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GENERALIZED WEIGHTED COMPOSITION OPERATORS FROM AREA
NEVANLINNA SPACES TO BLOCH-TYPE SPACES

Weifeng Yang and Xiangling Zhu

Abstract. Let H(D) denote the class of all analytic functions on the open unit
disk D of C. Let ϕ be an analytic self-map of D and u ∈ H(D). The generalized
weighted composition operator is defined by

Dn
ϕ,uf = uf(n) ◦ ϕ, f ∈ H(D).

The boundedness and compactness of generalized weighted composition operators
from area Nevanlinna spaces to Bloch-type spaces and little Bloch-type spaces are
characterized in this paper.

1. INTRODUCTION

Let µ be a positive continuous function on [0, 1). We say that µ is normal if there
exist positive numbers a and b, 0 < a < b, and δ ∈ [0, 1) such that (see [14])

µ(r)
(1− r)a

is decreasing on [δ, 1), lim
r→1

µ(r)
(1 − r)a

= 0;

µ(r)
(1− r)b

is increasing on [δ, 1), lim
r→1

µ(r)
(1− r)b

= ∞.

Let D be the open unit disk in the complex plane C. We denote by H(D) the class
of all holomorphic functions on D. Let p ∈ [1,∞), α > −1. An f ∈ H(D) is said to
belong to the area Nevanlinna space N p

α = N p
α(D), if

‖f‖p
N p

α
=

∫
D

[
log(1 + |f(z)|)]p

dAα(z) < ∞,

where dAα(z) = (1 − |z|2)αdA(z). From [1], we see that the area Nevanlinna space
N p

α is a linear topological vector space with respect to F−norm ‖ ·‖N p
α
. Under ‖ ·‖N p

α
,
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the topology of Np
α is stronger than that of local uniform convergence. This is a

consequence of the following estimate (see, e.g., [1])

log(1 + |f(z)|) ≤ C
‖f‖N p

α

(1− |z|2)(2+α)/p
, f ∈ N p

α ,(1)

where C is depend only on p and α.
In this paper, a subset A of N p

α is called bounded if there exists a positive number
r such that A ⊂ {f ∈ N p

α : ‖f‖N p
α

< r}. Given a Banach space X , we say that
a linear map T : N p

α → X is bounded if T (A) ⊂ X is bounded for every bounded
subset A of N p

α . We say that T is compact if T (A) ⊂ X is relatively compact for
every bounded subset A ⊂ N p

α .
Suppose µ is a normal function on [0, 1). The Bloch-type space Bµ = Bµ(D) is

the space of all f ∈ H(D) such that

‖f‖Bµ = |f(0)|+ sup
z∈D

µ(|z|) ∣∣f ′(z)
∣∣ < ∞.

With the norm ‖ ·‖Bµ, Bµ is a Banach space. If µ(|z|) = 1−|z|2, we denote Bµ simply
by B, which is the well-known classical Bloch space. Let Bµ,0 denote the subspace of
Bµ consisting of those f ∈ Bµ such that

lim
|z|→1

µ(|z|) ∣∣f ′(z)
∣∣ = 0.

This function space is called the little Bloch-type space.
Let n be a nonnegative integer, ϕ be an analytic self-map of D and u ∈ H(D).

The generalized weighted composition operator Dn
ϕ,u is defined by

Dn
ϕ,uf = uf (n) ◦ ϕ, f ∈ H(D),(2)

where f (0) = f . The generalized weighted composition operator Dn
ϕ,u can be regarded

as a product of composition operator Cϕ, multiplication operator Mu and the n-th
differentiation operator Dn. The generalized weighted composition operator Dn

ϕ,u was
introduced in [25] by the second author of this paper, and studied in [25, 27, 29, 17].

It is interesting to provide a function theoretic characterization of ϕ and u when
they induce a bounded or compact operator between spaces of analytic functions in
the unit disk, the polydisk and the unit ball. The books [2, 24] contain plenty of
information on this topic for Dn

ϕ,u in the case of n = 0 and u(z) = 1, i.e. for the
composition operator Cϕ.

