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NONLINEAR CONDITIONS FOR COINCIDENCE POINT AND FIXED
POINT THEOREMS

Wei-Shih Du* and Shao-Xuan Zheng

Abstract. In this paper, we first establish some new types of fixed point theorem
which generalize and improve Berinde-Berinde’s fixed point theorem, Mizoguchi-
Takahashi’s fixed point theorem and many results in [W.-S. Du, Some new results
and generalizations in metric fixed point theory, Nonlinear Anal. 73 (2010), 1439-
1446] and references therein. Applying those new results, we also present some
existence theorems of coincidence point and others.

1. INTRODUCTION

The celebrated Banach contraction principle (see, e.g., [1]) plays an important role
in various fields of applied mathematical analysis. It is known that Banach contraction
principle has been used to solve the existence of solutions for nonlinear integral equa-
tions and nonlinear differential equations in Banach spaces. It has also been applied to
study the convergence of algorithms in computational mathematics. Since then a num-
ber of generalizations in various different directions of the Banach contraction principle
have been investigated by several authors in the past; see [1, 3-6] and references therein.

Theorem BCP. (Banach)

Let (X, d) be a complete metric space and T : X → X be a selfmap. Assume that
there exists a nonnegative number γ < 1 such that

d(T (x), T (y)) ≤ γd(x, y) for all x, y ∈ X .

Then T has a unique fixed point in X . Moreover, for each x ∈ X , the iterative
sequence {T nx}n∈N converges to the fixed point.
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In 1969, Nadler [2] first gave a famous generalization of the Banach contraction
principle for multivalued maps.

Theorem NA. (Nadler)

Let (X, d) be a complete metric space and T : X → CB(X) be a k-contraction;
that is, there exists a nonnegative number k < 1 such that

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X ,

where CB(X) is the class of all nonempty closed bounded subsets of X . Then there
exists v ∈ X such that v ∈ Tv.

In 1989, Mizoguchi and Takahashi [3] proved the following fixed point theorem
which is a generalization of Nadler’s fixed point theorem and gave a partial answer of
Problem 9 in Reich [7]. It is worth to mention that the primitive proof of Mizoguchi-
Takahashi’s fixed point theorem is different. Recently, Suzuki [8] gave a very simple
proof of Mizoguchi-Takahashi’s fixed point theorem.

Theorem MT. (Mizoguchi and Takahashi)

Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued map.
Assume that

H(Tx, Ty) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X , where α is a function from [0,∞) into [0, 1) satisfying lim sups→t+0

α(s) < 1 for all t ∈ [0,∞). Then there exists v ∈ X such that v ∈ Tv.
In 2007, M. Berinde and V. Berinde [4] proved the following interesting fixed point

theorem which generalized Mizoguchi-Takahashi’s fixed point theorem.

Theorem BB. (M. Berinde and V. Berinde)

Let (X, d) be a complete metric space, T : X → CB(X) be a multivalued map
and L ≥ 0. Assume that

H(Tx, Ty) ≤ α(d(x, y))d(x, y)+ Ld(y, Tx),

for all x, y ∈ X , where α is a function from [0,∞) into [0, 1) satisfying lim sups→t+0

α(s) < 1 for all t ∈ [0,∞). Then there exists v ∈ X such that v ∈ Tv.
Very recently, the first author [6] established some new fixed point theorems for

nonlinear multivalued contractive maps by using τ0-metric (see Def. 2.1 below) and
MT -function (see Def. 2.3 below). Applying those results, the first author gave
the generalizations of Berinde-Berinde’s fixed point theorem, Mizoguchi-Takahashi’s
fixed point theorem, Nadler’s fixed point theorem and Banach contraction principle,
Kannan’s fixed point theorems and Chatterjea’s fixed point theorems for nonlinear
multivalued contractive maps in complete metric spaces; see [6] for more detail.
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In this paper, we first establish a new type of fixed point theorem which generalizes
and improves many results in [3-6, 10]. Some applications to the existence theorems
of coincidence point and others are also given.

