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RELATIONS BETWEEN GENERALIZED VECTOR VARIATIONAL-LIKE
INEQUALITIES AND VECTOR OPTIMIZATION PROBLEMS

Suliman Al-Homidan and Qamrul Hasan Ansari

Abstract. In this paper, we consider generalized vector variational-like inequal-
ities involving Dini subdifferential. Some relations among these inequalities and
vector optimization problems are presented.

1. INTRODUCTION

It is well known that the vector variational inequality provides the necessary and
sufficient conditions for a solution of a vector optimization problem if each component
of the vector-valued function is convex and differentiable. In the last decade, several
authors studied such kind of necessary and sufficient conditions when the vector-valued
function is not necessarily convex or differentiable in some sense; See, for example [1-
14] and the references therein. The vector optimization problem may have a nonsmooth
objective function. Therefore, Crespi et al. [15] introduced the Minty vector variational
inequality problem (in short, MVVIP) defined by means of lower Dini derivative. They
established some relations between a MVVIP and the solutions of vector minimization
problem (both ideal and weak efficient but not efficient) solutions. Further, Ansari and
Lee [3], and Lalitha and Mehta [9] introduced both the Minty and the Stampacchia
type vector variational inequalities (in short, MVVIs and SVVIs, respectively) defined
by means of upper Dini derivative. They established some existence results and gave
some relations along these inequalities and vector optimization problems. Their ap-
proach seems to be more direct than the one adopted in [15]. Mishra and Wang [11]
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considered Stampacchia type vector variational inequalities involving Clarke’s subdif-
ferential. They gave some relations between their vector variational inequalities and
vector optimization. Recently, we [2] considered both the Minty and the Stampacchia
type vector variational-like inequalities (in short, MVVLIs and SVVLIs, respectively)
for a bifunction. Such bifunction can be taken as Dini upper directional derivative or
any other kind of directional derivatives which satisfy certain properties. Some ex-
istence results for these kinds of inequalities have been established. We also studied
some relationships among these inequalities and vector optimization problems.

In the present paper, we extend the MVVLIs and SVVLIs for Dini subdifferentials
and present some relations among these inequalities and vector optimization problems.

2. PRELIMINARIES

Throughout the paper, 0 will be considered as a zero vector in R
n. We denote by

〈·, ·〉 the scalar product in R
n.

Definition 2.1. Let f : R
n → R ∪ {±∞} be a function and x ∈ R

n be a point
where f is finite. The Dini upper directional derivative at the point x ∈ R

n in the
direction d ∈ R

n [16] is defined by

fD(x; d) = lim sup
t→0+

f(x + td) − f(x)
t

= inf
s>0

sup
0<t<s

f(x + td) − f(x)
t

.

Definition 2.2. Let f : R
n → R ∪ {±∞} be a function and x ∈ R

n be a point
where f is finite. The Dini upper subdifferential of f at x [17] is defined by

∂Df(x) =
{
ξ ∈ R

n : 〈ξ, v〉 ≤ fD(x, v) for all v ∈ R
n
}

.

The following mean value theorem will be used to establish the main result of this
paper.

Theorem 2.1. [18, Corollary 2.4]. Let K ⊆ R
n and f : K → R ∪ {±∞} be

finite and upper semicontinuous on an open set containing the segment [a, b] of K .
If ∂Df(x) is an upper semicontinuous set-valued map with nonempty equicontinuous
values on [a, b], then there exist c ∈ [a, b] and ξ ∈ ∂ Df(c) such that

f(b)− f(a) = 〈ξ, b − a〉 .

The assumption that ∂ Df(x) is nonempty and equicontinuous is satisfied when f D(x; ·)
is convex and continuous.

We say that the map η : K × K → R
n is skew if for all x, y ∈ K ,

η(y, x) + η(x, y) = 0.
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Condition A. Let K ⊆ R
n be an invex set w. r. t. η and let g : K → R be a

function. Then
g(x + η(y, x)) ≤ g(y), for all x, y ∈ K.

