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MULTIPLE SOLUTIONS OF THE STEADY FLOWS IN A RECTANGULAR

CHANNEL WITH SLIP EFFECT ON TWO EQUALLY POROUS WALLS

Un-Un Kuo and Ching-An Wang

Abstract. We study the boundary layer equation f ′′′(η)+R((f ′(η))2−f(η)f ′′(η))
= K , subjects to the boundary conditions f(0) = f ′′(0) = 0, f(1) = 1 and
f ′(1) + ϕf ′′(1) = 0. The given problem arises from the study of steady laminar
flows in channels with two equally porous walls, where R relates to the Reynold’s
number, and K is an integration constant. We are able to obtain the homogeneity

property and classify all types of solutions for the prescribed positive slip coef-

ficient ϕ. In particular, the existence of the continuums in the R − K plane has

been verified, and this leads to the existence of multiple solutions for large R.

1. INTRODUCTION

The Navier-Stokes equation describes the two-dimensional flows in a rectangular

channel with porous walls. By applying a similarity transformation [1], the governing

equation for steady, incompressible, axis-symmetric laminar flow in a channel with two

porous walls could be reduced to

(1.1) f ′′′(η) +R((f ′(η))2 − f(η)f ′′(η)) = K.

HereK is an integration constant and R corresponds to the cross flow Reynold number

based on wall velocity (filtration Reynold number), while positive (negative) R repre-
sents the suction (injection) through the walls. The function f is related to the stream

function, η is the normalized transverse coordinate, namely, η = ±1 at the wall.
If the flow is assumed to be antisymmetric, then f = f ′′ = 0 should be imposed at

the central line η = 0. Therefore, the steady flows could be studied from the boundary
value problem (BVP) of (1.1), subjects to the boundary conditions:
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(1.2) f(0) = f ′′(0) = 0, f(1) = 1, f ′(1) + ϕf ′′(1) = 0,

where positive ϕ is the slip coefficient.
It is clear that f(η) = [Kη3+(6−K)η]/6, with K = −3/(1+3ϕ), is the solution

of (BVP) when R = 0. For nonzero R, as in [2, 4], suppose we set f(η) = (b/R)g(ξ),
ξ = bη for some positive b which is to be determined. Then, g(ξ) satisfies the following
associated boundary value problem(BVP1):

(1.3) g′′′(ξ) + (g′(ξ))2 − g(ξ)g′′(ξ) = RK/b4 ≡ β,

(1.4) g(0) = g′′(0) = 0,

(1.5) g(b) = R/b, g′(b) + ϕbg′′(b) = 0.

By assigning values to α, β with

(1.6) g′(0) = α, g′′′(0) = β − α2,

one can integrate (1.3), with the initial values (1.4) and (1.6). Let g(ξ;α, β) be the
solution of the initial value problem (1.3), (1.4) and (1.6). Suppose, given a prescribed

positive ϕ, g′(b;α, β) + ϕbg′′(b;α, β) = 0 holds at ξ = b∗, then (BVP) will possess a

solution with R = b∗g(b∗;α, β) and K = (b∗)4β/R.
Note that g(ξ;α, α2) = αξ is not a solution of (BVP1). Therefore, we will classify

the type of solutions of (BVP1) by assigning α, β from the following sets:

D1 = {(α, β) ∈ R2 : α ≤ 0, β < α2},

D2 = {(α, β) ∈ R2 : α > 0, β < α2},

D3 = {(α, β) ∈ R2 : α ≥ 0, β > α2},

D4 = {(α, β) ∈ R2 : α < 0, β > α2}.

Moreover, based on the homogeneity of g(ξ;α, β), as in [4], the following main result
will be verified:

Main Result:

There exist two continuums Γ∗ and Γ∗ in the R−K plane such that (BVP) has a

solution if and only if the pair (R,K) lies on Γ∗ ∪ Γ∗. For each (R,K) lying on the
branch Γ∗, (BVP) possesses non-negative and concave solutions, while non-negative

and non-concave solution or non-monotone solutions exist when (R,K) lies on Γ∗. In
particular, when the slip effect is low, (BVP) possesses at least three suctive solutions

of different type for sufficiently large R.
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2. CLASSIFICATION

2.1. Preliminary results

For the convenience, we denote the problem of (1.3), (1.4) and (1.6) by (IVP). Note

that the existence of solution g(b∗;α, β) of (IVP) is independent of the choice of ϕ.
Therefore, we recall some important properties of g(b∗;α, β) from the study of (BVP1)

with ϕ = 0 in [2].