2. PRELIMINARIES

Throughout this paper, we denote by N and R, the sets of positive integers and real
numbers, respectively. Let (X, d) be a metric space. For each x ∈ X and A ⊆ X ,
let d(x, A) = infy∈A d(x, y). Denote by N (X) the class of all nonempty subsets of
X , C(X) the family of all nonempty closed subsets of X and CB(X) the family of all
nonempty closed and bounded subsets of X . A function H : CB(X)×CB(X) → [0,∞)
defined by

H(A, B) = max
{

sup
x∈B

d(x, A), sup
x∈A

d(x, B)
}

is said to be the Hausdorff metric on CB(X) induced by the metric d on X .
A point v in X is a fixed point of a map T if v = Tv (when T : X → X is a

single-valued map) or v ∈ Tv (when T : X → N (X) is a multivalued map). The set
of fixed points of T is denoted by F (T ).

Let g : X → X be a self-map and T : X → N (X) be a multivalued map. A
point x in X is said to be a coincidence point (see, for instance, [9, 10]) of g and T

if gx ∈ Tx. The set of coincidence points of g and T is denoted by COP(g, T ).
Recall that a function p : X ×X → [0,∞) is called a w-distance [1, 11-15], if the

following are satisfied:
(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X ;
(w2) for any x ∈ X , p(x, ·) : X → [0,∞) is l.s.c.;
(w3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

A function p : X ×X → [0,∞) is said to be a τ -function [12, 14, 15], introduced
and studied by Lin and Du, if the following conditions hold:
(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X ;
(τ2) if x ∈ X and {yn} in X with limn→∞ yn = y such that p(x, yn) ≤ M for some

M = M(x) > 0, then p(x, y) ≤ M ;
(τ3) for any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0,

if there exists a sequence {yn} in X such that limn→∞ p(xn, yn) = 0, then
limn→∞ d(xn, yn) = 0;

(τ4) for x, y, z ∈ X , p(x, y) = 0 and p(x, z) = 0 imply y = z.

It is well known that the metric d is a w-distance and any w-distance is a τ -function,
but the converse is not true; see [6, 12].

The following results are crucial in this paper.
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Lemma 2.1. [15, Lemma 2.1]. Let (X, d) be a metric space and p : X × X →
[0,∞) be a function. Assume that p satisfies the condition (τ3). If a sequence {x n}
in X with limn→∞ sup{p(xn, xm) : m > n} = 0, then {xn} is a Cauchy sequence in
X .

Lemma 2.2. [5, 6]. Let A be a closed subset of a metric space (X, d) and
p : X × X → [0,∞) be any function. Suppose that p satisfies (τ3) and there exists
u ∈ X such that p(u, u) = 0. Then p(u, A) = 0 if and only if u ∈ A.

Very recently, Du [5, 6] first introduced the concepts of τ0-functions and τ 0-metrics
as follows.

Definition 2.1. [5, 6]. Let (X, d) be a metric space. A function p : X × X →
[0,∞) is called a τ 0-function (resp. w0-distance) if it is a τ -function (resp. w-distance)
on X with p(x, x) = 0 for all x ∈ X .

Remark 2.1.
(a) It is obvious that any w0-distance is a τ 0-function;
(b) If p is a τ0-function, then, from (τ4), p(x, y) = 0 if and only if x = y.

Example. [5, 6] Let X = R with the metric d(x, y) = |x − y| and 0 < a < b.
Define the function p : X × X → [0,∞) by

p(x, y) = max{a(y − x), b(x− y)}.

Then p is nonsymmetric and hence p is not a metric. It is easy to see that p is a
τ0-function.

Definition 2.2. [5, 6]. Let (X, d) be a metric space and p be a τ 0-function (resp.
w0-distance). For any A, B ∈ CB(X), define a function Dp : CB(X) × CB(X) →
[0,∞) by

Dp(A, B) = max{δp(A, B), δp(B, A)},

where δp(A, B) = supx∈A p(x, B), then Dp is said to be the τ 0-metric (resp. w0-
metric) on CB(X) induced by p.

Clearly, any Hausdorff metric is a τ0-metric, but the reverse is not true.