Condition C. Let K ⊆ R
n be an invex set w. r. t. η : K × K → R

n. Then, for all
x, y ∈ K, λ ∈ [0, 1],

(a) η(x, x + λη(y, x)) = −λη(y, x)
(b) η(y, x + λη(y, x)) = (1 − λ)η(y, x)

Obviously, the map η(y, x) = y − x satisfies Condition C.

Definition 2.3. Let x be arbitrary point of K. The set K is said to be invex at x
w. r. t. η if for all y ∈ K,

x + λη(y, x) ∈ K, for all λ ∈ [0, 1].

K is said to be an invex set w. r. t. η if K is invex at every point x ∈ K w. r. t. η.

The definition of an invex set essentially says that there is a path starting from x
which is contained in K. It is not required that y should be one of the end points of
the path.

Definition 2.4. Let g : K → R ∪ {±∞} be a function such that for all x ∈ K ,
f(x) is finite, and let η : K × K → R

n be a bifunction. The function g is said to be
generalized invex w. r. t. η if

(2.1) 〈ξ, η(y, x)〉 ≤ g(y)− g(x), for all x, y ∈ K and all ξ ∈ ∂Dg(x).

The function g is said to be strictly generalized invex w. r. t. η if strict inequality holds
in (2.1) for all x 	= y.

Definition 2.5. Let K ⊆ R
n be an invex set w. r. t. η : K×K → R

n. A function
g : K → R is said to be preinvex w. r. t. η if

g(x + λη(y, x))≤ λg(y) + (1− λ)g(x), for all x, y ∈ K and all λ ∈ [0, 1].

Lemma 2.1. Let K ⊆ R
n be an invex set w. r. t. η : K×K → R

n and g : K → R

be a function such that the Conditions A and C hold. If g is generalized invex w. r. t.
η, then it is preinvex w. r. t. the same η.

Proof. Suppose that x, y ∈ K and λ ∈ (0, 1). Since K is invex, we have
x̂ = x + λη(y, x) ∈ K. By generalized invexity w. r. t. η of f , we have

(2.2) 〈ξ, η(y, x̂)〉 ≤ g(y)− g(x̂), for all ζ ∈ ∂Dg(x̂).
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Similarly, the condition of generalized invexity applied to the pair x, x̂ yields

(2.3) 〈ζ, η(x, x̂)〉 ≤ g(x)− g(x̂), for all ζ ∈ ∂Dg(x̂).

Multiplying inequality (2.2) by λ and inequality (2.3) by (1 − λ) and then adding the
resultants, we obtain

(2.4) λ〈ζ, η(y, x̂)〉 + (1 − λ)〈ζ, η(x, x̂)〉 ≤ λg(y) + (1 − λ)g(x)− g(x̂).

By Condition C, we have

λη(y, x̂) + (1− λ)η(x, x̂) = λ(1− λ)η(y, x)− λ(1− λ)η(y, x) = 0.

Since

λ〈ζ, η(y, x̂)〉 + (1 − λ)〈ζ, η(x, x̂)〉 = 〈ζ, λη(y, x̂) + (1 − λ)η(x, x̂)〉 = 0,

the inequality (2.4) yields the conclusion.

Lemma 2.2. Let K ⊆ R
n be a nonempty set, η : K × K → R

n be skew and
g : K → R be a function. If g is generalized invex w. r. t. η, then ∂ Dg is generalized
monotone w. r. t. the same η, that is, for all x, y ∈ K and all ζ ∈ ∂ Dg(x), ξ ∈ ∂Dg(y),

〈ξ − ζ, η(y, x)〉 ≥ 0.

Proof. Since g is generalized invex w. r. t. η, for all for all x, y ∈ K and all
ζ ∈ ∂Dg(x), ξ ∈ ∂Dg(y), we have

(2.5) 〈ζ, η(y, x)〉 ≤ f(y) − f(x)

and

(2.6) 〈ξ, η(x, y)〉 ≤ f(x) − f(y).

