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LEVITIN-POLYAK WELL-POSEDNESS FOR VECTOR
QUASI-EQUILIBRIUM PROBLEMS WITH FUNCTIONAL

CONSTRAINTS

Jian-Wen Peng, Yan Wang and Soon-Yi Wu*

Abstract. In this paper, four types of Levitin-Polyak well-posedness of vector
quasi-equilibrium problems with a functional constraint, as well as an abstract
set constraint are investigated. Some criteria and characterizations for these
types of Levitin-Polyak well-posedness with or without gap functions of vector
quasi-equilibrium problems are obtained. The results in this paper generalize
and extend some known results in the literature.

1. INTRODUCTION

It is well known that the well-posedness is very important for both optimiza-
tion theory and numerical methods of optimization problems, which guarantees that,
for approximating solution sequences, there is a subsequence which converges to
a solution. The study of well-posedness originates from Tykhonov [1] in dealing
with unconstrained optimization problems. Levitin and Polyak [2] extended the
notion to constrained (scalar) optimization, allowing minimizing sequences {xn} to
be outside of the feasible set X0 and requiring d(xn, X0) (the distance from xn

to X0) to tend to zero. The Levitin and Polyak well-posedness is generalized in
[3, 4] for problems with explicit constraint (i.e., functional constraint) g(x) ∈ K,
where g is a continuous map between two metric spaces and K is a closed set. For
minimizing sequences {xn}, instead of d(xn, X0), here the distance d(g(xn), K) is
required to tend to zero. This generalization is appropriate for penalty-type methods
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(e.g., penalty function methods, augmented Lagrangian methods) with iteration pro-
cesses terminating when d(g(xn), K) is small enough (but d(xn, X0) may be large).
Recently, the study of generalized Levitin-Polyak well-posedness was extended to
nonconvex vector optimization problem problems with abstract and functional con-
straints (see [5]), variational inequality problems with an abstract set constraint and
a functional constraint (see [6]), generalized inequality problems with an abstract
set constraint and a functional constraint [7], generalized vector inequality problems
with an abstract set constraint and a functional constraint [8], equilibrium problems
with an abstract set constraint and a functional constraint [9]. Most recently, Li and
Li [10] introduced and researched two types of Levitin-Polyak well-posedness of
vector equilibrium problems with variable domination structures. Huang, Long and
Zhao [11] introduced and researched the Levitin-Polyak well-posedness of vector
quasi-equilibrium problems. Li, Li and Zhang [12] introduced and researched the
Levitin-Polyak well-posedness for two types of generalized vector quasi-equilibrium
problems. However, there is no study on the (generalized) Levitin-Polyak well-
posedness for vector quasi-equilibrium problems with explicit constraint g(x) ∈ K.

Motivated and inspired by the above works, in this paper, we introduce four
types of Levitin-Polyak well-posedness of vector quasi-equilibrium problems with
functional constraints, as well as an abstract set constraint and investigate criteria and
characterizations for these types of Levitin-Polyak well-posedness with or without
a gap function for vector quasi-equilibrium problems. The results in this paper
generalize and extend some known results in [6, 9, 10].

2. PRELIMINARIES

Let (X, dX), (Z, dZ) and Y be locally convex Hausdorff topological vector
spaces, where dX (dZ) is the metric which compatible with the topology of X (Z).
Throughout this paper, we suppose that K ⊂ Z and X1 ⊂ X are nonempty and
closed sets, C : X → 2Y is a set-valued mapping such that for any x ∈ X ,
C(x) is a pointed, closed and convex cone in Z with nonempty interior intC(x),
e : X → Y is a continuous vector-valued mapping and satisfies that for any x ∈ X ,
e(x) ∈ intC(x), f : X × X1 → Y and g : X1 → Z are two vector-valued
mappings, S : X1 → 2X1 is a strict set-valued map (i.e. S(x) �= ∅, ∀x ∈ X1), and
X0 = {x ∈ X1 : g(x) ∈ K}. Let X2 = {x ∈ X1 : x ∈ S(x)}. We consider the
following vector quasi-equilibrium problem with functional constraints, as well as
an abstract set constraint: finding a point x∗ ∈ X0 such that x∗ ∈ S(x∗) and

f(x∗, y) /∈ −intC(x∗), ∀y ∈ S(x∗).(VQEP)

We denote by Ω the set of solutions of (VQEP).
Let (P, d) be a metric space, P1 ⊆ P and x ∈ P . We denote by d(x, P1) =

inf{d(x, p) : p ∈ P1} the distance function from the point x ∈ P to the set P1.
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Throughout this paper, we always assume that X0 �= ∅ and g is continuous on
X1.