Theorem 2.1. [5, 6]. Let (X, d) be a metric space and Dp a τ 0-metric defined
as in Def. 2.3 on CB(X) induced by a τ 0-function p. Then for A, B, C ∈ CB(X),
the following hold:

(i) δp(A, B) = 0 ⇐⇒ A ⊆ B;

(ii) δp(A, B) ≤ δp(A, C) + δp(C, B);

(iii) every τ 0-metric Dp is a metric on CB(X).
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Definition 2.3. [6, 16]. A function ϕ : [0,∞) → [0, 1) is said to be an MT -
function if it satisfies Mizoguchi-Takahashi’s condition ( i.e. lim sups→t+0 ϕ(s) < 1
for all t ∈ [0,∞)).

Obviously, if ϕ : [0,∞) → [0, 1) is a nondecreasing function, then ϕ is an MT -
function. It is known that ϕ : [0,∞) → [0, 1) is an MT -function if and only if
for each t ∈ [0,∞), there exist rt ∈ [0, 1) and εt > 0 such that ϕ(s) ≤ rt for all
s ∈ [t, t + εt); see [16, Remark 2.5] for more details.

Definition 2.4. [17]. We say that ϕ : [0,∞) → [0, 1) is a function of contractive
factor if for any strictly decreasing sequence {xn}n∈N in [0,∞), we have

0 ≤ sup
n∈N

ϕ(xn) < 1.

The following result tell us the relationship between MT -functions and functions
of contractive factor. It is essentially proved in [17], but we give the proof for the sake
of completeness.

Lemma 2.3. [17]. Any MT -function is a function of contractive factor.

Proof. Let ϕ : [0,∞) → [0, 1) be an MT -function and let {xn}n∈N be a strictly
decreasing sequence in [0,∞). Then t0 := limn→∞ xn = infn∈N xn ≥ 0 exists. Since
ϕ is an MT -function, there exist rt0 ∈ [0, 1) and εt0 > 0 such that ϕ(s) ≤ rt0 for all
s ∈ [t0, t0 + εt0). On the other hand, there exists � ∈ N, such that

t0 ≤ xn < t0 + εt0

for all n ∈ N with n ≥ �. Hence ϕ(xn) ≤ rt0 for all n ≥ �. Let

η := max{ϕ(x1), ϕ(x2), · · · , ϕ(x�−1), rt0} < 1.

Then ϕ(xn) ≤ η for all n ∈ N and hence 0 ≤ sup
n∈N

ϕ(xn) ≤ η < 1. Therefore ϕ is a

function of contractive factor.

3. NEW TYPES OF FIXED POINT THEOREMS

In this section, we first establish the following new type of fixed point theorem
which is one of the main results of this paper. It improves and extends Nadler’s fixed
point theorem, Mizoguchi-Takahashi’s fixed point theorem, Berinde-Berinde’s fixed
point theorem and some results in [6].

Lemma 3.1. Let (X, d) be a complete metric space, p be a τ 0-function and T :
X → C(X) be a multivalued map. Suppose that
(P1) there exists a function of contractive factor τ : [0,∞) → [0, 1) such that for

each x ∈ X , if y ∈ Tx with y 	= x then there exists z ∈ Ty such that

p(y, z) ≤ τ(p(x, y))p(x, y);
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(P2) T further satisfies one of the following conditions:

(H1) T is closed;
(H2) the map f : X → [0,∞) defined by f(x) = p(x, Tx) is l.s.c.;
(H3) the map g : X → [0,∞) defined by g(x) = d(x, Tx) is l.s.c.;
(H4) for any sequence {xn} in X with xn+1 ∈ Txn, n ∈ N and limn→∞ xn = v,

we have limn→∞ p(xn, T v) = 0;
(H5) inf{p(x, z) + p(x, Tx) : x ∈ X} > 0 for every z /∈ F(T ).

Then F (T ) 	= ∅.

Proof. Let x1 ∈ X and x2 ∈ Tx1. If x1 = x2, then x1 ∈ F(T ). Otherwise,
if x2 	= x1, since p is a τ 0-function, by Remark 2.1 (b), we have p(x1, x2) > 0. It
follows from (P1) that there exists x3 ∈ Tx2 such that

(3.1) p(x2, x3) ≤ τ(p(x1, x2))p(x1, x2).