Adding inequalities (2.5) and (2.6), we obatin

〈ξ, η(x, y)〉+ 〈ζ, η(y, x)〉 ≤ 0.

Since η is skew, we have
〈ξ − ζ, η(y, x) ≥ 0,

and hence, ∂Dg is generalized monotone w. r. t. η.

3. GENERALIZED VECTOR VARIATIONAL-LIKE INEQUALITIES AND

VECTOR OPTIMIZATION PROBLEMS

Throughout the paper, unless otherwise specified, we assume that K is a nonempty
subset of R

n and η : K × K → R
n is a given map. The interior of K is denoted by

int K.
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Let f = (f1, . . . , f�) : R
n → R

� be a vector-valued function. We consider the
following vector optimization problem:

(VOP) Minimize f(x) =
(
f1(x), . . . , f�(x)

)
subject to x ∈ K.

A point x̄ ∈ K is said to be an efficient (or Pareto) solution (respectively, weak
efficient solution) of (VOP) if

f(y)− f(x̄) =
(
f1(y)− f1(x̄), . . . , f�(y)− f�(x̄)

)
/∈ −R

�
+ \ {0}, for all y ∈ K(

respectively, f(y)− f(x̄) =
(
f1(y) − f1(x̄), . . . , f�(y) − f�(x̄)

)
/∈ −int R

�
+,

for all y ∈ K
)
,

where R
�
+ is the nonnegative orthant of R

� and 0 is the origin of the nonnegative
orthant, namely R

�
+.

It is clear that every efficient solution is a weak efficient solution. However,
Proposition 4.1 says that every weak efficient solution is an efficient solution if each
fi (i ∈ I) is strictly generalized invex w. r. t. η.

For each i ∈ I, let fi : K → R be a function such that for all x ∈ K ,
fD(x; ·) is convex and continuous. We consider the following generalized Minty vector
variational-like inequality problem:

(GMVVLIP) Find x̄ ∈ K such that for all y ∈ K and all ξi ∈ ∂Dfi(y), i ∈ I =
{1, . . . , �},

〈ξ, η(y, x̄)〉� =
(
〈ξ1, η(y, x̄)〉, . . . , 〈ξ�, η(y, x̄)〉

)
/∈ −R

�
+ \ {0}.

When η(y, x) = y−x, then (GMVVLIP) is called generalized Minty vector variational
inequality problem (in short, GMVVIP).

We also consider the following generalized Stampacchia vector variational-like
inequality problem:

(GSVVLIP) Find x̄ ∈ K such that for all y ∈ K , there exists ζi ∈ ∂Dfi(x̄), i ∈ I =
{1, . . . , �} such that

〈ζ, η(y, x̄)〉� =
(
〈ζ1, η(y, x̄)〉, . . . , 〈ζ�, η(y, x̄)〉

)
/∈ −R

�
+ \ {0}.

When η(y, x) = y − x, then (GSVVLIP) is called generalized Stampacchia vector
variational inequality problem (in short, GSVVIP).

The following result provides the necessary and sufficient conditions for an efficient
solution of (VOP).



992 Suliman Al-Homidan and Qamrul Hasan Ansari

Theorem 3.1. Let K ⊆ R
n be an invex set w. r. t. η : K × K → R

n which
is skew such that the Conditions A and C hold. For each i ∈ I = {1, . . . , �}, let
fi : K → R be generalized invex w. r. t. η and upper semicontinuous on any segment
S of K such that for each x ∈ K, f D

i (x; ·) is convex and continuous and ∂ Dfi is
upper semicontinuous on S. Then, x̄ ∈ K is an efficient solution of (VOP) if and only
if it is a solution of (GMVVLIP).

