of the maximum packings of Kv with 5-cycles

v (mod 10) 0 1 2 3 4 5 6 7 8 9
L (leave) F ∅ F C3 F4 ∅ F2 2C3 F4 2C3

Theorem 1.2. ([5]). If v is odd then Tm,n(Kv) = Sm,n(|E(Kv)|), and if v is even
then Tm,n(Kv − F ) = Sm,n(|E(Kv − F )|), where F is a 1-factor of Kv.

Theorem 1.3. ([7]). Let m be an odd integer. Then the minimum leaves of the
maximum packings of Km(n) with 5-cycles are as follows: m is taken to be the number
modulo 10, n is considered to be modulo 5.

Table 2. The minimum leaves of the maximum packings of Km(n) with 5-cycles

m / n 0 1 2 3 4
1 ∅ ∅ ∅ ∅ ∅
3 ∅ C3 C3 ∪ C4 C3 ∪ C4 C3

5 ∅ ∅ ∅ ∅ ∅
7 ∅ 2C3 C4 C4 2C3

9 ∅ 2C3 C4 C4 2C3
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Lemma 1.4. ([7]). Let n ≥ 2, and C5(n) denote the graph with vertex set Zn ×Z5

and edge set E(C5(n)), where {(i1, j1), (i2, j2)} ∈ E(C5(n)) if and only if j2 ≡ j1 +1
(mod 5). Then C5(n) can be decomposed into 5-cycles.

It is easy to see that C5(2) can be decomposed into 5C4 or 4C5, and C5(3) can be
decomposed into 9C5 or 5C4 ∪ 5C5 or 10C4 ∪C5, i.e. T4,5(C5(n)) = S4,5(|E(C5(n)|),
when n = 2, 3.

Lemma 1.5. ([7]). There is a 5-cycle packing of Kn,n,n with leave (i) ∅ when
n ≡ 0 (mod 5) (ii) C3 when n ≡ 1 or 4 (mod 5) and (iii) C3 ∪ C4 when n ≡ 2 or 3
(mod 5).

By the same technique, we have

Lemma 1.6. There is a 5-cycle packing of Kn,n,n with leave (i) C3 when n ≡ 1
or 4 (mod 5) and (ii) 4C3 when n ≡ 2 or 3 (mod 5).

Theorem 1.7. ([3]).
Let H1, H2 and H3 be the graphs of respectively. Then (1) H1|Km if

and only if n ≡ 0 or 1 (mod 5), (2) H2|Km if and only if n ≡ 0 or 1 (mod 5), n > 6,
and (3) H3|Km if and only if n ≡ 0 or 1 (mod 5), n �= 5.

For convenience, let (v0; v1, v3; v2, v4) denote the graph H1, where {vi|i ∈ Z5}
is the vertex set of H1 and v0, v1, v2 adjacent to each other, v3, v4 adjacent to v1,
v2, respectively; let (v0, v1, v2; v3, v4) denote the graph H2, where {vi|i ∈ Z5} is
the vertex set of H2 and v0, v1, v2 adjacent to each other, v3, v4 adjacent to v2,
together; finial, let (v0; v1, v3; v2, v3) denote the graph H3, where {vi|i ∈ Z4} is the
vertex set of H3 and v0, v1, v2 adjacent to each other, v3 adjacent to v1, v2. Let
H = {H1, H2, H3, H4(= C5)}. Before we consider the 5-cycle packing of complete
equipartite graph Km(n), we first study an H-packing of complete graph Km.

2. H-PACKING OF COMPLETE GRAPH Km

Let H1(n) and H2(n) be the 5-partite graphs with vertex set Zn ×Z5 and {(i1, j1),
(i2, j2)} ∈ E(Hi(n)) if and only if {j1, j2} ∈ E(Hi), i = 1, 2. Similarly, let H3(n)

be the 4-partite graph with vertex set Zn ×Z4 and (i1, j1), (i2, j2) are adjoined if and
only if j1, j2 are adjoined in H3. By the following lemmas, Hi(2n) can be decomposed
into a combination of 5-cycles and 4-cycles, for i = 1, 2, 3.

Lemma 2.1. H1(t), H2(t), and H3(t) can be decomposed into t2H1, t2H2, t2H3

respectively.

Proof. Let Zt×Z5 be the vertex set of H1(t) and H2(t), and Zt×Z4 be the vertex set of
H3(t). Let M be a latin square of order t base on Zt. For (i, j, M(i, j)), 0 ≤ i, j ≤ t−1,
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H1(t) can be decomposed into t2H1 as ((i, 0); (j, 1), (M(i, j), 3); (M(i, j), 2), (j, 4)),
H2(t) can be decomposed into t2H2 as ((i, 0), (j, 1), (M(i, j), 2); (j, 3), (j, 4)), and
H3(t) can be decomposed into t2H3 as ((i, 0); (j, 1), (i, 3); (M(i, j), 2), (i, 3)).

