(4, 5)-CYCLE SYSTEMS OF COMPLETE MULTIPARTITE GRAPHS

Ming-Hway Huang and Hung-Lin Fu

Abstract. In 1981, Alspach conjectured that if $3 \le m_i \le v$, v is odd and $v(v-1)/2 = m_1 + m_2 + \cdots + m_t$, then the complete graph K_v can be decomposed into t cycles of lengths m_1, m_2, \ldots, m_t respectively; if v is even, $v(v-2)/2 = m_1 + m_2 + \cdots + m_t$, then the complete graph minus a one-factor $K_v - F$ can be decomposed into t cycles of lengths m_1, m_2, \ldots, m_t respectively. In this paper, we extend the study to the decomposition of the complete equipartite graph $K_{m(n)}$. For $m_i \in \{4,5\}$, we prove that the trivial necessary conditions are also sufficient

1. Introduction

An \mathcal{H} -decomposition of the graph G is a partition of E(G) such that each element of the partition induces a subgraph isomorphic to a graph in \mathcal{H} . If \mathcal{H} just contains a cycle C_k , such a decomposition is referred to as an k-cycle decomposition of G. k-cycle decomposition of various graph have been considered by many authors. Necessary and sufficient conditions for a complete graph of odd order, or for a complete graph of even order minus a one-factor, to have decomposition into cycles of some fixed length are now known; see [1,2,4,6,8,9,10,11,13] and references therein. Now, we extend the decomposition of K_n to that of the complete equipartite graph $K_{m(n)}$, with m parts of size n.

The obvious necessary conditions for the existence of a decomposition of the complete equipartite graph $K_{m(n)}$ into cycles \mathbb{C}_1 , \mathbb{C}_2 , \mathbb{C}_3 , ..., \mathbb{C}_t , of lengths m_1 , m_2 , m_3 , ..., m_t , whose edges partition the edge set of $K_{m(n)}$ are

- $3 \le m_i \le mn$, for i = 1, 2, ..., t;
- the degree of every vertex in $K_{m(n)}$ is even;
- $m_1 + m_2 + \dots + m_t = \frac{m(m-1)n^2}{2}$

Here we prove that the above necessary conditions are sufficient when $m_i \in \{4, 5\}$, for i = 1, 2, ..., t.

Received March 25, 2011, accepted April 26, 2011.

Communicated by Jen-Chih Yao.

2010 Mathematics Subject Classification: 05C38.

Key words and phrases: Cycle system; Alspach conjecture, Cycle decomposition.

We start with some notations which will be used in what follows. A subgraph of graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$; an induced subgraph H of G is a subgraph of G such E(H) consists of all edges of G whose end points belong to V(G). If S is a nonempty set of vertices of G, then the subgraph of G induced by S is the induced subgraph of G with vertex set S. This induced subgraph of G is denoted by G[S]. Similarly, if S_i , S_j , S_k are three disjoint subsets of V(G), then the subgraph of G with vertex sets $S_i \cup S_j \cup S_k$ and the edge set contains all edges which are among the vertices in S_i , S_j and S_k , respectively is denoted by $G[S_i, S_j, S_k]$. An (m^r, n^s) -cycle system of a graph G is a set consisting of F F m-cycles and F and F is an induced subgraph of F and F is a set consisting of F m-cycles and F is an induced subgraph of F and F is a set consisting of F m-cycles and F is a set consisting of F m-cycles and F is a set consisting of F m-cycles and F is a set consisting of F m-cycles and F is a set consisting of F m-cycles and F is a set consisting of F m-cycles and F is a set consisting of F m-cycles and F is a set consisting of F in the subgraph of F is a set consisting of F m-cycles and F is a set consisting of F m-cycles and F is a set consisting of F in the subgraph of F is a set consisting of F in the subgraph of F is a set consisting of F in the subgraph of F is a set consisting of F in the subgraph of F in the subgraph of F is a set consisting of F in the subgraph of F in the subgraph of F is a set consisting of F in the subgraph of F in the subgraph of F in the subgraph of F is a subgraph of F in the subgraph of F in the subgraph of F in the subgraph of F is a subgraph of F in the subgraph of F in t

Let S be an n-element set. A $latin\ square$ of order n based on S is an $n \times n$ array in which each cell contains a single element from S, such that each element occurs exactly once in each row and each column.