Definition 2.1. (i) A sequence {xn} ⊂ X1 is called a type I Levitin-Polyak (in
short LP) approximating solution sequence if there exists a sequence {εn} ⊆ R+ =
{r ∈ R : r ≥ 0} with εn → 0 such that

(2.1) d(xn, X0) ≤ εn,

(2.2) xn ∈ S(xn),

and

(2.3) f(xn, y) + εne(xn) /∈ −intC(xn), ∀y ∈ S(xn).

(ii) A sequence {xn} ⊂ X1 is called a type II LP approximating solution
sequence if there exists a sequence {εn} ⊆ R+ with εn → 0 such that (2.1), (2.2)
and (2.3) hold, and for any n ∈ N there exists yn ∈ S(xn) such that

(2.4) f(xn, yn) − εne(xn) ∈ −C(xn).

(iii) A sequence {xn} ⊂ X1 is called a generalized type I LP approximating
solution sequence if there exists a sequence {εn} ⊆ R+ with εn → 0 such that

(2.5) d(g(xn), K) ≤ εn,

and (2.2) and (2.3) hold.
(iv) A sequence {xn} ⊂ X1 is called a generalized type II LP approximating

solution sequence if there exists a sequence {εn} ⊆ R+ with εn → 0 such that
(2.2), (2.3) and (2.5) hold, and for any n ∈ N there exists yn ∈ S(xn) such that
(2.4) holds.

Definition 2.2. (VQEP) is said to be type I (resp. type II, generalized type I,
generalized type II) LP well-posed if the solution set Ω of (VQEP) is nonempty
and for every type I (resp. type II, generalized type I, generalized type II) LP
approximating solution sequence {xn} for (VQEP), there exists a subsequence {xnj}
of {xn} and x̄ ∈ Ω such that xnj → x̄.

Remark 2.1. (i) It is clear that any (generalized) type II LP approximating
solution sequence of (VQEP) is a (generalized) type I LP approximating solution
sequence of (VQEP). Thus the (generalized) type I LP well-posedness of (VQEP)
implies the (generalized) type II LP well-posedness of (VQEP).

(ii) Each type of LP well-posedness for (VQEP) implies that the solution set is
nonempty and compact.

(iii) Suppose that g is uniformly continuous on the set
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(2.6) S(δ0) = {x ∈ X1 : d(x, X0) ≤ δ0},
for some δ0 ≥ 0. Then, generalized type I (resp. generalized type II) LP well-
posedness of (VQEP) implies type I (resp. type II) LP well-posedness of (VQEP).

(iv) If S(x) = X0 for all x ∈ X1, then the type I (resp. type II) LP well-
posedness of (VQEP) in Definition 2.2 reduces to type I (resp. type II) LP well-
posedness of vector equilibrium problem introduced by Li and Li [10].

(v) If Y = R and C(x) = R+ for all x ∈ X , and S(x) = X0 for all x ∈ X1,
then the type I (resp. type II, generalized type I, generalized type II) LP well-
posedness of (VQEP) defined in Definition 2.2 reduces to the type I (resp. type II,
generalized type I, generalized type II) LP well-posedness of the scalar equilibrium
problem with an abstract set constraint and a functional constraint introduced by
Long, Huang and Teo [9]. Moreover, if X∗ is the topological dual space of X ,
F : X1 → X∗ is a mapping, 〈F (x), z〉 denotes the value of the functional F (x)
at z, and f(x, y) =< F (x), y − x > for all x, y ∈ X1, then the type I (resp. type
II, generalized type I, generalized type II) LP well-posedness of (VQEP) defined in
Definition 2.2 reduces to the type I (resp. type II, generalized type I, generalized
type II) LP well-posedness for the variational inequality with abstract and functional
constraints introduced by Huang, Yang and Zhu [6].

3. CRITERIA AND CHARACTERIZATIONS FOR LP WELL-POSEDNESS OF (VQEP) WITHOUT

INVOLVING GAP FUNCTIONS OF (VQEP)

In this subsection, we give some criteria and characterizations for the (general-
ized) LP well-posedness of (VQEP) without using any gap functions of (VQEP).

Now we consider the Kuratowski measure of noncompactness for a nonempty
subset A of X (see [13]) defined by

α(A) = inf{ε > 0 : A ⊂ ∪n
i=1Ai, for every Ai, diamAi < ε},

where diamAi is the diameter of Ai defined by diamAi = sup{d(x1, x2) : x1, x2 ∈
Ai}. Given two nonempty subsets A and B of X , the excess of set A and B is
defined by e(A, B) = sup{d(a, B) : a ∈ A}, and the Hausdorff distance between
A and B is defined by H(A, B) = max{e(A, B), e(B, A)}.