In the case of n = 0, Dn
ϕ,u is the weighted composition operator uCϕ. The

second author of this paper studied the weighted composition operator from the area
Nevanlinna space to the Bloch space in [28]. Weighted composition operators between
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other analytic function spaces are studied, for example in [3, 4, 7, 8, 9, 10, 11, 13, 15,
16, 18, 19, 21, 22, 26, 28] (see also related references therein). The case of n = 1 and
u(z) = ϕ′(z), that is Dn

ϕ,u = DCϕ, was studied in [5, 6, 23]. The case of n = 1 and
u(z) = 1, that is Dn

ϕ,u = CϕD, was studied in [5, 23].
In this paper we study the generalized weighted composition operator. We give

some sufficient and necessary conditions for the boundedness and compactness of the
generalized weighted composition operator from the area Nevanlinna space to the Bloch-
type space and the little Bloch-type space.

Throughout this paper C denotes a positive constant which may be different at
different occurrences.

2. MAIN RESULTS AND PROOFS

In this section, we give some auxiliary results which will be used in proving the
main results of this paper. They are incorporated in the lemmas which follow.

Lemma 1. Let n be a nonnegative integer, 1 ≤ p < ∞ and α > −1. Then there
exists some C such that for each f ∈ N p

α and z ∈ D,

|f (n)(z)| ≤ 1
(1− |z|2)n

exp
[ C‖f‖N p

α

(1 − |z|2) 2+α
p

]
.(3)

Proof. For z ∈ D and ξ ∈ ∂D, we have

1 −
∣∣∣∣z +

1− |z|
2

ξ

∣∣∣∣
2

≥ 1 − (1 + |z|)2
4

≥ 1 − |z|2
4

.

From this, and then using Cauchy integral formula and (1), we have

|f (n)(z)| =
∣∣∣∣ n!
2πi

∫
∂D

f(ξ)
(ξ − z)n+1

dξ

∣∣∣∣
≤ n!2n

2π(1− |z|)n

∫
∂D

|f(z +
1 − |z|

2
ξ)||dξ|

≤ 1
2π(1− |z|2)n

∫
∂D

(1 + n!4n|f(z +
1 − |z|

2
ξ)|)|dξ|

≤ 1
2π(1− |z|2)n

∫
∂D

exp
[
n!4n log(1 + |f(z +

1− |z|
2

ξ)|)
]
|dξ|

≤ 1
2π(1− |z|2)n

∫
∂D

exp
[ C‖f‖N p

α

(1 − |z + 1−|z|
2 ξ|2) 2+α

p

]
|dξ|
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≤ 1
2π(1− |z|2)n

∫
∂D

exp
[ C‖f‖N p

α

( 1−|z|2
4 )

2+α
p

]
|dξ|

≤ 1
(1− |z|2)n

exp
[ C‖f‖N p

α

(1 − |z|2) 2+α
p

]
,

from which the result follows.

Lemma 2. A closed set K in Bµ,0 is compact if and only if it is bounded and
satisfies

lim
|z|→1

sup
f∈K

µ(|z|)|f ′(z)| = 0.

Proof. The proof is similar to the proof of Lemma 1 in [12], so we omit it here.

The following criterion for compactness follows from arguments similar, for exam-
ple, to those outlined in Lemma 2.3 of [21].

Lemma 3. Suppose that ϕ is an analytic self-map of D, u ∈ H(D), 1 ≤ p < ∞ and
α > −1. The operator Dn

ϕ,u : N p
α → Bµ is compact if and only if for each bounded

sequence (fk)k∈N in N p
α which converges to zero uniformly on compact subsets of D,

we have ‖Dn
ϕ,ufk‖Bµ → 0 as k → ∞.

The next Lemma 4 is the classic Faàdi Bruno’s formula (see, e.g. [20]).

Lemma 4. If f(z) is an analytic function in complex plane and ϕ(z) ∈ H(D),
then for each positive integer n,

(f ◦ ϕ)(n)(z) =
∑ n!

k1!k2! · · ·kn!
f (k)(ϕ(z))

n∏
j=1

(
ϕ(j)(z)

j!
)kj , z ∈ D,

where the sum is over all different solutions in nonnegative integers k 1, k2, · · · , kn of
k = k1 + k2 + · · ·+ kn and n = k1 + 2k2 + · · ·+ nkn.

Now, we are ready to formulate and prove the main results of this paper.