Lemma 2.2. Hi(2), i = 1, 2, 3 can be decomposed into 4C5’s.

Proof. H1(2) can be decomposed into four 5-cycles as: ((0, 0), (0, 1), (0, 3),
(1, 1), (0, 2)), ((0, 0), (1, 1), (1, 3), (0, 1), (1, 2)), ((1, 0), (0, 1), (0, 2), (0, 4), (1, 2)),
((1, 0), (1, 1), (1, 2), (1, 4), (0, 2)), H2(2) can be decomposed into four 5-cycles as
: ((0, 0), (0, 1), (0, 2), (0, 3), (1, 2)), ((0, 0), (1, 1), (1, 2), (1, 3), (0, 2)), ((1, 0), (0, 1),
(1, 2), (0, 4), (0, 2)), ((1, 0), (1, 1), (0, 2), (1, 4), (1, 2)), and H3(2) can be decomposed
into four 5-cycles: ((0, 0), (0, 1), (0, 3), (1, 1), (0, 2)), ((0, 0), (1, 1), (1, 3), (0, 1),
(1, 2)), ((1, 0), (0, 1), (0, 2), (0, 3), (1, 2)), ((1, 0), (1, 1), (1, 2), (1, 3), (0, 2)).

Lemma 2.3. K12, K14 can be packed with graphs in H which has leave a bowtie.

Proof. (1) Let Z12 be the vertex set of K12. Then K12 can be packed with
K6 ∪ 6H2 ∪ 3H3 as the following : K6 = K12[{0, 1, 2, 3, 4, 5}], 6H2 : (7, 11, 2; 6, 9),
(3, 7, 8; 2, 11), (6, 11, 3; 9, 10), (7, 9, 4; 6, 10), (4, 8, 10; 2, 9), (5, 8, 6; 9, 10), 3H3 :
(1; 6, 0; 7, 0), (1; 8, 0; 9, 0), (1; 10, 0; 11, 0), which has leave a bowtie : (5, 7, 10),
(5, 9, 11). By theorem 1.7, K6 can be decomposed into 3H2, and K12 can be packed
with H2 and H3 which has leave a bowtie. (2) Let Z14 be the vertex set of K14.
Then K14 can be packed with 2H1 ∪ 9H2 ∪ 6H3 as following: 2H1 : (2; 6, 11; 10, 9),
(3; 6, 9; 1, 12), 9H2: (1, 9, 5; 8, 0), (3, 8, 2; 5, 11), (3, 7, 4; 2, 5), (7, 10, 5; 6, 11),
(6, 7, 12; 5, 8), (7, 11, 8; 6, 9), (11, 12, 3; 9, 10), (12, 4, 9; 2, 11), (4, 11, 10; 1, 12), 6H3

: (5; 3, 0; 13, 0), (13; 7, 0; 9, 0), (13; 1, 0; 11, 0), (13; 4, 0; 6, 0), (13; 8, 0; 10, 0), (13; 2,
0; 12, 0) which has leave a bowtie : (1, 2, 7), (1, 4, 8).

Lemma 2.4. K8 can be packing with H which has leave a 3-cycle.

Proof. Let Z8 be the vertex set of K8. Then K8 can be decomposed into
5H1 ∪ C3 as following: 5H1 : (2; 3, 4; 7, 5), (2; 6, 4; 1, 7), (4; 0, 3; 7, 6), (5; 3, 1; 6, 0),
(5; 4, 1; 2, 0), and C3 : (0, 1, 5).

Lemma 2.5. K5,5,t has an H-decomposition for t = 2, 4 or 8.

Proof. (1) Let (Z2 ×{0}) ∪ (Z5 ×{1, 2}) be the vertex set of K2,5,5. Then K2,5,5

can be decomposed into 4H1 ∪ 5H2 as the following :
4H1 : ((4, 2); (0, 1), (1, 2); (1, 0), (3, 2)), ((0, 2); (1, 1), (2, 2); (1, 0), (4, 1)), ((1, 0);
(2, 1), (3, 2); (1, 2), (4, 1)), ((1, 0); (3, 1), (4, 2); (2, 2), (4, 1)), and 5H2 : ((0, 0), (0, 2),
(0, 1); (2, 2), (3, 2)), ((0, 0), (1, 2), (1, 1); (3, 2), (4, 2)), ((0, 0), (2, 2), (2, 1); (4, 2),
(0, 2)), ((0, 0), (3, 2), (3, 1); (1, 2), (0, 2)), ((0, 0), (4, 2), (4, 1); (3, 2), (0, 2)).