Proof. Let x̄ ∈ K be a solution of (GMVVLIP) but not an efficient solution of
(VOP). Then, there exists z ∈ K such that

(3.1)
(
f1(z) − f1(x̄), . . . , f�(z) − f�(x̄)

) ∈ −R
�
+ \ {0}.

Set z(λ) := x̄ + λη(z, x̄) for all λ ∈ [0, 1]. Since K is invex w. r. t. η, z(λ) ∈ K for
all λ ∈ [0, 1]. By Lemma 2.1, each fi is preinvex w. r. t. η, and therefore,

fi(z(λ)) = fi(x̄ + λη(z, x̄)) ≤ λfi(z) + (1− λ)fi(x̄), for each i = 1, 2, . . . , �,

that is,
fi(x̄ + λη(z, x̄))− fi(x̄) ≤ λ[fi(z) − fi(x̄)],

for all λ ∈ [0, 1] and for each i = 1, . . . , �. In particular, for λ = 1, we have

(3.2) fi(x̄ + η(z, x̄)) − fi(x̄) ≤ fi(z)− fi(x̄), for each i = 1, . . . , �.

By Theorem 2.1, there exist λi ∈ (0, 1) and ξi ∈ ∂Dfi(z(λi)), i ∈ I, where z(λi) :=
x̄ + λiη(z, x̄), such that

(3.3) 〈ξi, η(z, x̄)〉 = fi(x̄ + η(z, x̄)) − fi(x̄), for each i = 1, . . . , �.

By combining (3.2)–(3.3), we obtain

(3.4) 〈ξi, η(z, x̄)〉 ≤ fi(z) − fi(x̄), for each i = 1, . . . , �.

From (3.1)–(3.4), we get

(3.5) 〈ξi, η(z, x̄)〉 ≤ 0, for each i = 1, . . . , �

with strict inequality holds for some k, where 1 ≤ k ≤ �. Choose λ0 ∈ (0, 1) such
that λ0 < min{λ1, . . . , λ�}. By Condition C, for all i = 1, 2, . . . , �, we have

η (z(λ0), z(λi)) = η (x̄ + λ0η(z, x̄), x̄ + λiη(z, x̄))
= η (x̄ + λ0η(z, x̄), x̄ + λ0η(z, x̄) + (λi − λ0)η(z, x̄))

= η

(
x̄+λ0η(z, x̄), x̄+λ0η(z, x̄)+

(λi−λ0)
(1−λ0)

η(z, x̄ + λ0η(z, x̄))
)

=
(λ0 − λi)
(1− λ0)

η (z, x̄ + λ0η(z, x̄))

= (λ0 − λi)η(z, x̄),
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that is,

(3.6) η (z(λ0), z(λi)) = (λ0 − λi) η(z, x̄).

By the skewness of η, we obtain

(3.7) η (z(λi), z(λ0)) = (λi − λ0) η(z, x̄).

Combining (3.5)–(3.6), we get

〈ξi, η(z(λ0), z(λi))〉 ≥ 0, for each i = 1, . . . , �

with strict inequality holds for some k, where 1 ≤ k ≤ �. By Lemma 2.2, we have

〈ξi0, η(z(λi), z(λ0))〉 ≤ 0, for all ξi0 ∈ ∂Dfi(z(λ0)) and all i = 1, . . . , �

with strict inequality holds for some k, where 1 ≤ k ≤ �. Therefore, by (3.7), we
deduce

(3.8) 〈ξi0, η(z, x̄)〉 ≤ 0, for all ξi0 ∈ ∂Dfi(z(λ0)) and all i = 1, . . . , �

with strict inequality holds for some k, where 1 ≤ k ≤ �. By Condition C, η(z, z(λ0)) =
(1− λ0)η(z, x̄), and thus, we have

〈ξi0, η(z, z(λ0))〉 ≤ 0, for all ξi0 ∈ ∂Dfi(z(λ0)) and all i = 1, . . . , �

with strict inequality holds for some k, where 1 ≤ k ≤ �. This implies that
(
〈ξ10, η(z, z(λ0))〉, . . . , 〈ξ�0, η(x, z(λ0))〉

)
∈ −R

�
+ \ {0}

which contradicts to our supposition that x̄ is a solution of (GMVVLIP).
Conversely, suppose that x̄ ∈ K is an efficient solution of (VOP). Then, we have

(3.9)
(
f1(y)− f1(x̄), . . . , f�(y) − f�(x̄)

)
/∈ −R

�
+ \ {0}, for all y ∈ K.