Theorem 1. Suppose that ϕ is an analytic self-map of D, u ∈ H(D), 1 ≤ p < ∞,
α > −1 and µ is a normal function on [0, 1). Then for each positive integer n,
Dn

ϕ,u : N p
α → Bµ is bounded if and only if for all c > 0,

M1(c) := sup
z∈D

µ(|z|)|u′(z)|
(1− |ϕ(z)|2)n

exp
[ c

(1 − |ϕ(z)|2) 2+α
p

]
< ∞(4)

and

M2(c) := sup
z∈D

µ(|z|)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)n+1

exp
[ c

(1 − |ϕ(z)|2) 2+α
p

]
< ∞.(5)
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Proof. Suppose that Dn
ϕ,u : N p

α → Bµ is bounded. By utilizing test functions
zn

n! and zn+1

(n+1)!
, we obtain supz∈D µ(|z|)|u′(z)| < ∞ and supz∈D µ(|z|)|u′(z)ϕ(z) +

u(z)ϕ′(z)| < ∞. Hence u ∈ Bµ and supz∈D µ(|z|)|u(z)ϕ′(z)| < ∞.
For each c > 0 and z ∈ D, take fz(w) = exp(ch1(w))− 1, where

h1(w) =
[ 1− |ϕ(z)|2
(1− ϕ(z)w)2

]2+α
p

, w ∈ D.

Using Lemma 4.2.2 in [24] and the inequality |et − 1| ≤ e|t| − 1, t ∈ C, we have
∫

D

[
log(1 + |fz(w)|)]p

dAα(w) ≤
∫

D

cp|h1(w)|pdAα(w) < ∞.

Then fz ∈ N p
α for all z ∈ D. By Lemma 4, for each positive integer n,

f(n)
z (w) = [exp(ch1(w))](n)

=
∑ n! exp(k)(ch1(w))

k1!k2! · · ·kn!

n∏
j=1

(
ch

(j)
1 (w)
j!

)kj

=
∑ n! exp(ch1(w))

k1!k2! · · ·kn!

n∏
j=1

[ c2τ (2τ+1) · · · (2τ+j−1)ϕ(z)
j
(1−|ϕ(z)|2)τ

j!(1−ϕ(z)w)2τ+j

]kj

,

where and thereafter τ = 2+α
p . Then

(6)

f(n)
z (ϕ(z))

=
∑ n! exp(ch1(ϕ(z)))

k1!k2! · · ·kn!

n∏
j=1

[c2τ (2τ+1) · · · (2τ +j−1)ϕ(z)
j
(1 − |ϕ(z)|2)τ

j!(1−|ϕ(z)|2)2τ+j

]kj

=
∑ n! exp(ch1(ϕ(z)))

k1!k2! · · ·kn!

n∏
j=1

[ c2τ (2τ + 1) · · · (2τ + j − 1)ϕ(z)
j

j!(1 − |ϕ(z)|2)τ+j

]kj

=
∑ n!ϕ(z)

n
exp(ch1(ϕ(z)))

k1!k2! · · ·kn!(1− |ϕ(z)|2)kτ+n

n∏
j=1

[c2τ (2τ + 1) · · · (2τ + j − 1)
j!

]kj

=
∑ n!ϕ(z)

n
exp(ch1(ϕ(z)))

k1!k2! · · ·kn!(1− |ϕ(z)|2)kτ+n

n∏
j=1

[c2τ (2τ + 1) · · · (2τ + j − 1)
j!

]kj

=
ϕ(z)

n
exp(ch1(ϕ(z)))

(1−|ϕ(z)|2)nτ+n

∑n!
∏n

j=1

[
c2τ(2τ+1)···(2τ+j−1)

j!

]kj

k1!k2! · · ·kn!
(1−|ϕ(z)|2)(n−k)τ

=
ϕ(z)

n
exp(ch1(ϕ(z)))

(1 − |ϕ(z)|2)nτ+n
Pn−1[2τ, (1− |ϕ(z)|2)τ ].
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Here Pn−1[λ, x] is the n-1-degree polynomial, i.e.

Pn−1[λ, x] =
∑ n!

∏n
j=1

[
cλ(λ+1)···(λ+j−1)

j!

]kj

k1!k2! · · ·kn!
xn−k

=
n∑

k=1

n!xn−k
∑

(k1,k2,··· ,kn)∈Sk

∏n
j=1

[
cλ(λ+1)···(λ+j−1)

j!