Let κ : [0,∞) → [0, 1) by κ(t) = 1+τ (t)
2 . Then 0 ≤ τ(t) < κ(t) < 1 for all t ∈ [0,∞).

By (3.1),

(3.2) p(x2, x3) < κ(p(x1, x2))p(x1, x2).

If p(x2, x3) = 0, then x2 = x3 ∈ F(T ). If p(x2, x3) > 0, then x3 	= x2 and there
exists x4 ∈ Tx3 such that

p(x3, x4) < κ(p(x2, x3))p(x2, x3).

By induction, we can obtain a sequence {xn} in X satisfying the following. For each
n ∈ N,

(3.3) xn+1 ∈ Txn;

(3.4) p(xn, xn+1) > 0;

(3.5) p(xn+1, xn+2) < κ(p(xn, xn+1))p(xn, xn+1).

Since κ(t) < 1 for all t ∈ [0,∞), the sequence {p(xn, xn+1)} is strictly decreasing
in [0,∞). Since τ is a function of contractive factor,

0 ≤ sup
n∈N

τ(p(xn, xn+1)) < 1.

Hence it follows that

0 < sup
n∈N

κ(p(xn, xn+1)) =
1
2

[
1 + sup

n∈N

τ(p(xn, xn+1))
]

< 1.
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Let λ := sup
n∈N

κ(p(xn, xn+1)). So λ ∈ (0, 1). We want to show that {xn} is a Cauchy

sequence in X . Indeed, by (3.5), we have

(3.6) p(xn+1, xn+2) < κ(p(xn, xn+1))p(xn, xn+1) ≤ λp(xn, xn+1).

Hence, by (3.6), it implies that

p(xn+1, xn+2) < λp(xn, xn+1) < · · · < λnp(x1, x2) for each n ∈ N.

We claim that lim
n→∞ sup{p(xn, xm) : m > n} = 0. Let αn = λn

1−λp(x1, x2), n ∈ N.
For m, n ∈ N with m > n, we have

(3.7) p(xn, xm) ≤
m−1∑
j=n

p(xj, xj+1) < αn.

Since λ ∈ (0, 1), limn→∞ αn = 0 and, by (3.7), we get

(3.8) lim
n→∞ sup{p(xn, xm) : m > n} = 0.

Applying (c) of Lemma 2.1, {xn} is a Cauchy sequence in X . By the completeness
of X , there exists v ∈ X such that xn → v as n → ∞. From (τ2) and (3.7), we have

(3.9) p(xn, v) ≤ αn for all n ∈ N.

Now, we verify that v ∈ F(T ). If (H1) holds, since T is closed, xn ∈ Txn−1 and
xn → v as n → ∞, we have v ∈ Tv.

If (H2) holds, by the lower semicontinuity of f , xn → v as n → ∞ and (3.8), we
obtain

p(v, Tv) = f(v)
≤ lim inf

m→∞ f(xn)

= lim inf
m→∞ p(xn, Txn)

≤ lim
n→∞ p(xn, xn+1) = 0,

which implies p(v, Tv) = 0. By Lemma 2.2, we get v ∈ F(T ).
Suppose that (H3) holds. Since {xn} is convergent in X , d(xn, xn+1) = 0. Since

d(v, Tv) = g(v)
≤ lim inf

m→∞ d(xn, Txn)

≤ lim
n→∞ d(xn, xn+1) = 0,
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we have d(v, Tv) = 0 and hence v ∈ F(T ).
If (H4) holds, by (3.8), there exists {an} ⊂ {xn} with limn→∞ sup{p(an, am) :

m > n} = 0 and {bn} ⊂ Tv such that limn→∞ p(an, bn) = 0. By (τ3), limn→∞
d(an, bn) = 0. Since d(bn, v) ≤ d(bn, an) + d(an, v), it implies bn → v as n → ∞.
By the closedness of Tv, we have v ∈ Tv or v ∈ F(T ).