Proposition 2.1. ([2]). Suppose β 6= α2. Then, the following properties hold:

(a) g(iv)(ξ) < 0 for all positive ξ;

(b) g′(ξ) has no positive zero for (α, β) ∈ D1;

(c) g′(ξ) has exactly one positive zero for (α, β) ∈ D2;

(d) g(k)(ξ) has exactly one positive zero dk, k = 1, 2, 3, respectively, with d3 <

d2 < d1, for (α, β) ∈ D3;

(e) g′(ξ) has exactly two positive zeros, 0 < a1 < a2, and g
(k)(ξ) has exactly one

positive zero d∗k for k = 2, 3, if (α, β) ∈ D4. Furthermore, a1 < d∗3 < d∗2 < a2.

From Proposition 2.1, the selected graphs of g(ξ;α, β) for some (α, β) ∈ Di’s

are shown in Figure 2.1, respectively. Let ψ(ξ):=ψ(ξ;ϕ) = g′(ξ) + ϕξg′′(ξ) and
c(α, β):=c(α, β;ϕ) be a positive zero of ψ(ξ) for a prescribed positive ϕ. We are in
position to explore the existence of zeros of ψ(ξ) = 0 and classify the types of solutions
for (BVP) in the next section.

2.2. The roots of ψ(ξ) = 0

By choosing (α, β) from Di, i = 1, · · · , 4, the existence of roots of ψ(ξ) = 0 will
be discussed in the following lemmas.

Lemma 2.1. If (α, β) ∈ D1, then ψ(ξ) has no positive zero.

Proof. It is clear that g(ξ), g′(ξ), g′′(ξ), g′′′(ξ) are negative initially, since
g′(0) = α ≤ 0 and g′′′(0) = β − α2 < 0. This implies that ψ(0) = α ≤ 0 and
ψ(ξ) = g′(ξ) + ϕξg′′(ξ), ψ′(ξ)=g′′(ξ)(1 + ϕ)+ϕξ are also negative initially. In fact,
from Proposition 2.1(a), (b), it is clear that g, g′, g′′ and g′′′ are negative for all ξ > 0.
This implies that ψ(ξ) is strictly decreasing for ξ > 0. Thus, for any prescribed positive
ϕ, ψ(ξ) has no positive zero.

Lemma 2.2. If (α, β) ∈ D2, then ψ(ξ) has exactly one positive zero.
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Fig. 2.1. The selected graphs of g(ξ; α, β) for some (α, β) ∈ D′
is

Proof. It is clear that g(ξ), g′(ξ) are positive, and g′′(ξ), g′′′(ξ) are negative
initially, since g′(0) = α > 0 and g′′′(0) = β − α2 < 0. This implies that ψ(0) =
α > 0 and ψ′(ξ) is negative initially. In fact, from Proposition 2.1(a), (c), it is

clear that g′′(ξ) < 0, g′′′(ξ) < 0 for ξ > 0, and this implies that ψ′(ξ) < 0 and
ψ(ξ)′′ = g′′′(ξ)(1 + 2ϕ) + ϕξg(iv)(ξ) < 0 for ξ > 0. This implies that ψ(ξ) is strictly
decreasing and concave for ξ > 0. Hence, for the prescribed positive ϕ, ψ(ξ) has
exactly one positive zero c(α, β). In particular, c(α, β) < d1 since d1 is the unique

zero of g′(ξ) and ψ(d1) < 0.

Remark 2.1. From Proposition 2.1(c) and Lemma 2.2, we have g(c(α, β)) > 0,
and it yields that R = c(α, β)g(c;α, β) is positive. Furthermore, K = c4(α, β)β/R
is positive if β > 0, and negative if β < 0. In fact, from f(η) = c(α, β)g(ξ;α, β)/R
with ξ = cη, the corresponding solution f(η) of (BVP) is nonnegative and concave for
(α, β) ∈ D2.

Lemma 2.3. If (α, β) ∈ D3, then ψ(ξ) has exactly one positive zero.

Proof. It is clear that g, g′, g′′, g′′′ are positive on initially, since g′(0) = α ≥ 0
and g′′′(0) = β − α2 > 0. This yields that ψ(0) = α ≥ 0, and ψ, ψ′, ψ′′ are also

positive initially. Again, from Proposition 2.1(d), g(k) has exactly one positive zero dk,
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k = 1, 2, 3, with d3 < d2 < d1. This implies that ψ(ξ) > 0 on (0, d2), since on which
g and g′ are positive. Also, from the facts that g(k) < 0, k = 2, 3, 4, on (d2,∞), we
get that ψ′ < 0, and ψ′′ < 0 for ξ > d2. This implies that ψ(ξ) is strictly decreasing
and concave on (d2,∞). It is clear that ψ(d2) > 0 and ψ(d1) < 0. Hence, for any
positive ϕ, ψ(ξ;α, β) has the unique zero c(α, β) with d2 < c(α, β) < d1.