]kj

k1!k2! · · ·kn!
,

and Sk is the set of solutions in nonnegative integers k1, k2, · · · , kn of k = k1 + k2 +
· · ·+ kn and n = k1 + 2k2 + · · · + nkn. It is easy to see that for a fixed parameter
λ, polynomial Pn−1[λ, (1− |ϕ(z)|2)τ ] is a bounded real-valued function for all z ∈ D,
and the constant term of Pn−1[λ, x] is (cλ)n. Then Pn−1[λ, (1− |ϕ(z)|2)τ ] ≥ (cλ)n.
On the other hand, for a fixed x ∈ (0, 1), Pn−1[λ, x] is a monotonously increasing and
unbounded function for λ ∈ (0, +∞). From (6), we get

sup
w∈D

µ(|w|)
∣∣∣
[
u(w)f (n)

z (ϕ(w))
]′∣∣∣

= sup
w∈D

µ(|w|)
∣∣∣u′(w)f (n)

z (ϕ(w)) + u(w)f (n+1)
z (ϕ(w))ϕ′(w)

∣∣∣
≥ µ(|z|)

∣∣∣u′(z)f (n)
z (ϕ(z)) + u(z)f (n+1)

z (ϕ(z))ϕ′(z)
∣∣∣

=
∣∣∣µ(|z|)u′(z)ϕ(z)

n
exp(ch1(ϕ(z)))

(1− |ϕ(z)|2)n(τ+1)
Pn−1[2τ, (1− |ϕ(z)|2)τ ]+

µ(|z|)u(z)ϕ′(z)ϕ(z)
n+1

exp(ch1(ϕ(z)))
(1 − |ϕ(z)|2)(n+1)(τ+1)

Pn[2τ, (1− |ϕ(z)|2)τ ]
∣∣∣

= |T1 + T2|.

(7)

Here

T1 =
µ(|z|)u′(z)ϕ(z)

n
exp(ch1(ϕ(z)))

(1 − |ϕ(z)|2)n(τ+1)
Pn−1[2τ, (1− |ϕ(z)|2)τ ]

and

T2 =
µ(|z|)u(z)ϕ′(z)ϕ(z)

n+1
exp(ch1(ϕ(z)))

(1 − |ϕ(z)|2)(n+1)(τ+1)
Pn[2τ, (1− |ϕ(z)|2)τ ].

Hence

|T1 + T2| ≤ C‖Dn
ϕ,ufz‖Bµ,(8)

which implies that

|T1| ≤ |T2| + C‖Dn
ϕ,u‖N p

α→Bµ
.(9)
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Now take gz(w) = R(z) exp(ch2(w))− exp(ch1(w)), where

h2(w) =
[ (1 − |ϕ(z)|2)κ

(1 − ϕ(z)w)κ+1

] 2+α
p

, w ∈ D,

and

R(z) =
Pn−1[2τ, (1− |ϕ(z)|2)τ ]
Pn−1[κτ, (1− |ϕ(z)|2)τ ]

.

By the monotonicity of the function Pn[λ, x], there exists δ0 > and κ ∈ N such that∣∣∣R(z)Pn[κτ, (1− |ϕ(z)|2)τ ]− Pn[2τ, (1− |ϕ(z)|2)τ ]
∣∣∣

= R(z)Pn[κτ, (1− |ϕ(z)|2)τ ] − Pn[2τ, (1− |ϕ(z)|2)τ ] ≥ δ0.
(10)

With the arguments similar to that on fz , we obtain gz ∈ N p
α for all z ∈ D. Moreover

g
(n)
z (ϕ(z)) = R(z)

ϕ(z)
n

exp(ch2(ϕ(z)))
(1− |ϕ(z)|2)nτ+n

Pn−1[κτ, (1− |ϕ(z)|2)τ ]−
ϕ(z)

n
exp(ch1(ϕ(z)))

(1− |ϕ(z)|2)nτ+n
Pn−1[2τ, (1− |ϕ(z)|2)τ ] = 0,

and

g(n+1)
z (ϕ(z)) = R(z)

ϕ(z)
n+1

exp(ch2(ϕ(z)))
(1− |ϕ(z)|2)(n+1)(τ+1)

Pn[κτ, (1− |ϕ(z)|2)τ ]

−ϕ(z)
n+1

exp(ch1(ϕ(z)))
(1− |ϕ(z)|2)(n+1)(τ+1)

Pn[2τ, (1− |ϕ(z)|2)τ ]

=
ϕ(z)

n+1
exp(ch1(ϕ(z)))

(1− |ϕ(z)|2)(n+1)(τ+1){
R(z)Pn[κτ, (1− |ϕ(z)|2)τ ] − Pn[2τ, (1− |ϕ(z)|2)τ ]

}
.