Finally, assume (H5) holds. On the contrary, suppose that v /∈ Tv. Then, by (3.7)
and (3.9), we have

0 < inf
x∈X

{p(x, v) + p(x, Tx)}

≤ inf
n∈N

{p(xn, v) + p(xn, Txn)}

≤ inf
n∈N

{p(xn, v) + p(xn, xn+1)}

≤ lim
n→∞ 2αn

= 0,

a contradiction. Therefore v ∈ F(T ). The proof is completed.

Theorem 3.1. Let (X, d) be a complete metric space, p be a τ 0-function and
T : X → C(X) be a multivalued map. Suppose that the condition (P2) as in Lemma
3.1 holds and further assume that
(P3) there exists a function of contractive factor ϕ : [0,∞) → [0, 1) such that for

each x ∈ X , p(y, Ty) ≤ ϕ(p(x, y))p(x, y) for all y ∈ Tx.

Then F (T ) 	= ∅.

Proof. We first prove that the condition (P1) in Lemma 3.1 holds. Define
τ : [0,∞) → [0, 1) by τ(t) = 1+ϕ(t)

2 . We claim that τ is also a function of contractive
factor. Clearly, 0 ≤ ϕ(t) < τ(t) < 1 for all t ∈ [0,∞). Let {xn}n∈N be a strictly
decreasing sequence in [0,∞). Since ϕ is a function of contractive factor, we have

0 < sup
n∈N

τ(xn) =
1
2

[
1 + sup

n∈N

ϕ(xn)
]

< 1.

which means that τ is a function of contractive factor.
For each x ∈ X , let y ∈ Tx with y 	= x. Then p(x, y) > 0. By (P3), we have

p(y, Ty) < τ(p(x, y))p(x, y)

and hence there exists z ∈ Ty such that

p(y, z) < τ(p(x, y))p(x, y),

which show that (P1) holds. So all the conditions of Lamma 3.1 are satisfied. There-
fore the conclusion follows from Lamma 3.1.



Nonlinear Conditions for Coincidence Point and Fixed Point Theorems 865

Remark 3.1.

(a) [6, Theorem 2.1] is a special case of Lemma 3.1 and Theorem 3.1.

(b) (P1) and (P3) are equivalent. Indeed, in the proof of Theorem 3.1, we have
shown that (P3) implies (P1). If (P1) holds, then it is easy to verify that (P3)
also holds. Hence (P1) implies (P3) and we get the desired result. Therefore
Lamma 3.1 can also be proved by using Theorem 3.1.

By using Theorem 3.1, we can establish the following existence theorem of coin-
cidence point and fixed point.

Theorem 3.2. Let (X, d) be a complete metric space, p be a τ 0-function, T :
X → C(X) be a multivalued map, g : X → X be a self-map, ϕ : [0,∞) → [0, 1)
be a function of contractive factor and L ≥ 0. Suppose that the condition (P2) as in
Lemma 3.1 holds and further assume

(P4) Tx is g-invariant (i.e. g(Tx) ⊆ Tx) for each x ∈ X;

(P5) p(y, Ty) ≤ ϕ(p(x, y))p(x, y)+ Lp(gy, Tx) for all x, y ∈ X .

Then COP(g, T )∩ F(T ) 	= ∅.

Proof. We first prove that the condition (P3) in Theorem 3.1 holds. For each
x ∈ X , if y ∈ Tx, from (P4), we have gy ∈ Tx and hence p(gy, Tx) = 0 by using
Lemma 2.2. So for each x ∈ X , it follows from (P5) that

p(y, Ty) ≤ ϕ(p(x, y))p(x, y) for all y ∈ Tx,

which say that (P3) holds.
Applying Theorem 3.1, F (T ) 	= ∅. So there exists v ∈ X such that v ∈ Tv. By

(P4), gv ∈ Tv. Therefore, v ∈ COP(g, T )∩ F(T ) and the proof is complete.

Using the definition of Dp and the same argument as in the proof of Theorem 3.2,
we can obtain the following intersection theorem.

Theorem 3.3. Let (X, d) be a complete metric space, p be a τ 0-function, Dp be
a τ 0-metric on CB(X), T : X → CB(X) be a multivalued map, g : X → X be a
self-map, ϕ : [0,∞) → [0, 1) be a function of contractive factor and L ≥ 0. Suppose
that the conditions (P2) and (P4) hold and further assume

(P6) Dp(Tx, Ty) ≤ ϕ(p(x, y))p(x, y)+ Lp(gy, Tx) for all x, y ∈ X .