Before we consider $(4^r, 5^s)$ -cycle system of $K_{m(n)}$, we need some 5-cycle packings of complete graphs and complete multipartite graphs.

Theorem 1.1. ([12]). The minimum leaves of the maximum packings of K_v with 5-cycles are as follows in Table 1. Here, F is a 1-factor, C_i is a cycle of length i, $2C_3$ is a bowtie, F_i is a graph with v/2 + i edges and each vertex has odd degree.

Table 1. The minimum leaves of the maximum packings of K_v with 5-cycles

v (mod 10)	0	1	2	3	4	5	6	7	8	9
L (leave)	F	Ø	F	C_3	F_4	Ø	F_2	$2C_3$	F_4	$2C_3$

Theorem 1.2. ([5]). If v is odd then $T_{m,n}(K_v) = S_{m,n}(|E(K_v)|)$, and if v is even then $T_{m,n}(K_v - F) = S_{m,n}(|E(K_v - F)|)$, where F is a 1-factor of K_v .

Theorem 1.3. ([7]). Let m be an odd integer. Then the minimum leaves of the maximum packings of $K_{m(n)}$ with 5-cycles are as follows: m is taken to be the number modulo 10, n is considered to be modulo 5.

Table 2. The minimum leaves of the maximum packings of $K_{m(n)}$ with 5-cycles

m / n	0	1	2	3	4
1	Ø	Ø	Ø	Ø	Ø
3	Ø	C_3	$C_3 \cup C_4$	$C_3 \cup C_4$	C_3
5	Ø	Ø	Ø	Ø	Ø
7	Ø	$2C_3$	C_4	C_4	$2C_3$
9	Ø	$2C_3$	C_4	C_4	$2C_3$

Lemma 1.4. ([7]). Let $n \geq 2$, and $C_{5(n)}$ denote the graph with vertex set $Z_n \times Z_5$ and edge set $E(C_{5(n)})$, where $\{(i_1,j_1),(i_2,j_2)\} \in E(C_{5(n)})$ if and only if $j_2 \equiv j_1 + 1 \pmod{5}$. Then $C_{5(n)}$ can be decomposed into 5-cycles.

It is easy to see that $C_{5(2)}$ can be decomposed into $5C_4$ or $4C_5$, and $C_{5(3)}$ can be decomposed into $9C_5$ or $5C_4 \cup 5C_5$ or $10C_4 \cup C_5$, i.e. $T_{4,5}(C_{5(n)}) = S_{4,5}(|E(C_{5(n)}|)$, when n = 2, 3.

Lemma 1.5. ([7]). There is a 5-cycle packing of $K_{n,n,n}$ with leave (i) \emptyset when $n \equiv 0 \pmod{5}$ (ii) C_3 when $n \equiv 1$ or $4 \pmod{5}$ and (iii) $C_3 \cup C_4$ when $n \equiv 2$ or $3 \pmod{5}$.

By the same technique, we have

Lemma 1.6. There is a 5-cycle packing of $K_{n,n,n}$ with leave (i) C_3 when $n \equiv 1$ or 4 (mod 5) and (ii) $4C_3$ when $n \equiv 2$ or 3 (mod 5).

Theorem 1.7. ([3]).

Let H_1 , H_2 and H_3 be the graphs of $n \in \mathbb{N}$ respectively. Then (1) $H_1|K_m$ if and only if $n \equiv 0$ or $1 \pmod 5$, (2) $H_2|K_m$ if and only if $n \equiv 0$ or $1 \pmod 5$, n > 6, and (3) $H_3|K_m$ if and only if $n \equiv 0$ or $1 \pmod 5$, $n \neq 5$.