Therefore,

(11)

C‖Dn
ϕ,u‖N p

α→Bµ
≥ ‖Dn

ϕ,u‖N p
α→Bµ

‖gz‖N p
α
≥ ‖Dn

ϕ,ugz‖Bµ

≥ sup
w∈D

µ(|w|)
∣∣∣
[
u(w)g(n)

z (ϕ(w))
]′∣∣∣

= sup
w∈D

µ(|w|)
∣∣∣u′(w)g(n)

z (ϕ(w)) + u(w)g(n+1)
z (ϕ(w))ϕ′(w)

∣∣∣
≥ µ(|z|)

∣∣∣u′(z)g(n)
z (ϕ(z)) + u(z)g(n+1)

z (ϕ(z))ϕ′(z)
∣∣∣

=
µ(|z|)

∣∣∣u(z)ϕ′(z)ϕ(z)
n+1

∣∣∣ exp(ch1(ϕ(z)))

(1− |ϕ(z)|2)(n+1)(τ+1)
×{

R(z)Pn[κτ, (1− |ϕ(z)|2)τ ] − Pn[2τ, (1− |ϕ(z)|2)τ ]
}
.
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This implies that T2 is bounded and hence T1 is bounded by (9), i.e., for each z ∈ D,

µ(|z|)|u′(z)| exp(ch1(ϕ(z)))
(1 − |ϕ(z)|2)n

≤ C(1 − |ϕ(z)|2)nτ

|ϕ(z)|nPn−1[2τ, (1− |ϕ(z)|2)τ ]
(12)

and

(13)
µ(|z|)|u(z)ϕ′(z)| exp(ch1(ϕ(z)))

(1− |ϕ(z)|2)n+1
≤ C(1 − |ϕ(z)|2)(n+1)τ

|ϕ(z)|n+1Pn[2τ, (1− |ϕ(z)|2)τ ]
,

which imply that (4) and (5) hold for all c > 0.
Conversely, suppose (4) and (5) hold for all c > 0. Let S be a bounded subset

in N p
α . Then there exists a positive number K such that ‖f‖N p

α
≤ K for all f ∈ S.

Then, by Lemma 1 we have

(14)

‖Dn
ϕ,uf‖Bµ = sup

z∈D

µ(|z|)|(Dn
ϕ,uf)′(z)| + |u(0)f (n)(ϕ(0))|

= sup
z∈D

µ(|z|)|u′(z)f (n)(ϕ(z))

+u(z)f (n+1)(ϕ(z))ϕ′(z)| + |u(0)f (n)(ϕ(0))|
≤ sup

z∈D

µ(|z|)|u′(z)f (n)(ϕ(z))|
+ sup

z∈D

µ(|z|)|u(z)f (n+1)(ϕ(z))ϕ′(z)|+ |u(0)f (n)(ϕ(0))|

≤ sup
z∈D

µ(|z|)|u′(z)|
(1 − |ϕ(z)|2)n

exp
[ C‖f‖N p

α

(1− |ϕ(z)|2) 2+α
p

]
+

sup
z∈D

µ(|z|)|u(z)ϕ′(z)|
(1 − |ϕ(z)|2)n+1

exp
[ C‖f‖N p

α

(1 − |ϕ(z)|2) 2+α
p

]
+ |u(0)f (n)(ϕ(0))|

≤ M1(CK) + M2(CK) + |u(0)f (n)(ϕ(0))| < ∞,

for all f ∈ S. This implies that Dn
ϕ,u(S) is a bounded subset of Bµ, and then Dn

ϕ,u :
N p

α → Bµ is a bounded operator. The proof is completed.

Corollary 1. Suppose that ϕ is an analytic self-map of D, u ∈ H(D), 1 ≤ p < ∞,
α > −1 and µ is a normal function on [0, 1). Then for each positive integer n,
Dn

ϕ,u : N p
α → Bµ is bounded if and only if the following conditions satisfied:

(i) u(z) ∈ Bµ and supz∈D µ(|z|)|u(z)ϕ′(z)| < ∞;
(ii) for all c > 0,

lim
|ϕ(z)|→1

µ(|z|)|u′(z)|
(1 − |ϕ(z)|2)n

exp
[ c

(1− |ϕ(z)|2) 2+α
p

]
= 0(15)

and
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lim
|ϕ(z)|→1

µ(|z|)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)n+1

exp
[ c

(1− |ϕ(z)|2) 2+α
p

]
= 0.(16)

Proof. Suppose Dn
ϕ,u : N p

α → Bµ is bounded. From the proof part of Theorem 1,
we get (i) directly. Moreover, (12) and (13) implies (15) and (16) hold for all c > 0.
On the other hand, employing (14), conditions (i) and (ii) lead that Dn

ϕ,u : N p
α → Bµ

is bounded. The proof is completed.