Since each fi is generalized invex w. r. t η, we deduce that

〈ξi, η(x̄, y)〉 ≤ fi(x̄)− fi(y), for all y ∈ K, ξi ∈ ∂Dfi(y) and all i ∈ I.

Also, since η is skew, we obtain

(3.10) 〈ξi, η(y, x̄)〉 ≥ fi(y)− fi(x̄), for all y ∈ K, ξi ∈ ∂Dfi(y) and all i ∈ I.

From (3.9) and (3.10), it follows that x̄ is a solution of (GMVVLIP).
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Remark 3.1. Theorem 3.1 extends [6, Proposition 1], [10, Theorem 2.1], [13,
Theorem 3.1] and [1, Theorem 3.1].

Theorem 3.2. Let K ⊆ R
n be a nonempty set and η : K × K → R

n be a map.
For each i ∈ I = {1, . . . , �}, let fi : K → R be generalized invex w. r. t. η such that
for all x ∈ K, fD

i (x; ·) is convex and continuous. If x̄ ∈ K is a solution (GSVVLIP),
then it is an efficient solution of (VOP).

Proof. Since x̄ ∈ X is a solution of (GSVVLIP), for any y ∈ K, there exist
ζi ∈ ∂Dfi(x̄), i = 1, . . . , �, such that

(3.11)
(
〈ζ1, η(y, x̄)〉, . . . , 〈ζ�, η(y, x̄)〉

)
/∈ −R

�
+ \ {0}.

Since each fi is generalized invex w. r. t. η, we have

(3.12) 〈ζi, η(y, x̄)〉 ≤ fi(y)− fi(x̄) for any y ∈ K and for all i ∈ I.

By combining (3.11) and (3.12), we obtain
(
f1(y)− f1(x̄), . . . , f�(y)− f�(x̄)

)
/∈ −R

�
+ \ {0}, for all y ∈ K.

Thus, x̄ ∈ K is an efficient solution of (VOP).

Remark 3.2. Theorem 3.2 extends [10, Theorem 2.2] to the nonconvex setting and
generalizes [1, Theorem 3.2]. Theorem 3.2 is different from [11, Theorem 3.1] in the
following aspects. We used Dini upper subdifferential but Mishra and Wang [11] used
Clarke’s subdifferential. In Theorem 3.2, fi is generalized invex but not necessarily
locally Lipschitz. However, in Theorem 3.1 in [11], fi is Locally Lipschtiz and invex.

4. GENERALIZED WEAK VECTOR VARIATIONAL-LIKE INEQUALITIES

Throughout this section, we assume that for each i ∈ I, fi : K → R is generalized
invex w. r. t. η : K × K → R

n such that for all x ∈ K , fD
i (x; ·) is convex and

continuous.

We consider the following weak forms of generalized Minty vector variational-
like inequality problem and generalized Stampaccia vector variational-like inequality
problem.

(WGMVVLIP) Find x̄ ∈ K such that for all y ∈ K and all ξi ∈ ∂Dfi(y), i ∈ I =
{1, . . . , �}

〈ξ, η(y, x̄)〉� =
(
〈ξ1, η(y, x̄)〉, . . . , 〈ξ�, η(y, x̄)〉

)
/∈ −int R

�
+.
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(WGSVVLIP) Find x̄ ∈ K such that for all y ∈ K , there exists ζi ∈ ∂Dfi(x̄),
i ∈ I = {1, . . . , �} such that

〈ζ, η(y, x̄)〉� =
(
〈ζ1, η(y, x̄)〉, . . . , 〈ζ�, η(y, x̄)〉

)
/∈ −int R

�
+.