(2) Let (Z4 × {0}) ∪ (Z5 × {1, 2}) be the vertex set of K4,5,5. Then K4,5,5 can
be decomposed into 6H1 ∪ 7H2 as the following : 6H1: ((2, 2); (2, 1), (3, 2); (0, 0),
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(0, 2)), ((3, 2); (3, 1), (4, 2); (0, 0), (1, 2)), ((3, 2); (0, 1), (1, 2); (2, 0), (0, 2)), ((4, 2);
(1, 1), (2, 2); (2, 0), (1, 2)), ((1, 2); (4, 1), (0, 2); (3, 0), (0, 2)), ((2, 2); (0, 1), (0, 2);
(3, 0), (3, 1)), and 7H2 : ((4, 1), (4, 2), (0, 0); (0, 1), (1, 1)), ((0, 1), (4, 2), (1, 0); (0, 2),
(1, 2)), ((1, 0), (2, 2), (3, 1); (1, 2), (0, 2)), ((4, 1), (3, 2), (1, 0); (1, 1), (2, 1)), ((4, 1),
(2, 2), (2, 0); (2, 1), (3, 1)), ((3, 0), (3, 2), (1, 1); (1, 2), (0, 2)), ((3, 0), (4, 2), (2, 1);
(0, 2), (1, 2)).

(3) Let (Z5×Z2) ∪ (Z8×{2}) be the vertex set of K5,5,8. Then K5,5,8 can be de-
composed into 9H1 ∪ 6H2 ∪ 6H3 as the following : 9H1 : ((1, 2); (1, 1), (5, 2); (0, 0),
(6, 2)), ((2, 2); (2, 1), (5, 2); (0, 0), (7, 2)), ((4, 2); (0, 1), (6, 2); (1, 0), (5, 2)), ((2, 2);
(3, 1), (6, 2); (1, 0), (7, 2)), ((3, 2); (4, 1), (6, 2); (1, 0), (0, 2)), ((3, 2); (0, 1), (7, 2);
(2, 0), (5, 2)), ((2, 2); (4, 1), (7, 2); (2, 0), (0, 2)), ((1, 2); (4, 1), (4, 0); (3, 0), (0, 2)),
((2, 2); (2, 1), (1, 0); (4, 0), (6, 2)), 6H2 : ((0, 0), (3, 2), (3, 1); (3, 0), (5, 2)), ((0, 0),
(4, 2), (4, 1); (0, 2), (5, 2)), ((0, 1), (2, 2), (3, 0); (5, 2), (6, 2)), ((3, 0), (3, 2), (1, 1);
(0, 2), (7, 2)), ((0, 1), (1, 2), (4, 0); (5, 2), (7, 2)), ((4, 0), (3, 2), (2, 1); (0, 2), (2, 0)),
and 6H3 : ((0, 2); (0, 1), (5, 2); (0, 0), (5, 2)), ((1, 2); (2, 1), (6, 2); (1, 0), (6, 2)), ((4, 2);
(1, 1), (6, 2); (2, 0), (6, 2)), ((1, 2); (3, 1), (7, 2); (2, 0), (7, 2)), ((4, 2); (2, 1), (7, 2);
(3, 0), (7, 2)), ((4, 2); (3, 1), (0, 2); (4, 0), (0, 2)).

Now, we have the following theorem.

Theorem 2.6. The minimum leaves of the maximum packings of K v with H-set
are as follows:

Table 3. The minimum leaves of the maximum packings of Kv with H-set

v (mod 10) 0 1 2 3 4 5 6 7 8 9
L (leave) ∅ ∅ e C3 e ∅ ∅ e C3 e

Proof. (i) If the order v ≡ 0, 1, 5, 6 (mod 10), by theorem 1.8, Kv can be
decomposed into H1. (ii) If v ≡ 3, 7, or 9 (mod 10), by theorem 1.2, Kv can be packed
with H4(= C5) which has leave C3, 2C3, and 2C3, respectively. 2C3 = H2 ∪{e}. So
we can get the above results. (iii) If v ≡ 2, 4, or 8 (mod 10), let G = K10s+t, t = 2,
4, or 8, G can be viewed as a graph which contains 2s parts of K5 and one part of Kt,
and every parts join to the other part. Then if s = 3p, G can be decomposed into 6pK5,
1K2, 3pK5,5,t and p(6p − 2)K5,5,5. If s = 3p + 1, then G can be decomposed into
(6p + 2)K5, 1Kt, (3p + 1)K5,5,t and 2p(3p + 1)K5,5,5. If s = 3p + 2(i.e. G contains
6p+4 parts of K5 and one part of Kt and every parts join to the other parts), p ≥ 1, G
can be decomposed into (6p + 4)K5, 1Kt, (3p + 2)K5,5,t, (6p(p + 1)− 2)K5,5,5, and
K5,5,5,5,5. By the above lemmas, we know that the minimum leaves of the maximum
packings of K10s+t with H-set are the same as the minimum leaves of the maximum
packings of Kt with H-set. So, there exists an H-packing of Kv which has the leave
as the above table.