Theorem 2. Suppose that ϕ is an analytic self-map of D, u ∈ H(D), 1 ≤ p < ∞,
α > −1 and µ is a normal function on [0, 1). Then for each positive integer n,
Dn

ϕ,u : N p
α → Bµ is compact if and only if Dn

ϕ,u : N p
α → Bµ is bounded and for all

c > 0,

lim
|ϕ(z)|→1

µ(|z|)|u′(z)|
(1 − |ϕ(z)|2)n

exp
[ c

(1− |ϕ(z)|2) 2+α
p

]
= 0(17)

and

lim
|ϕ(z)|→1

µ(|z|)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)n+1

exp
[ c

(1− |ϕ(z)|2) 2+α
p

]
= 0.(18)

Proof. Let {zk} be a sequence such that |ϕ(zk)| → 1 as k → ∞(if such a sequence
does not exist then (17) and (18) automatically hold). For each c > 0, take

fk(w) = exp
{

c
[ 1 − |ϕ(zk)|2
(1− ϕ(zk)w)2

]} 2+α
p − 1.

From the proof of Theorem 1, we can conclude that {fk} is a bounded sequence in N p
α

and fk → 0 uniformly on compact subsets of D as k → ∞. From the compactness of
Dn

ϕ,u, we have limk→∞ ‖Dn
ϕ,ufk‖Bµ = 0. From (8), we get

∣∣∣µ(|zk|)u′(zk)ϕ(zk)
n

exp(ch1(ϕ(zk)))
(1−|ϕ(zk)|2)n(τ+1)

Pn−1[2τ, (1−|ϕ(zk)|2)τ ]
∣∣∣≤‖Dn

ϕ,ufk‖Bµ

+
∣∣∣µ(|zk|)u(zk)ϕ′(zk)ϕ(zk)

n+1
exp(ch1(ϕ(zk)))

(1− |ϕ(zk)|2)(n+1)(τ+1)
Pn[2τ, (1− |ϕ(zk)|2)τ ]

∣∣∣.
Thus

(19)

µ(|zk|)|u′(zk)| exp(ch1(ϕ(zk)))
(1 − |ϕ(zk)|2)n

≤ (1 − |ϕ(zk)|2)nτ‖Dn
ϕ,ufk‖Bµ

|ϕ(zk)|nPn−1[2τ, (1− |ϕ(zk)|2)τ ]

+
µ(|zk|)|u(zk)ϕ′(zk)ϕ(zk)| exp(ch1(ϕ(zk)))Pn[2τ, (1− |ϕ(zk)|2)τ ]

(1− |ϕ(zk)|2)(n+τ+1)Pn−1[2τ, (1− |ϕ(zk)|2)τ ]
.
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Next set
gk(w) = R(zk) exp(c

[ (1 − |ϕ(zk)|2)κ

(1 − ϕ(zk)w)κ+1

]2+α
p )

−R(zk) + 1− exp(c
[ 1 − |ϕ(zk)|2
(1 − ϕ(zk)w)2

]2+α
p ).

Similarly, {gk} is a bounded sequence in N p
α and gk → 0 uniformly on compact subsets

of D as k → ∞, then limk→∞ ‖Dn
ϕ,ugk‖Bµ = 0. From (11), we have

‖Dn
ϕ,ugk‖Bµ ≥

µ(|zk|)
∣∣∣u(zk)ϕ′(zk)ϕ(zk)

n+1
∣∣∣ exp(ch1(ϕ(zk)))

(1− |ϕ(zk)|2)(n+1)(τ+1)
×

{
R(zk)Pn[κτ, (1− |ϕ(zk)|2)τ ] − Pn[2τ, (1− |ϕ(zk)|2)τ ]

}
,

which together with (19) imply

(20)

(1−|ϕ(zk)|2)(n+1)τ‖Dn
ϕ,ugk‖Bµ

|ϕ(zk)|n+1
{

R(zk)Pn[κτ, (1−|ϕ(zk)|2)τ ]−Pn[2τ, (1−|ϕ(zk)|2)τ ]
}

≥
µ(|zk|)

∣∣∣u(zk)ϕ′(zk)
∣∣∣ exp(ch1(ϕ(zk)))

(1 − |ϕ(zk)|2)n+1

and

(21)

(1 − |ϕ(zk)|2)nτ‖Dn
ϕ,ugk‖Bµ

|ϕ(zk)|n
{

R(zk)Pn[κτ, (1− |ϕ(zk)|2)τ ] − Pn[2τ, (1− |ϕ(zk)|2)τ ]
}

≥ µ(|zk|)|u(zk)ϕ′(zk)ϕ(zk)| exp(ch1(ϕ(zk)))
(1− |ϕ(zk)|2)n+τ+1

.