Remark 2.2. From Proposition 2.1(d) and Lemma 2.3, we have g(c(α, β);α,β)>
0, and it leads to the corresponding R(α, β) > 0 and K(α, β) > 0. That is, the
corresponding suctive solution f(η) of (BVP) is also nonnegative, non-concave on (0,
1) for (α, β) ∈ D3.

Lemma 2.4. If (α, β) ∈ D4, then ψ(ξ) has exactly two positive zeros.

Proof. It is clear that g, g′ are negative and g′′, g′′′ are positive initially, since

g′(0) = α < 0 and g′′′(0) = β − α2 > 0. This yields that ψ(ξ) is negative initially,
since ψ(0) = α < 0 although ψ′(ξ) > 0 initially. In fact, ψ′(ξ) > 0 on (0, a1) and
ψ(a1) > 0. This implies that there is the first zero c1(α, β), which is lying on (0, a1).
Now, on (a1, d

∗
3), we have ψ

′(ξ) > 0 since g′′, g′′′ are positive. This implies
ψ(ξ) > 0 on (a1, d

∗
3). Also, on (d∗3, d

∗
2), we get ψ(ξ) > 0 since on which g′, g′′ are

positive.

Moreover, we have ψ(d∗2) > 0, ψ(a2) < 0, and this yields the second zero c2(α, β)
of ψ(ξ) which is lying on (d∗2, a2). Also, it is clear that ψ(ξ) is strictly decreasing and
concave for ξ > a2. Hence, ψ(ξ) has exactly two zeros c1, c2 satisfying 0 < c1 < a1,

d∗2 < c2 < a2, respectively.

Remark 2.3. It is clear that the corresponding pair (R,K) from c1(α, β) satisfies
R < 0, K < 0 for (α, β) ∈ D4. Also, from f(η) = c1(α, β)g(ξ;α, β)/R with

ξ = c1η and 0 < c1 < a1, this implies that the corresponding injective solution of

(BVP) is nonnegative, and concave for (α, β) ∈ D4. Moreover, from (1.3), it is clear

to obtain g(iv)(c2) = g(c2)g′′′(c2) + ϕc2(g′′(c2))2. This implies that g(c2) > 0 since
both g(iv)(c2), g′′′(c2) are negative. Therefore, the existence of c2’s will lead to the
non-monotone suctive solutions f(η) of (BVP) with R > 0, K > 0.
Note that the distribution of c(α, β)’s, the zeros of g(k)(ξ), k = 1, 2, 3, and the

corresponding profiles of f(η) are shown in Figure 2.2. Therefore, we conclude that
(BVP) can only possess the following types of solutions:

(I) f is a nonnegative and concave ;

(II) f is nonnegative and non-concave, on which there exists an η1 ∈ (0, 1) such that
f ′′ > 0 on (0, η1) and f ′′ < 0 on (η1, 1);

(III) f is non-monotone on which
(i) there exist an η1 ∈ (0, 1) such that f ′′ > 0 on (0, η1) and f ′′ < 0 on (η1, 1);
(ii) there exist an η2 ∈ (0, η1) such that f < 0 on (0, η2) and f > 0 on (η2, 1).
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Furthermore, also from Remarks 2.1 and 2.3, (BVP) possesses no nonnegative and

concave solution for any pair (R, K) when R < 0 and K > 0.

Fig. 2.2. The distribution of c(α, β) and the profile of the corresponding solutions of
(BVP).

3. SOLUTIONS OF (BVP)

As mentioned earlier, ψ(ξ) possesses unique positive zero c(α, β) for (α, β) ∈ D2,

D3, or two positive zeros c1(α, β) < c2(α, β) for (α, β) ∈ D4. All the zeros of ψ(ξ)
will lead to the solutions of (BVP) with the corresponding R(α, β), K(α, β). For the
convenience, define the solution sets for (BVP) in the R−K plane by

Γ1 = {−→x (α, β) : (α, β) ∈ D2}, Γ2 = {−→x1(α, β) : (α, β) ∈ D4},

Γ3 = {−→x (α, β) : (α, β) ∈ D3}, Γ4 = {−→x2(α, β) : (α, β) ∈ D4},
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where−→x (α, β) = (R(α, β), K(α, β)) for (α, β) ∈ D2∪D3 and
−→xi(α, β) = (Ri(α, β),

Ki(α, β)), i = 1, 2, corresponding to c1(α, β) < c2(α, β) for (α, β) ∈ D4. In order

to verify that Γk’s are connected, it is required to achieve the homogeneity property in

the next section.