For convenience, let $(v_0; v_1, v_3; v_2, v_4)$ denote the graph H_1 , where $\{v_i | i \in Z_5\}$ is the vertex set of H_1 and v_0, v_1, v_2 adjacent to each other, v_3, v_4 adjacent to v_1, v_2 , respectively; let $(v_0, v_1, v_2; v_3, v_4)$ denote the graph H_2 , where $\{v_i | i \in Z_5\}$ is the vertex set of H_2 and v_0, v_1, v_2 adjacent to each other, v_3, v_4 adjacent to v_2 , together; finial, let $(v_0; v_1, v_3; v_2, v_3)$ denote the graph H_3 , where $\{v_i | i \in Z_4\}$ is the vertex set of H_3 and v_0, v_1, v_2 adjacent to each other, v_3 adjacent to v_1, v_2 . Let $\mathcal{H} = \{H_1, H_2, H_3, H_4 (= C_5)\}$. Before we consider the 5-cycle packing of complete equipartite graph $K_{m(n)}$, we first study an \mathcal{H} -packing of complete graph K_m .

2. \mathcal{H} -Packing of Complete Graph K_m

Let $H_{1(n)}$ and $H_{2(n)}$ be the 5-partite graphs with vertex set $Z_n \times Z_5$ and $\{(i_1,j_1),(i_2,j_2)\}\in E(H_{i(n)})$ if and only if $\{j_1,j_2\}\in E(H_i),\ i=1,2$. Similarly, let $H_{3(n)}$ be the 4-partite graph with vertex set $Z_n\times Z_4$ and $(i_1,j_1),(i_2,j_2)$ are adjoined if and only if $j_1,\ j_2$ are adjoined in H_3 . By the following lemmas, $H_{i(2n)}$ can be decomposed into a combination of 5-cycles and 4-cycles, for i=1,2,3.

Lemma 2.1. $H_{1(t)}$, $H_{2(t)}$, and $H_{3(t)}$ can be decomposed into t^2H_1 , t^2H_2 , t^2H_3 respectively.

Proof. Let $Z_t \times Z_5$ be the vertex set of $H_{1(t)}$ and $H_{2(t)}$, and $Z_t \times Z_4$ be the vertex set of $H_{3(t)}$. Let M be a latin square of order t base on Z_t . For (i, j, M(i, j)), $0 \le i, j \le t-1$,

 $H_{1(t)}$ can be decomposed into t^2H_1 as ((i,0);(j,1),(M(i,j),3);(M(i,j),2),(j,4)), $H_{2(t)}$ can be decomposed into t^2H_2 as ((i,0),(j,1),(M(i,j),2);(j,3),(j,4)), and $H_{3(t)}$ can be decomposed into t^2H_3 as ((i,0);(j,1),(i,3);(M(i,j),2),(i,3)).

Lemma 2.2. $H_{i(2)}$, i = 1, 2, 3 can be decomposed into $4C_5$'s.

Proof. $H_{1(2)}$ can be decomposed into four 5-cycles as: ((0,0),(0,1),(0,3),(1,1),(0,2)), ((0,0),(1,1),(1,3),(0,1),(1,2)), ((1,0),(0,1),(0,2),(0,4),(1,2)), ((1,0),(1,1),(1,2),(1,4),(0,2)), $H_{2(2)}$ can be decomposed into four 5-cycles as: ((0,0),(0,1),(0,2),(0,3),(1,2)), ((0,0),(1,1),(1,2),(1,3),(0,2)), ((1,0),(0,1),(1,2),(0,4),(0,2)), ((1,0),(1,1),(0,2),(1,4),(1,2)), and $H_{3(2)}$ can be decomposed into four 5-cycles: ((0,0),(0,1),(0,3),(1,1),(0,2)), ((0,0),(1,1),(1,3),(0,1),(1,2)), ((1,0),(0,1),(0,2),(0,3),(1,2)), ((1,0),(1,1),(1,2),(1,3),(0,2)). ■

Lemma 2.3. K_{12} , K_{14} can be packed with graphs in \mathcal{H} which has leave a bowtie.