From the last two inequalities we obtain the desired result.
Conversely, suppose that Dn

ϕ,u : N p
α → Bµ is bounded and (17) and (18) hold for

all c > 0. Let {fk} be a sequence in N p
α such that fk → 0 uniformly on compact

subsets of D and ‖fk‖N p
α
≤ K. Then it is obvious that f

(n)
k and f

(n+1)
k → 0 uniformly

on compact subsets of D. Moreover, by (17) and (18) we have that for every ε > 0,
there is a δ ∈ (0, 1), such that

µ(|z|)|u′(z)|
(1 − |ϕ(z)|2)n

exp
[ c

(1 − |ϕ(z)|2) 2+α
p

]
<

ε

2
(22)

and

µ(|z|)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)n+1

exp
[ c

(1− |ϕ(z)|2) 2+α
p

]
<

ε

2
(23)
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whenever δ < |ϕ(z)| < 1.
By Lemma 1, (22) and (23) we have

sup
z∈D

µ(|z|)|(Dn
ϕ,ufk)′(z)|

= sup
z∈D

µ(|z|)|u′(z)f (n)
k (ϕ(z)) + u(z)f (n+1)

k (ϕ(z))ϕ′(z)|

≤ sup
z∈D

µ(|z|)|u′(z)f (n)
k (ϕ(z))|+ sup

z∈D

|u(z)f (n+1)
k (ϕ(z))ϕ′(z)|

≤ sup
|ϕ(z)|≤δ

µ(|z|)|u′(z)||f (n)
k (ϕ(z))|+ sup

|ϕ(z)|≤δ

µ(|z|)|u(z)ϕ′(z)||f (n+1)
k (ϕ(z))|

+ sup
δ<|ϕ(z)|<1

µ(|z|)|u′(z)||f (n)
k (ϕ(z))|

+ sup
δ<|ϕ(z)|<1

µ(|z|)|u(z)ϕ′(z)||f (n+1)
k (ϕ(z))|

≤ C sup
|ϕ(z)|≤δ

|f (n)
k (ϕ(z))|+ C sup

|ϕ(z)|≤δ
|f (n+1)

k (ϕ(z))|

+ sup
δ<|ϕ(z)|<1

µ(|z|)|u′(z)|
(1− |ϕ(z)|2)n

exp
[ C‖fk‖N p

α

(1− |ϕ(z)|2) 2+α
p

]

+ sup
δ<|ϕ(z)|<1

µ(|z|)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)n+1

exp
[ C‖fk‖N p

α

(1 − |ϕ(z)|2) 2+α
p

]

≤ C sup
|w|≤δ

|f (n)
k (w)|+ C sup

|w|≤δ
|f (n+1)

k (w)|+ ε,

i.e.
‖Dn

ϕ,ufk‖Bµ ≤ C sup
|w|≤δ

|f (n)
k (w)|+ C sup

|w|≤δ
|f (n+1)

k (w)|

+ε + |u(0)f (n)
k (ϕ(0))|.

This yields limk→∞ ‖Dn
ϕ,ufk‖Bµ = 0. By Lemma 3, we see that the operator Dn

ϕ,u :
N p

α → Bµ is compact. The proof is completed.
From Theorem 1, Corollary 1 and Theorem 2 we can obtain the following corollary.

Corollary 2. Suppose that ϕ is an analytic self-map of D, u ∈ H(D), 1 ≤ p < ∞,
α > −1 and µ is a normal function on [0, 1). Then for each positive integer n, the
following statements are equivalent.

(i) Dn
ϕ,u : N p

α → Bµ is bounded;
(ii) Dn

ϕ,u : N p
α → Bµ is compact;

(iii) u ∈ Bµ, supz∈D µ(|z|)|u(z)ϕ′(z)| < ∞, and both (15) and (16) hold for all
c > 0.