3.1. Homogeneity

As in [2], [4], let h(ξ) = g(ξ/λ;α, β)/λ, and λ be a positive constant. Then, h(ξ)
satisfies the equation

h′′′(ξ) + (h′(ξ))2 − h(ξ)h′′(ξ) = β/λ4,

subjects to h(0) = 0, h′(0) = α/λ2, h′′(0) = 0 and h′′′(0) = (β− α2)/λ4. This gives

the homogeneity property of g(ξ) as described below.

Lemma 3.5. For all λ > 0, g(ξ;α, β) = λg(λξ;α/λ2, β/λ4).

Also, let a(α, β) be a positive zero of g′(ξ;α, β), if it does exist. Therefore, we
have the following homogeneity properties for c(α, β), a(α, β), R(α, β) and K(α, β)
by

(3.1) c(α, β) = c(α/λ2, β/λ4)/λ,

(3.2) a(α, β) = a(α/λ2, β/λ4)/λ,

(3.3) R(α, β) = R(α/λ2, β/λ4),

(3.4) K(α, β) = K(α/λ2, β/λ4),

for all λ > 0 and (α, β) ∈ Di, i = 2, 3, 4.

It should be pointed out that the obtained homogeneity yields that the corresponding

(R(α, β), K(α,β))’s are the same for any (α, β) lying on a given parabola β = γα2

for some γ 6= 1 in D2, D3 or D4. Therefore, Γk’s can be rewritten as

Γ1 = {−→x (1, γ) : −∞ < γ < 1}, Γ2 = {−→x1(γ, 1) : γ ∈ (−1, 0)},

Γ3 = {−→x (γ, 1) : γ ∈ [0, 1)}, Γ4 = {−→x1(γ, 1) : γ ∈ (−1, 0)}.

Moreover, the homogeneity also yields an efficient numerical strategy in obtaining

the graphs of Γk’s. That is, instead of choosing (α, β) randomly, one may choose them
along some simple curves on Di’s. Consequently, as shown in Figures 3.1, 3.2, the

bifurcation diagrams of (BVP) do exhibit the existence of continuums of (R,K), and
it will be verified in the following sections.
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Fig. 3.1. The bifurcation diagram of (BVP) for various positive ϕ’s.

Fig. 3.2. The detail diagram of the branch Γ4 of (BVP) for various ϕ’s.
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3.2. Nonnegative and concave solutions

It is clear that, from Remark 2.1, the corresponding (R,K)’s for (α, β) ∈ D2 will

lead to the type (I) solutions of (BVP). Therefore, we first have the following theorem

for the suctive solutions.

Theorem 3.1. (BVP). Possesses a nonnegative and concave solution with suction

if and only if (R,K) ∈ Γ1.

Proof. We omit the proof of the sufficient condition, since it can be obtained

directly from Lemma 2.2 and Remark 2.1.

To verify the necessary condition, let f(η) be a type (I) solution of (BVP) with
R > 0. It is clear that f ′(0) is positive initially. Suppose f ′(0) = µ, b =

√
µR and

g(ξ) = Rf(ξ/b)/b, we get g′(ξ) = f ′(ξ/b)/µ, and it yields α = g′(0) = f ′(0)/µ = 1.
Now, we need only to prove that β < 1. To see this, from the facts that f ′′(0) = 0,
f ′(0) = µ > 0 and f(η) is a concave solution of (BVP), it yields f ′′′(0) < 0. This
implies that f ′′′(0) = K − Rµ2 < 0 and β = K/(Rµ2) < 1.

To explore the connected property of Γ1, the limiting behavior of (R,K) as γ tends
to 1− and −∞ should be discussed.

Corollary 3.1. (a). limγ→1− c(1, γ) = +∞; (b). limγ→−∞ c(1, γ) = 0.

Proof. To prove assertion (a), we recall that g′(ξ; 1, 1) = 1, and g′′(ξ; 1, 1) = 0.
Then, by the continuous dependence on initial data, given any ε > 0, there is a
δ > 0 such that |1−g′(c(1, γ); 1, γ)|< ε and |0−g′′(c(1, γ); 1, γ)|< ε, whenever γ ∈
(1−δ, 1) . This implies that, for γ ∈ (1−δ, 1), c(1, γ) = −g′(c(1, γ))/ϕg′′(c(1, γ)) ≥
−(1− 1/ε)/ϕ and limγ→1− c(1, γ) = +∞ is obtained.

We turn to verify assertion (b). From (3.1), c(1, γ) 4
√
|γ| = c(1/

√
|γ|,−1), if

γ < 0. Instead of study the limit of c(1, γ) directly as γ tends to −∞, one can analyze
the limit of c(1/

√
|γ|,−1) if it does exist. By Lemma 2.2, we have c(1/

√
|γ|,−1) <

a(1/
√
|γ|,−1), where a is the zero of g′. Then, we have limγ→−∞c(1/

√
|γ|,−1) = 0

since limγ→∞ a(1/
√
|γ|,−1) = 0 holds from Corollary 3.2 in [4]. Hence, the desired

limit is obtained.