Proof. (1) Let Z_{12} be the vertex set of K_{12} . Then K_{12} can be packed with $K_6 \cup 6H_2 \cup 3H_3$ as the following : $K_6 = K_{12}[\{0,1,2,3,4,5\}]$, $6H_2$: (7,11,2;6,9), (3,7,8;2,11), (6,11,3;9,10), (7,9,4;6,10), (4,8,10;2,9), (5,8,6;9,10), $3H_3$: (1;6,0;7,0), (1;8,0;9,0), (1;10,0;11,0), which has leave a bowtie : (5,7,10), (5,9,11). By theorem 1.7, K_6 can be decomposed into $3H_2$, and K_{12} can be packed with H_2 and H_3 which has leave a bowtie. (2) Let Z_{14} be the vertex set of K_{14} . Then K_{14} can be packed with $2H_1 \cup 9H_2 \cup 6H_3$ as following: $2H_1$: (2;6,11;10,9), (3;6,9;1,12), $9H_2$: (1,9,5;8,0), (3,8,2;5,11), (3,7,4;2,5), (7,10,5;6,11), (6,7,12;5,8), (7,11,8;6,9), (11,12,3;9,10), (12,4,9;2,11), (4,11,10;1,12), $6H_3$: (5;3,0;13,0), (13;7,0;9,0), (13;1,0;11,0), (13;4,0;6,0), (13;8,0;10,0), (13;2,0;12,0) which has leave a bowtie : (1,2,7), (1,4,8). ■

Lemma 2.4. K_8 can be packing with \mathcal{H} which has leave a 3-cycle.

Proof. Let Z_8 be the vertex set of K_8 . Then K_8 can be decomposed into $5H_1 \cup C_3$ as following: $5H_1: (2;3,4;7,5), (2;6,4;1,7), (4;0,3;7,6), (5;3,1;6,0), (5;4,1;2,0),$ and $C_3: (0,1,5)$.

Lemma 2.5. $K_{5,5,t}$ has an \mathcal{H} -decomposition for t=2,4 or 8.

Proof. (1) Let $(Z_2 \times \{0\}) \cup (Z_5 \times \{1,2\})$ be the vertex set of $K_{2,5,5}$. Then $K_{2,5,5}$ can be decomposed into $4H_1 \cup 5H_2$ as the following : $4H_1: ((4,2);(0,1),(1,2);(1,0),(3,2)), ((0,2);(1,1),(2,2);(1,0),(4,1)), ((1,0);(2,1),(3,2);(1,2),(4,1)), ((1,0);(3,1),(4,2);(2,2),(4,1)), and <math>5H_2: ((0,0),(0,2),(0,1);(2,2),(3,2)), ((0,0),(1,2),(1,1);(3,2),(4,2)), ((0,0),(2,2),(2,1);(4,2),(0,2)), ((0,0),(3,2),(3,1);(1,2),(0,2)), ((0,0),(4,2),(4,1);(3,2),(0,2)).$

(2) Let $(Z_4 \times \{0\}) \cup (Z_5 \times \{1,2\})$ be the vertex set of $K_{4,5,5}$. Then $K_{4,5,5}$ can be decomposed into $6H_1 \cup 7H_2$ as the following : $6H_1$: ((2,2);(2,1),(3,2);(0,0),

```
\begin{array}{l} (0,2)),\ ((3,2);(3,1),(4,2);(0,0),(1,2)),\ ((3,2);(0,1),(1,2);(2,0),(0,2)),\ ((4,2);(1,1),(2,2);\ (2,0),(1,2)),\ ((1,2);(4,1),(0,2);(3,0),(0,2)),\ ((2,2);(0,1),(0,2);(3,0),(3,1)),\ \text{and}\ 7H_2:\ ((4,1),(4,2),(0,0);(0,1),(1,1)),\ ((0,1),(4,2),(1,0);(0,2),(1,2)),\ ((1,0),(2,2),\ (3,1);(1,2),(0,2)),\ ((4,1),(3,2),(1,0);(1,1),(2,1)),\ ((4,1),(2,2),(2,0);(2,1),(3,1)),\ ((3,0),(3,2),(1,1);(1,2),(0,2)),\ ((3,0),(4,2),\ (2,1);(0,2),(1,2)). \end{array}
```