Of course, when η(y, x) = y = x, then (WGMVVLIP) and (WGSVVLIP) are called
weak forms of generalized Minty vector variational inequality problem and generalized
Stampacchia vector variational inequality problem, respectively.

The following result says that every solution of (WGSVVLIP) is a solution of
(WGMVVLIP) if each fi is generalized invex.

Theorem 4.1. Let K ⊆ R
n be a nonempty set and η : K×K → R

n be skew. For
each i ∈ I = {1, . . . , �}, let fi : K → R be generalized invex w. r. t. η. If x̄ ∈ K is a
solution (WGSVVLIP), then it is a solution of (WGMVVLIP).

Proof. Let x̄ ∈ K be a solution of (WGSVVLIP). Then, for any y ∈ K, there
exist ζi ∈ ∂Dfi(x̄), i = 1, . . . , �, such that

(4.1)
(
〈ζ1, η(y, x̄)〉, . . . , 〈ζ�, η(y, x̄)〉

)
/∈ −int R

�
+.

Since each fi is invex w. r. t. η, by Lemma 2.2, each ∂Dfi (i ∈ I) is generalized
monotone, and therefore, we have

(4.2) 〈ξi − ζi, η(y, x̄)〉 ≥ 0 for all y ∈ K, ξi ∈ ∂Dfi(y) and for all i ∈ I.

From (4.1) and (4.2), it follows that for any y ∈ K and any ξi ∈ ∂Dfi(y), i ∈ I,(
〈ξ1, η(y, x̄)〉, . . . , 〈ξ�, η(y, x̄)〉

)
/∈ −int R

�
+.

Thus, x̄ ∈ K is a solution of (WGMVVLIP).

Now we present some relationship between the solution of (WGSVVLIP) and a
weak efficient solution of (VOP).

Theorem 4.2. Let K ⊆ R
n be a nonempty set and η : K × K → R

n be a map.
For each i ∈ I = {1, . . . , �}, let fi : K → R be generalized invex w. r. t. η. If x̄ ∈ K
is a solution of (WGSVVLIP), then it is a weak efficient solution of (VOP).

Proof. Suppose that x̄ is a solution of (WGSVVLIP) but not a weak efficient
solution of (VOP). Then, there exists y ∈ K such that

(4.3)
(
f1(y)− f1(x̄), . . . , f�(y)− f�(x̄)

) ∈ −int R
�
+.

Since each fi, i ∈ I, is generalized invex w. r. t. η, we have

(4.4) 〈ζi, η(y, x̄)〉 ≤ fi(y)− fi(x̄), for all ζi ∈ ∂Dfi(x̄).
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Combining (4.3) and (4.4), we obtain
(
〈ζ1, η(y, x̄)〉, · · · , 〈ζ�, η(y, x̄)〉

)
∈ −int R

�
+, for all ζi ∈ ∂Dfi(x̄)

which contradicts to our supposition that x̄ is a solution of (WGSVVLIP). This com-
pletes the proof.

Theorem 4.3. Let K ⊆ R
n be a nonempty set and η : K × K → R

n be a map.
For each i ∈ I = {1, . . . , �}, let fi : K → R be a function such that −f i is strictly
generalized invex w. r. t. η. If x̄ ∈ K is a weak efficient solution of (VOP), then it is
a solution of (GSVVLIP).

Proof. Suppose that x̄ is not a solution of (GSVVLIP). Then, there exists y ∈ K
such that

(4.5)

(
〈ζ1, η(y, x̄)〉, · · · , 〈ζ�, η(y, x̄)〉

)
∈ −R

�
+ \ {0},

for all ζi ∈ ∂Dfi(x̄) and all i ∈ I.