Theorem 3. Suppose that ϕ is an analytic self-map of D, u ∈ H(D), 1 ≤ p < ∞,
α > −1 and µ is a normal function on [0, 1). Then for each positive integer n, the
following statements are equivalent.
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(i) Dn
ϕ,u : N p

α → Bµ,0 is bounded;
(ii) Dn

ϕ,u : N p
α → Bµ,0 is compact;

(iii) u ∈ Bµ,0, lim|z|→1 µ(|z|)|u(z)ϕ′(z)| = 0 and for all c > 0,

lim
|z|→1

µ(|z|)|u′(z)|
(1 − |ϕ(z)|2)n

exp
[ c

(1 − |ϕ(z)|2) 2+α
p

]
= 0(24)

and

lim
|z|→1

µ(|z|)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)n+1

exp
[ c

(1 − |ϕ(z)|2) 2+α
p

]
= 0.(25)

Proof. (ii) ⇒ (i). This implication is obvious.
(i) ⇒ (iii). Suppose that Dn

ϕ,u : N p
α → Bµ,0 is bounded. By utilizing functions

zn

n! and zn+1

(n+1)!
, we obtain

lim
|z|→1

µ(|z|)|u′(z)| = 0 and lim
|z|→1

µ(|z|)|u′(z)ϕ(z) + u(z)ϕ′(z)| = 0.

Then
u ∈ Bµ,0 and lim

|z|→1
µ(|z|)|u(z)ϕ′(z)| = 0.

Since Dn
ϕ,u : N p

α → Bµ is bounded, by Corollary 1, we conclude that the condition
(15) and (16) hold for all c > 0. Thus, for each c, ε > 0, there exists a t ∈ (0, 1) such
that

µ(|z|)|u′(z)|
(1− |ϕ(z)|2)n

exp
[ c

(1− |ϕ(z)|2) 2+α
p

]
< ε,(26)

whenever t < |ϕ(z)| < 1. Moreover, from u(z) ∈ Bµ,0, we infer that there exists an
r ∈ (0, 1) such that for r < |z| < 1,

µ(|z|)|u′(z)| < ε(1 − t2)n exp
[ −c

(1 − t2)
2+α

p

]
,

from which, if r < |z| < 1 and |ϕ(z)| ≤ t, then we have

µ(|z|)|u′(z)|
(1− |ϕ(z)|2)n

exp
[ c

(1− |ϕ(z)|2) 2+α
p

]
< ε.(27)

From (26) and (27), we see that whenever r < |z| < 1,

µ(|z|)|u′(z)|
(1 − |ϕ(z)|2)n

exp
[ c

(1 − |ϕ(z)|2) 2+α
p

]
< ε,
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which implies that (24) holds for all c > 0. Employing (16) and lim|z|→1 µ(|z|)|u(z)
ϕ′(z)| = 0, with similar argument, we obtain (25) holds for all c > 0.

(iii) ⇒ (ii). Suppose u(z) ∈ Bµ,0, lim|z|→1 µ(|z|)|u(z)ϕ′(z)| = 0 and (24) and
(25) hold for all c > 0. From Lemma 2, Dn

ϕ,u : N p
α → Bµ,0 is compact if and only if

lim
|z|→1

sup
f∈BNp

α

µ(|z|)|(Dn
ϕ,uf)′(z)| = 0,(28)

where BN p
α

= {g ∈ N p
α : ‖g‖N p

α
≤ 1} is the unit ball in the space N p

α .
On the other hand, by Lemma 1, we have

(29)

µ(|z|)|(Dn
ϕ,uf)′(z)| ≤ µ(|z|)|u′(z)|

(1 − |ϕ(z)|2)n
exp

[ C‖f‖N p
α

(1− |ϕ(z)|2) 2+α
p

]
+

µ(|z|)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)n+1

exp
[ C‖f‖N p

α

(1 − |ϕ(z)|2) 2+α
p

]
.

Taking the supremum in (29) over the unit ball BN p
α

, and letting |z| → 1, from (24)
and (25) we see that (28) holds and hence Dn

ϕ,u : N p
α → Bµ,0 is compact. The proof

is completed.
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9. S. Li and S. Stević, Weighted composition operators from H∞ to the Bloch space on
the polydisc, Abstr. Appl. Anal. Vol. 2007, Article ID 48478, (2007), 12 pages.



882 Weifeng Yang and Xiangling Zhu
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