(3) Let $(Z_5 \times Z_2) \cup (Z_8 \times \{2\})$ be the vertex set of $K_{5,5,8}$. Then $K_{5,5,8}$ can be decomposed into $9H_1 \cup 6H_2 \cup 6H_3$ as the following : $9H_1$: $((1,2);(1,1),(5,2);(0,0),(6,2)),((2,2);(2,1),(5,2);(0,0),(7,2)),((4,2);(0,1),(6,2);(1,0),(5,2)),((2,2);(3,1),(6,2);(1,0),(7,2)),((3,2);(4,1),(6,2);(1,0),(0,2)),((3,2);(0,1),(7,2);(2,0),(5,2)),((2,2);(4,1),(7,2);(2,0),(0,2)),((1,2);(4,1),(4,0);(3,0),(0,2)),((2,2);(2,1),(1,0);(4,0),(6,2)),6H_2: ((0,0),(3,2),(3,1);(3,0),(5,2)),((0,0),(4,2),(4,1);(0,2),(5,2)),((0,1),(2,2),(3,0);(5,2),(6,2)),((3,0),(3,2),(1,1);(0,2),(7,2)),((0,1),(1,2),(4,0);(5,2),(7,2)),((4,0),(3,2),(2,1);(0,2),(2,0)),and <math>6H_3$: ((0,2);(0,1),(5,2);(0,0),(5,2)),((1,2);(2,1),(6,2);(1,0),(6,2)),((4,2);(1,1),(6,2);(2,0),(6,2)),((1,2);(3,1),(7,2);(2,0),(7,2)),((4,2);(2,1),(7,2);(3,0),(7,2)),((4,2);(3,1),(0,2);(4,0),(0,2)).

Now, we have the following theorem.

Theorem 2.6. The minimum leaves of the maximum packings of K_v with \mathcal{H} -set are as follows:

Table 3. The minimum leaves of the maximum packings of K_v with \mathcal{H} -set

v (mod 10)	0	1	2	3	4	5	6	7	8	9
L (leave)	Ø	Ø	e	C_3	e	Ø	Ø	e	C_3	e

Proof. (i) If the order $v \equiv 0$, 1, 5, 6 $(mod\ 10)$, by theorem 1.8, K_v can be decomposed into H_1 . (ii) If $v \equiv 3$, 7, or 9 $(mod\ 10)$, by theorem 1.2, K_v can be packed with $H_4(=C_5)$ which has leave C_3 , $2C_3$, and $2C_3$, respectively. $2C_3 = H_2 \cup \{e\}$. So we can get the above results. (iii) If $v \equiv 2$, 4, or 8 $(mod\ 10)$, let $G = K_{10s+t}$, t = 2, 4, or 8, G can be viewed as a graph which contains 2s parts of K_5 and one part of K_t , and every parts join to the other part. Then if s = 3p, G can be decomposed into $6pK_5$, $1K_2$, $3pK_{5,5,t}$ and $p(6p-2)K_{5,5,5}$. If s = 3p+1, then G can be decomposed into $(6p+2)K_5$, $1K_t$, $(3p+1)K_{5,5,t}$ and $2p(3p+1)K_{5,5,5}$. If s = 3p+2 (i.e. G contains 6p+4 parts of K_5 and one part of K_t and every parts join to the other parts), $p \ge 1$, G can be decomposed into $(6p+4)K_5$, $1K_t$, $(3p+2)K_{5,5,t}$, $(6p(p+1)-2)K_{5,5,5}$, and $K_{5,5,5,5,5}$. By the above lemmas, we know that the minimum leaves of the maximum packings of K_t with \mathcal{H} -set are the same as the minimum leaves of the maximum packings of K_t with \mathcal{H} -set. So, there exists an \mathcal{H} -packing of K_v which has the leave as the above table.