Then COP(g, T )∩ F(T ) 	= ∅.

The following result is immediate from Theorem 3.2 and Lemma 2.3.
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Corollary 3.1. Let (X, d) be a complete metric space, p be a τ 0-function, T :
X → C(X) be a multivalued map, g : X → X be a self-map, ϕ : [0,∞) → [0, 1) be
an MT -function and L ≥ 0. Suppose that the conditions (P2), (P4) and (P5) hold.
Then COP(g, T )∩ F(T ) 	= ∅.

Corollary 3.2. Let (X, d) be a complete metric space, p be a τ 0-function, Dp be
a τ 0-metric on CB(X), T : X → CB(X) be a multivalued map, g : X → X be
a self-map, ϕ : [0,∞) → [0, 1) be an MT -function and L ≥ 0. Suppose that the
conditions (P2), (P4) and (P6) hold. Then COP(g, T )∩ F(T ) 	= ∅.

Notice that we don’t assume that the condition (P2) holds in the hypotheses of the
following result, but g is assumed to be continuous.

Theorem 3.4. Let (X, d) be a complete metric space, T : X → CB(X) be a
multivalued map, g : X → X be a continuous self-map, ϕ : [0,∞) → [0, 1) be a
function of contractive factor and L ≥ 0. Suppose that the condition (P4) holds and
further assume

(P7) H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y)+ Ld(gy, Tx) for all x, y ∈ X .

Then COP(g, T )∩ F(T ) 	= ∅.

Proof. Let p≡d. Then Dp≡H. So (P6) and (P7) are identical. We claim that the
condition (P2) as in Lemma 3.1 holds. Indeed, it suffices to show that (H4) in Lemma
3.1 holds. Let {xn} in X with xn+1 ∈ Txn, n ∈ N and limn→∞ xn = v. Then, by
(P4), gxn+1 ∈ Txn, n ∈ N. Since g : X → X is continuous, limn→∞ gxn = gv. It
follows from (P7) that

lim
n→∞ d(xn+1, T v) ≤ lim

n→∞H(Txn, T v)

≤ lim
n→∞{ϕ(d(xn, v))d(xn, v) + Ld(gv, gxn+1)} = 0.

So limn→∞ d(xn+1, T v) = 0 and hence the condition (H4) holds. Therefore the
conclusion follows from Theorem 3.3.

As an application of Theorem 3.2, we have the following fixed point theorem.

Theorem 3.5. Let (X, d) be a complete metric space, p be a τ 0-function, T :
X → C(X) be a multivalued map, ϕ : [0,∞) → [0, 1) be a function of contractive
factor and L ≥ 0. Suppose that the condition (P2) as in Lamma 3.1 holds and further
assume
(P8) p(y, Ty) ≤ ϕ(p(x, y))p(x, y)+ Lp(y, Tx) for all x, y ∈ X .

Then F (T ) 	= ∅.

Proof. Let g ≡ id be the identity map on X . Hence the conclusion follows from
Theorem 3.2.
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The following result is immediate from Theorem 3.3.

Theorem 3.6. Let (X, d) be a complete metric space, p be a τ 0-function, Dp be
a τ 0-metric on CB(X), T : X → CB(X) be a multivalued map, ϕ : [0,∞) → [0, 1)
be a function of contractive factor and L ≥ 0. Suppose that the condition (P2) as in
Lemma 3.1 holds and further assume

(P9) Dp(Tx, Ty) ≤ ϕ(p(x, y))p(x, y)+ Lp(y, Tx) for all x, y ∈ X .

Then F (T ) 	= ∅.

Remark 3.2.

(a) [6, Theorem 2.2] and [6, Theorem 2.3] are special cases of Theorems 3.5 and
Theorems 3.6, respectively.

(b) Obviously, Lemma 3.1 and Theorems 3.1-3.6 all improve and generalize Berinde-
Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed point theorem,
Nadler’s fixed point theorem and Banach contraction principle.
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