1004 Ming-Hway Huang and Hung-Lin Fu

By the above discussion, we have the following proposition:

Proposition 2.7. There exists an H-packings of Kv with the following leaves.

Table 4. The leaves of an H-packing of Kv

v (mod 10) 0 1 2 3 4 5 6 7 8 9
L (leave) ∅ ∅ 2C3 C3 2C3 ∅ ∅ 2C3 C3 2C3

Combine proposition 2.7 and Lemma 1.4, we have

Theorem 2.8. The minimum leaves of the maximum packings of Km(n) with H-set
are as follows: m, n are considered to be the number modulo 10, 5 respectively; e is
one edge, Ci is a cycle of length i.

Table 5. The minimum leaves of the maximum packings of Km(n) with H-set

n \ m 0 1 2 3 4 5 6 7 8 9
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ e C3 e ∅ ∅ e C3 e

2 ∅ ∅ 4e 2e 4e ∅ ∅ 4e 2e 4e

3 ∅ ∅ 4e 2e 4e ∅ ∅ 4e 2e 4e

4 ∅ ∅ e C3 e ∅ ∅ e C3 e

Theorem 2.9. T4,5(Km(n)) = S4,5(|E(Km(n)|).

Proof. If a complete equipartite graph Km(n) is (4,5)-sufficient then n is even or
m, n are both odd. (i) If n is even, say n = 2s. View two vertices in the same partite
set of Km(2s) as a point, then Km(2s) can be viewed as a complete multipartite graph
K ′

m(s), and each edge e′ in K ′
m(s) is a C4 in Km(2s). By the theorem 2.8, K′

m(s) can
be decomposed into β1H

′
1, β2H

′
2, β3H

′
3, β4H

′
4, and a leave L′ with |E(L′)| = α < 4.

This implies that Km(2s) can be decomposed into β1H1(2), β2H2(2), β3H3(2), β4H4(2),
and αC4. Because Hi(2), i = 1, 2, 3, 4 can be decomposed into 5C4’s or 4C5’s,
discretionarily, in the other word, if the size of a complete equipartite graph Km(2s) is
equal to 4r+5s, then the graph can be decomposed into r 4-cycles and s 5-cycles.

(ii) Let m, n are both odd, say m = 2s + 1, n = 2t + 1. Let V (Km(n)) =
({∞} ∪ Z2t) × Zm then Km(n) − ({∞} × Zm) is isomorphic to Km(2t). By The-
orem 1.1, if m ≡ 1 or 5 (mod 10), Km(2t) can be decomposed into C5(2t)’s; if
m ≡ 3 (mod 10), Km(2t) can be packing with C5(2t)’s which has leave a C3(2t); if
m ≡ 7 or 9 (mod 10), Km(2t) can be packing with C5(2t)’s which has leave 2C3(2t)’s.
C5(2t) can be decomposed into t2C5(2)’s. W.L.O.G. assume the five partite sets of
C5(2) are {ji|i ∈ Z5}. Let Ḡ be the graph with vertex set V (C5(2)) ∪ {(∞, ji)|i ∈
Z5} and edge set E(Ḡ) = E(C5(2)) ∪ {((l, ji), (∞, ji+1))|l = ∞, 0, 1; i ∈ Z5}.
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Then Ḡ is isomorphic to C5(3). Because T4,5(C5(3) − C5) = S4,5(|E(C5(3) − C5)|),
where C5 = ((∞, j0), (∞, j1), (∞, j2), (∞, j3), (∞, j4)). Then T4,5(Km(n) − Km)
= S4,5(|E(Km(n) − Km)|), where V (Km) = {(∞, j)|j ∈ Zm}. By theorem 1.3,
T4,5(Km(n)) = S4,5(|E(Km(n))|), when m ≡ 1, or 5 (mod 10). Similarly, T4,5(C3(3)−
C3) = S4,5(|E(C3(3) − C3)|), T4,5(Km(2t+1) − Km) = S4,5(|E(Km(2t+1) − Km)|),
where V (Km) = {(∞, j)|j ∈ Zm}, m ≡ 3, 7 or 9 (mod 10). By theorem 1.3,
T4,5(Km(n)) = S4,5(|E(Km(n))|), when m, n are odd.

Corollary 2.10. Alspach’s conjecture is true if the cycle set just contains only
4-cycle and 5-cycle.

Proof. Let n = 1 and 2, respectively.
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