By the above discussion, we have the following proposition:

Proposition 2.7. There exists an \mathcal{H} -packings of K_v with the following leaves.

Table 4. The leaves of an \mathcal{H} -packing of K_v

v (mod 10)	0	1	2	3	4	5	6	7	8	9
L (leave)	Ø	Ø	$2C_3$	C_3	$2C_3$	Ø	Ø	$2C_3$	C_3	$2C_3$

Combine proposition 2.7 and Lemma 1.4, we have

Theorem 2.8. The minimum leaves of the maximum packings of $K_{m(n)}$ with \mathcal{H} -set are as follows: m, n are considered to be the number modulo 10, 5 respectively; e is one edge, C_i is a cycle of length i.

Table 5. The minimum leaves of the maximum packings of $K_{m(n)}$ with \mathcal{H} -set

$n \setminus m$	0	1	2	3	4	5	6	7	8	9
0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	e	C_3	e	Ø	Ø	e	C_3	e
2	Ø	Ø	4e	2e	4e	Ø	Ø	4e	2e	4e
3	Ø	Ø	4e	2e	4e	Ø	Ø	4e	2e	4e
4	Ø	Ø	e	C_3	e	Ø	Ø	e	C_3	e

Theorem 2.9.
$$T_{4,5}(K_{m(n)}) = S_{4,5}(|E(K_{m(n)}|).$$

Proof. If a complete equipartite graph $K_{m(n)}$ is (4,5)-sufficient then n is even or m, n are both odd. (i) If n is even, say n=2s. View two vertices in the same partite set of $K_{m(2s)}$ as a point, then $K_{m(2s)}$ can be viewed as a complete multipartite graph $K'_{m(s)}$, and each edge e' in $K'_{m(s)}$ is a C_4 in $K_{m(2s)}$. By the theorem 2.8, $K'_{m(s)}$ can be decomposed into $\beta_1 H'_1$, $\beta_2 H'_2$, $\beta_3 H'_3$, $\beta_4 H'_4$, and a leave L' with $|E(L')| = \alpha < 4$. This implies that $K_{m(2s)}$ can be decomposed into $\beta_1 H_{1(2)}$, $\beta_2 H_{2(2)}$, $\beta_3 H_{3(2)}$, $\beta_4 H_{4(2)}$, and αC_4 . Because $H_{i(2)}$, i=1,2,3,4 can be decomposed into $5C_4$'s or $4C_5$'s, discretionarily, in the other word, if the size of a complete equipartite graph $K_{m(2s)}$ is equal to 4r+5s, then the graph can be decomposed into r 4-cycles and s 5-cycles.

(ii) Let m, n are both odd, say m=2s+1, n=2t+1. Let $V(K_{m(n)})=(\{\infty\}\cup Z_{2t})\times Z_m$ then $K_{m(n)}-(\{\infty\}\times Z_m)$ is isomorphic to $K_{m(2t)}$. By Theorem 1.1, if $m\equiv 1$ or 5 (mod 10), $K_{m(2t)}$ can be decomposed into $C_{5(2t)}$'s; if $m\equiv 3$ (mod 10), $K_{m(2t)}$ can be packing with $C_{5(2t)}$'s which has leave a $C_{3(2t)}$; if $m\equiv 7$ or 9 (mod 10), $K_{m(2t)}$ can be packing with $C_{5(2t)}$'s which has leave $2C_{3(2t)}$'s. $C_{5(2t)}$ can be decomposed into $t^2C_{5(2)}$'s. W.L.O.G. assume the five partite sets of $C_{5(2)}$ are $\{j_i|i\in Z_5\}$. Let \bar{G} be the graph with vertex set $V(C_{5(2)})\cup\{(\infty,j_i)|i\in Z_5\}$ and edge set $E(\bar{G})=E(C_{5(2)})\cup\{((l,j_i),(\infty,j_{i+1}))|l=\infty,0,1;i\in Z_5\}$.