Now the limits of (R,K), as γ tends to 1− and −∞, can be obtained from next
corollary.

Corollary 3.2. (a). limγ→1− R(1, γ) = +∞, limγ→1− K(1, γ) = +∞;
(b). limγ→−∞ R(1, γ) = 0, limγ→−∞K(1, γ) = −3/(1 + 3ϕ).
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Proof. To prove assertion (a), we also recall the results of Proposition 2.1(a),

(c) and Lemma 2.2 that g′(ξ; 1, γ) is concave and decreasing on (0, c(1, γ)). This yields
c(1, γ)≥ g(c(1, γ); 1, γ) ≥ c(1, γ)/2, and, consequently,R = c(1, γ) g(c(1, γ); 1, γ)≥
c2(1, γ)/2 and K = βc4(1, γ)/R ≥ γc2(1, γ). Hence, we get the desired limits of R,
K, as γ tends to 1−.

To verify assertion (b), from the fact that 0 < g(c(1, γ); 1, γ) ≤ c(1, γ), we get

0 < R = c(1, γ)g(c(1, γ); 1, γ)≤ c(1, γ)2,

and, then, the desired limit of R is obtained, since c(1, γ) tends to 0 as γ tending to
−∞.
To obtain the desired limit of K, by integrating (1.3) and applying the initial

conditions (1.4), (1.6), we get

(3.5) g′′(c) = βc−
∫ c

0
G(η)dη,

(3.6) g′(c) =
βc2

2
+ α−

∫ c

0

G(η)(c− η)dη,

(3.7) g(c) =
βc3

6
+ αc−

∫ c

0

G(η)
(c− η)2

2
dη,

where G(η) = (g′(η))2 − g(η)g′′(η)). Then, from (3.5)-(3.7), we further have

(3.8)

∫ c

0
G(η)

(
c2ϕ+

c2 − η2

2

)
dη = g(c)[1 +K(3ϕ+ 1)/3].

Also, from Proposition 2.1(a), we have G(0) = α2 and G(η) is increasing. This
implies that α2 ≤ G(η) ≤ (g′(c)2− g(c)g′′(c)) on [0, c]. Then, also from (3.8), we get
that

(3.9) |1 +K(3ϕ+ 1)/3| ≤ c3(ϕ+ 1/3)[g′(c)2 − g(c)g′′(c)]
g(c)

.

Note that (3.9) holds for c = c(1, γ). Then, as c tending to 0, we get

G(η) = (g′(η))2 − g(η)g′′(η)) → 1,
c

g(c)
→ 1,

and the right-hand side of (3.9) tends to 0, as γ tending to −∞. Thus, the desired
limit of K is obtained.

Note that, from the continuity, it is clear that Γ1 is a continuum of one parameter in

the half plane of R > 0, K ∈ R connecting limit points (0,−3/(1+3ϕ)) and (∞,∞).
Moreover, (BVP) possesses at least one type (I) suctive solution for any positive R.

As in Theorem 3.1, the existence of type (I) injective solutions is obtained from

the next theorem.
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Theorem 3.2. (BVP). has a nonnegative and concave solution with injection if

and only if (R,K) ∈ Γ2.

Proof. As in Theorem 3.1, we omit the proof of the sufficient condition. To

show the necessary condition, let f(η) be a type (I) solution of (BVP). From the fact
R < 0, K < 0, β = 1 in (1.3) is trivial by setting c = 4

√
RK. It remains to show

α ∈ (−1, 0). In fact, f(η) is positive, concave initially, and therefore f ′(0) = µ > 0.
From f(η) = (c/R)g(ξ), we have g′(0) = α = Rµ/c2(α, 1) < 0. Hence, α ∈ (−1, 0)
is obtained, since g′′′(0) = 1− α2 > 0.

To explore the connected property of Γ2, the limiting behavior of (R,K) as γ tends
to −1+ and 0− should be discussed.

Corollary 3.3. (a). limγ→−1+ c1(γ, 1) = +∞; (b). limγ→0− c1(γ, 1) = 0.

Proof. To prove assertion (a), we recall that g′(ξ;−1, 1) = −1, g′′(ξ;−1, 1) = 0.
Now from the continuous dependence on initial data, it is clear that for any given

ε > 0, there is a δ > 0 such that |g′(c1(γ, 1); γ, 1)− (−1)|< ε and |g′′(c(γ, 1);γ, 1)−
0| < ε for γ ∈ (−1,−1 + δ). This yields that, for γ ∈ (−1,−1 + δ), c1(γ, 1) =
−g′(c1(γ, 1))/[ϕg′′(c1(γ, 1))]≥ (1− ε)/(ϕε), and, hence, limγ→−1+ c1(γ, 1) = +∞.