Since each fi, i ∈ I, is strictly generalized invex w. r. t. η, we have

(4.6) 〈ζi, η(y, x̄)〉 > fi(y)− fi(x̄), for all ζi ∈ ∂Dfi(x̄) and all i ∈ I.

Combining (4.5) and (4.6), we obtain(
f1(y)− f1(x̄), . . . , f�(y)− f�(x̄)

) ∈ −int R
�
+.

which contradicts to our supposition that x̄ is a weak efficient solution of (VOP). This
completes the proof.

Corollary 4.1. Let K ⊆ R
n be a nonempty set and η : K × K → R

n be a map.
For each i ∈ I = {1, . . . , �}, let fi : K → R be a function such that −f i is strictly
generalized invex w. r. t. η. If x̄ ∈ K is an efficient solution of (VOP), then it is a
solution of (GSVVLIP).

Remark 4.3. In Theorem 4.3 and Corollary 4.1, we used Dini upper subdiiferen-
tial. However, Mishra and Wang [11] used Clarke’s sundifferential in which locally
Lipschitz condition is required.

Proposition 4.1. Let K ⊆ R
n be a nonempty set and η : K ×K → R

n be a map.
For each i ∈ I = {1, . . . , �}, let fi : K → R be strictly generalized invex w. r. t. η. If
x̄ ∈ K is a weak efficient solution of (VOP), then it is an efficient solution of (VOP).

Proof. Suppose that x̄ is a weak efficient solution of (VOP) but not an efficient
solution of (VOP). Then, there exists y ∈ K such that

(4.7)
(
f1(y) − f1(x̄), . . . , f�(y) − f�(x̄)

) ∈ −R
�
+ \ {0}.
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Since each fi, i ∈ I, is strictly generalized invex w. r. t. η, we have

(4.8) 〈ζi, η(y, x̄)〉 ≤ fi(y)− fi(x̄), for all ζi ∈ ∂Dfi(x̄) and all i ∈ I.

Combining (4.7) and (4.8), we obtain(
〈ζ1, η(y, x̄)〉, · · · , 〈ζ�, η(y, x̄)〉

)
∈ −int R

�
+, for all ζi ∈ ∂Dfi(x̄).

Hence x̄ is not a solution of (WGSVVLIP). Then by Theorem 4.2, x̄ is not a weak
efficient solution of (VOP), a contradiction of our supposition. This completes the
proof.

Theorem 4.4. Let K ⊆ R
n be an invex set w. r. t. η : K × K → R

n such that η
is skew. For each i ∈ I = {1, . . . , �}, let fi : K → R be generalized invex w. r. t. η.
If x̄ ∈ K is a weak efficient solution of (VOP), then it is a solution of (WGMVVLIP).

Proof. It is similar to the proof of the second part on Theorem 3.1.
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8. S. Komlósi, On the Stampacchia and Minty variational inequalities, in: Generalized
Convexity and Optimization for Economic and Financial Decisions, (G. Giorgi and F.
Rossi, eds.), Pitagora Editrice, Bologna, Italy, 1999, pp. 231-260.



998 Suliman Al-Homidan and Qamrul Hasan Ansari

9. C. S. Lalitha and M. Mehta, Characterization of the solution sets of pseudolinear pro-
grams and pseudoaffine variational inequality problems, J. Nonlinear Convex Anal., 8(1)
(2007), 87-98.

10. G. M. Lee, On relations between vector variational inequality and vector optimization
problem, in: Progress in Optimization, II: Contributions from Australasia, X. Q. Yang,
A. I. Mees, M. E. Fisher and L. Jennings, Kluwer Academic Publisher, Dordrecht,
Holland, 2000, pp. 167-179.

11. S. K. Mishra and S. Y. Wang, Vector variational-like inequalities and non-smooth vector
optimization problems, Nonlinear Anal., 64 (2006), 1939-1945.
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