Then \bar{G} is isomorphic to $C_{5(3)}$. Because $T_{4,5}(C_{5(3)}-C_5)=S_{4,5}(|E(C_{5(3)}-C_5)|)$, where $C_5=((\infty,j_0),(\infty,j_1),(\infty,j_2),(\infty,j_3),(\infty,j_4))$. Then $T_{4,5}(K_{m(n)}-K_m)=S_{4,5}(|E(K_{m(n)}-K_m)|)$, where $V(K_m)=\{(\infty,j)|j\in Z_m\}$. By theorem 1.3, $T_{4,5}(K_{m(n)})=S_{4,5}(|E(K_{m(n)})|)$, when $m\equiv 1$, or 5 (mod 10). Similarly, $T_{4,5}(C_{3(3)}-C_3)=S_{4,5}(|E(C_{3(3)}-C_3)|)$, $T_{4,5}(K_{m(2t+1)}-K_m)=S_{4,5}(|E(K_{m(2t+1)}-K_m)|)$, where $V(K_m)=\{(\infty,j)|j\in Z_m\}$, $m\equiv 3,7$ or 9 (mod 10). By theorem 1.3, $T_{4,5}(K_{m(n)})=S_{4,5}(|E(K_{m(n)})|)$, when m,n are odd.

Corollary 2.10. Alspach's conjecture is true if the cycle set just contains only 4-cycle and 5-cycle.

Proof. Let n = 1 and 2, respectively.

REFERENCES

- 1. B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B, **81(1)** (2001), 77-99.
- 2. B. Alspach and S. Marshall, Even cycle decompositions of complete graphs minus a 1-factor, *J. Combin. Des.*, **2(6)** (1994), 441-458.
- 3. J. C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposeition of complete graphs into isomorphic subgraphs with five vertices, *Ars Combin*, **10** (1980), 211-254.
- 4. E. J. Billington, H. L. Fu and C. A. Rodger, Packing complete multipartite graphs with 4-cycles, *J. Combin. Des.*, **9** (2001), 107-127.
- 5. E. J. Bryant, A. Dhodkar and H-L. Fu, (m,n)-cycle systmes, *J. Statistical Planning and Inference*, **21** (2005), 169-185.
- 6. N. J. Cavenagh and E. J. Billington, Decompositions of complete multipartite graphs into cycles of even length, *Graphs and Combin.*, **16** (2000), 49-65.
- 7. M. H. Huang, C. M. Fu and H. L. Fu, Packing 5-cycles into balanced complete *m*-partite graphs for odd *m*, *J. Comb. Optim.*, **14** (2007), 323-329.
- 8. J. A. Kennedy, Maximum packings of K_n with hexagons, *Australas. J. Combin.*, 7 (1993), 101-110; Corrigendum: *ibid*, **10** (1994), 293.
- 9. T. P. Kirkman, On a problem in combinations, *Cambridge and Dublin Math. J.*, **2** (1847), 191-204.
- 10. C. C. Lindner and C. A. Rodger, Decomposition into cycle II: Cycle systems, in: *Contemporary Design Theory: A Collection of Surveys*, J. H. Dinitz and D.R. Stinson (Eds.), Wiley, New York, 1992, 325-369.
- 11. C. C. Lindner and C. A. Rodger, *Design Theory*, Boca Raton, New York, 1997, pp. 17-22.
- 12. A. Rosa and S. Znám, Packing pentagons into complete graphs: how clumsy can you get? *Discrete Math.*, **128(1-3)** (1994), 305-316.

13. W. Sajna, Cycle Decompositions of K_n and $K_n - I$, Ph.D. Thesis, Simon Fraser University, July 1999.

Ming-Hway Huang Department of Computer Science and Information Engineering Yuanpei University Hsinchu 30015, Taiwan

Hung-Lin Fu Department of Applied Mathematics National Chiao Tung University Hsinchu 30010, Taiwan E-mail: hlfu@math.nctu.edu.tw