To verify assertion (b), we recall again, from Proposition 2.1(d), that d2(0, 1) <
d1(0, 1) where d2(0, 1), d1(0, 1) are the roots of g′′(ξ; 0, 1) and g′(ξ; 0, 1) respectively.
From g′(ε; 0, 1)> 0 for each ε ∈ (0, d2(0, 1)) and the continuous dependence on initial
data, we have that g′(ε; γ, 1) > 0 when γ is close to 0−. However, g′(ξ; γ, 1) < 0
initially. This implies that a1(γ, 1) ∈ (0, ε) and limγ→0− a1(γ, 1) = 0. Thus, the
desired limit is obtained since c1(γ, 1)∈ (0, a1(γ, 1)).

Now the limits of R, K can be obtained easily by following the lines in Corollary

3.2.

Corollary 3.4. (a). limγ→−1+ R1(γ, 1) = −∞, limγ→−1+ K1(γ, 1) = −∞;
(b). limγ→0− R1(γ, 1) = 0, limγ→0− K1(γ, 1) = −3/(1 + 3ϕ).

Note that Γ2 is a continuum in the quadrant of R < 0, K < 0, connecting two
limit points (−∞,−∞) and (0,−3/(1 + 3ϕ)). Set Γ∗ = Γ1 ∪ (0,−3/1 + 3ϕ) ∪ Γ2.

This shows that (BVP) has at least one nonnegative, concave solution for every real

R. In fact, our result of Γ∗ is consistent with the graph given in Figure 3.3.

3.3. Non-negative and non-concave solutions

By following the lines of Theorem 3.2, the existence of type (II) solutions can be

obtained from the next theorem.

Theorem 3.3. (BVP) possesses a nonnegative and non-concave solution with suc-

tion if and only if (R,K) ∈ Γ3.
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Now the limits of R,K can be obtained from the following corollaries.

Fig. 3.3. Γ∗ is a continuum in the R−K plane connecting the limit points (−∞,−∞),
(+∞, +∞).

Corollary 3.5. (a). limγ→1− c(γ, 1) = +∞;
(b). limγ→0+ c(γ, 1) = c(0, 1), for some positive c(0, 1) varying in ϕ.

Proof. It is clear that g′(ξ; 1, 1) ≡ 1 and g′(ξ; 1, 1) ≡ 0 for all ξ ≥ 0. By the
continuous dependence, for ε > 0, there is a δ > 0 such that |1− g′(c(γ, 1);γ, 1)|< ε
and |0−g′′(c(γ, 1);γ, 1)|< ε for γ ∈ (1−δ, 1), where c(γ, 1)∈ (d2(γ, 1), d1(γ, 1)) and
di(γ, 1)’s are defined in Proposition 2.1(d). This implies c(γ, 1) = −g′(c(γ, 1))/ϕg′′

(c(γ, 1)) ≥ (1 − ε)/ϕε. Since ε is arbitrarily small, thus limγ→1− c(γ, 1) = +∞.
Moreover, the assertion (b) is the direct consequence of the continuous dependence of

c(α, β).

Corollary 3.6. (a). limγ→1− R(γ, 1) = +∞, limγ→1− K(γ, 1) = +∞;
(b). limγ→0+ R(γ, 1) = R(0, 1), limγ→0+ K(γ, 1) = K(0, 1), for some positive

R(0, 1), K(0, 1) varying in ϕ.

Proof. To verify assertion (a), we first recall that g′(ξ; 1, 1) ≡ 1, for all ξ ≥ 0.
By continuous dependence on initial data, given any ε > 0, there is a δ > 0 such that
|g(ξ; 1, 1)−g(ξ; γ, 1)|< ε, for γ ∈ (1−δ, 1) and |g(c(γ, 1); 1, 1)−g(c(γ, 1); γ, 1)|< ε.

Then, we get |c(γ, 1) − g(c(γ, 1);γ, 1)| < ε, for γ ∈ (1 − δ, 1). Now, from the

expression of R, we get R(γ, 1) = c(γ, 1)g(c(γ, 1);γ, 1) > c2(γ, 1) − εc(γ, 1), for
γ ∈ (1 − δ, 1). This implies that limγ→1− R(γ, 1) ≥ limγ→1− c

2(γ, 1) = +∞.

The assertion of limγ→1− K(γ, 1) = +∞ could be obtained by the continuous

dependence. That is, we get that

g(c(γ, 1);γ, 1) =
∫ c(γ,1)

0
g′(ξ)dξ

≤ g′(d2(γ, 1);γ, 1)c(γ, 1)



Multiple Solutions of a Boundary Layer Problem 897

= c(γ, 1)

[∫ d2(γ,1)

0
g′′(ξ)dξ + γ

]

< c(γ, 1)[c(γ, 1)g′′(d3(γ, 1);γ, 1)+ γ]

< c(γ, 1)[c2(γ, 1)(1− γ2) + γ]

= c3(γ, 1)(1− γ2) + c(γ, 1)γ.

This implies that 1/R > 1/[c4(γ, 1)(1− γ2) + c2(γ, 1)γ], and, consequently,

K =
c4(γ, 1)
R

>
c4(γ, 1)

c4(γ, 1)(1− γ2) + c2(γ, 1)γ
=

1
(1 − γ2) + [γ/c2(γ, 1)]

,

when γ sufficiently close to 1−. Thus, limγ→1− K(γ, 1) = +∞.

To prove assertion (b), we recall from Lemma 2.3, c(γ, 1)< a(γ, 1)with g′(a(γ, 1);
γ, 1) = 0 and γ ∈ [0, 1). Also from Corollary 4.2(b) in [4], Proposition 2.1(d) and
Figure 2.1(3), it is clear that c(γ, 1) and g(c(0, 1); 0, 1) are bounded, for γ sufficiently
close to 0−. Now, from

|R(γ, 1)−R(0, 1)| = |c(γ, 1)g(c(γ, 1);γ, 1)− c(0, 1)g(c(0, 1); 0, 1)|

≤ c(γ, 1)|g(c(γ, 1);γ, 1)− g(c(0, 1); 0, 1)|

+g(c(0, 1); 0, 1)|c(γ, 1)− c(0, 1)|

and continuous property of g(c(γ, 1);γ, 1), c(γ, 1), we obtain limγ→0+ R(γ, 1) =
R(0, 1). The desired assertion of K(0, 1) could be obtained from the similar argu-

ments.

It is clear from Corollary 3.5, 3.6 that Γ3 is also a continuum in the quadrant of

R> 0, K > 0 with the endpoint (R(0, 1), K(0.1)) and the limit point (∞,∞). The
selected numerical data of R(0, 1), K(0, 1) for various ϕ are shown in Table 1.

3.4. Non-monotone solutions

Recall that the second roots c2(α, β) of ψ(ξ) = 0, for (α, β) ∈ D4, will lead to

the non-monotone solutions of (BVP) with positive R, K, since g(c2(α, β)) > 0. In
fact, by following the lines of Theorem 3.2, the existence of type (III) solutions can be

obtained easily from the next theorem.

Theorem 3.4. (BVP). has a non-monotone solution with suction if and only if

(R,K) ∈ Γ4.
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As in Sections 3.2, 3.4, the limits of c2(γ, 1), and the corresponding R2(γ, 1),
K2(γ, 1) on Γ4 can be obtained from next two corollaries.

Corollary 3.7. (a). limγ→−1+ c2(γ, 1) = +∞; (b). limγ→0− c2(γ, 1) = c(0, 1).

Proof. The assertion (a) is the direct consequence of the fact c2(γ, 1)> c1(γ, 1)
and limγ→−1+ c1(γ, 1)= +∞. To prove the assertion (b), we again recall that

limγ→0− a2(γ, 1) = a(0, 1) with g′(a2(γ, 1);γ, 1) = 0 for γ ∈ (−1, 0) from Corollary
5.2(b) in [2]. In fact, c2(γ, 1)< a2(γ, 1) and g(c2(γ, 1); γ, 1)< g(a2(γ, 1);γ, 1). We
also have c(0, 1)< a(0, 1), g(c(0, 1); 0, 1)< g(a(0, 1); 0, 1) with g′(a(0, 1); 0, 1) = 0.
This implies that g′(c(0, 1)), g′(c2(γ, 1)), g′′(c2(γ, 1)) and g′′(c(0, 1)) are well-defined.
Hence, from

|c2(γ, 1)− c(0, 1)| = 1
ϕ

∣∣∣∣
g′(c(γ, 1))
g′′(c2(γ, 1))

− g′(c(0, 1))
g′′(c(0, 1))

∣∣∣∣

and the continuous dependence, the assertion (b) is obtained.

Now the limiting points (R(0, 1), K(0, 1)), (+∞,+∞) of Γ4 can be obtained from

the next Corollary, where (R(0, 1), K(0, 1)) is defined in Corollary 3.6.

Corollary 3.8. (a). limγ→−1+ R2(γ, 1) = +∞, limγ→−1+ K2(γ, 1) = +∞, for
sufficiently small ϕ;
(b).limγ→0− R2(γ, 1) = R(0, 1), limγ→0− K2(γ, 1) = K(0, 1), for some positive
R(0, 1), K(0, 1).

Proof. We omit the verification of the assertion (b), since it is similar to the

ones in Corollary 3.6(b). To prove assertion (a), we recall the fact g(a2(γ, 1)) > 1
for γ ∈ (−1, 0), from Corollary 5.3(b) in [4]. It is clear that ψ(ξ) = ψ(ξ, ϕ) and
ψ(a2(γ, 1), 0) = 0. Then, by the implicit function theorem, for sufficiently small ϕ,
c2(γ, 1) := c2(γ, 1;ϕ) is a continuous function of ϕ with c2(γ, 1; 0) = a2(γ, 1). That
is, for sufficiently small ϕ, g(c2(γ, 1;ϕ))> 1 for γ ∈ (−1, 0). Then, the desired limit
of R2(γ, 1) is obtained.

The assertion limγ→−1+ K2(γ, 1) = +∞ is easily obtained by the continuous

dependence, we get that

g(c2(γ, 1);γ, 1) =
∫ c2(γ,1)

0
g′(ξ)dξ ≤ g′(d∗2(γ, 1); γ, 1)c2(γ, 1)

= c2(γ, 1)

[∫ d∗2(γ,1)

0
g′′(ξ)dξ + γ

]



Multiple Solutions of a Boundary Layer Problem 899

≤ c2(γ, 1)[d∗2(γ, 1)g′′(d∗3(γ, 1);γ, 1)+ γ]

< c2(γ, 1)[c22(γ, 1)(1− γ2) + γ]

= c32(γ, 1)(1− γ2) + c2(γ, 1)γ

≤ c32(γ, 1)(1− γ2)

This implies that 1/R2 > 1/[c42(γ, 1)(1− γ2)], and, consequently,

K2 =
c42(γ, 1)
R2

>
c42(γ, 1)

c42(γ, 1)(1− γ2)
=

1
(1 − γ2)

,

when γ is sufficiently closed to −1+. Thus, limγ→−1+ K2(γ, 1) = +∞.

Note that for any given positive ϕ the point (R(0, 1), K(0.1)) on Γ3 corresponds

to a non-negative, non-concave, suctive solution, and therefore, it is a limit point of

the continuum Γ4. Moreover, (+∞,+∞) is also a limit point of Γ3. Furthermore,

Γ∗ = Γ3 ∪ Γ4 forms a continuum in the quadrant of R > 0, K > 0.

4. CONCLUDING REMARKS

In summary, (BVP) can only possess three different types of solutions, and there

exist two continuums Γ∗ = Γ1 ∪Γ2 ∪ (0,−3/(1+ 3ϕ)), Γ∗ = Γ3 ∪Γ4, on which each

point corresponds to one solution of certain type. Now, our main result can be easily

obtained from the following theorems:

Theorem 4.1. Given any positive ϕ, (BVP) possesses at least one nonnegative and

concave solution for every real R.

It should be pointed out that our numerical simulation has indicated that there exists

a turning point (R(ϕ), K(ϕ)) on Γ4, as shown in Figure 3.2, with R(ϕ) < R(0, 1) for
various positive ϕ, and the selected data of R(ϕ) are also shown in Table 1. Therefore,
in addition to the type (I) suctive solutions, one can conjecture that (BVP) has at

least two suctive solutions for R ≥ R(ϕ). However, our mathematical analysis for the
existence of type (II), (III) solutions can only be concluded from the following theorem.

Theorem 4.2. Given any sufficiently small ϕ > 0, (BVP) possesses at least one
nonnegative, non-concave suctive solution, and at least one non-monotone suctive

solution for R ≥ R(0, 1), for some positive R(0, 1) varying in ϕ.

Theorem 4.3. Given any positive ϕ > 0, (BVP) possesses no solution for R ≤ 0,
K ≥ 0.
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Also note that the slip coefficient ϕ is in general small. Therefore, our result in

Theorem 4.2 is indeed of physical interest. Furthermore, the classification in Section

2 also leads to the following nonexistence result:

Table 1. The selected data of R(ϕ), R(0, 1) and K(0, 1) for various ϕ

slip coefficient ϕ R(ϕ) R(0, 1) K(0, 1)
0.1 10.76550192 11.79506983 8.15546349

0.5 7.29223018 9.47002532 7.32688514

1.0 5.81827450 8.60689265 7.12537175

1.5 4.97836919 8.25410685 7.05187182

2.0 4.38847257 7.98255317 6.99820150

3.0 3.80720381 7.78080318 6.95981675

10.0 2.71654423 7.44868627 6.89916457

It should be addressed that the verification of the precise multiplicity of the solutions

of (BVP) is still open, although our numerical simulation has exhibited some monotone

phenomena for the continuums.
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