For any ε > 0, four types of approximating solution sets for (VQEP) are defined,
respectively, by

T1(ε) := {x ∈ X1 : x ∈ S(x) and d(x, X0) ≤ ε and f(x, y) + εe(x) /∈
−intC(x), ∀y ∈ S(x)},

T2(ε) := {x ∈ X1 : x ∈ S(x) and d(g(x), K) ≤ ε and f(x, y) + εe(x) /∈
−intC(x), ∀y ∈ S(x)},

T3(ε) := {x ∈ X1 : x ∈ S(x) and d(x, X0) ≤ ε and f(x, y) + εe(x) /∈
−intC(x), ∀y ∈ S(x) and f(x, y)− εe(x) ∈ −C(x), for some y ∈ S(x)},
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and
T4(ε) := {x ∈ X1 : x ∈ S(x) and d(g(x), K) ≤ ε and f(x, y) + εe(x) /∈

−intC(x), ∀y ∈ S(x) and f(x, y)− εe(x) ∈ −C(x), for some y ∈ S(x)}.

Theorem 3.1. Let X be complete.
(i) (VQEP) is type I LP well-posed if and only if the solution set Ω is nonempty,

compact and e(T1(ε), Ω) → 0 as ε → 0.

(ii) (VQEP) is generalized type I LP well-posed if and only if the solution set
Ω is nonempty, compact and

(3.1) e(T2(ε), Ω) → 0 as ε → 0.

(iii) (VQEP) is type II LP well-posed if and only if the solution set Ω is
nonempty, compact and e(T3(ε), Ω) → 0 as ε → 0.

(iv) (VQEP) is generalized type II LP well-posed if and only if the solution set
Ω is nonempty, compact and e(T4(ε), Ω) → 0 as ε → 0.

Proof. The proof of (i), (iii) and (iv) are similar with that of (ii) and they are
omitted here. Let (VQEP) be generalized type I LP well-posed. Then Ω is nonempty
and compact. Now we show that (3.1) holds. Suppose to the contrary that there
exist l > 0, εn > 0 with εn → 0 and zn ∈ T2(εn) such that

(3.2) d(zn, Ω) ≥ l.

Since {zn} ⊂ T2(εn) we know that {zn} is generalized type I LP approximating
solution for (VQEP). By the generalized type I LP well-posedness of (VQEP),
there exist a subsequence {znj} of {zn} converging to some element of Ω. This
contradicts (3.2). Hence (3.1) holds.

Conversely, suppose that Ω is nonempty, compact and (3.1) holds. Let {xn}
be a generalized type I LP approximating solution for (VQEP). Then there exists a
sequence {εn} with {εn} ⊆ R1

+ and εn → 0 such that (2.2), (2.3) and (2.5) hold.
Thus, {xn} ⊂ T2(εn). It follows from (3.1) that there exists a sequence {zn} ⊆ Ω
such that

d(xn, zn) = d(xn, Ω) ≤ e(T2(εn), Ω) → 0.

Since Ω is compact, there exists a subsequence {znk
} of {zn} converging to

x0 ∈ Ω. And so the corresponding subsequence {xnk
} of {xn} converging to x0.

Therefore (VQEP) is generalized type I LP well-posed. This completes the proof.

Theorem 3.2. Let X be complete. Assume that
(i) the vector-valued function f is continuous on X 1 × X1;
(ii) the mapping W : X → 2Y defined by W (x) = Y \ −intC(x) is closed;
(iii) S be lower semi-continuous and closed on X 1.
Then (VQEP) is generalized type I LP well-posed if and only if
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(3.3) T2(ε) �= ∅, ∀ε > 0 and lim
ε→0

α(T2(ε)) = 0.

Proof. First we show that for every ε > 0, T2(ε) is closed. In fact, let {xn} ⊂
T2(ε) and xn → x̄. Then (2.2) holds,

(3.5) d(g(xn), K) ≤ ε,

and

(3.6) f(xn, y) + εe(xn) /∈ −intC(xn), ∀y ∈ S(xn).

From (2.2) and the closedness of S, we get x̄ ∈ S(x̄). From (3.5), we obtain
d(g(x̄), K) ≤ ε.

Since S is lower semi-continuous, for any v ∈ S(x̄), we can find vn ∈ S(xn)
with vn → v such that

(3.7) f(xn, vn) + εe(xn) ∈ W (xn).

By assumption (i), (ii) and (3.7), we have f(x̄, v)+ εe(x̄) /∈ −intC(x̄), ∀v ∈ S(x̄).
Hence x̄ ∈ T2(ε).

Second, we show that

(3.8) Ω = ∩ε>0T2(ε).

It is obvious that Ω ⊂ ∩ε>0T2(ε). Now suppose that εn > 0 with εn → 0 and
x∗ ∈ ∩∞

n=1T2(εn). Then, we have x∗ ∈ S(x∗),

(3.9) d(g(x∗), K) ≤ εn, ∀n ∈ N,

and

(3.10) f(x∗, y) + εne(x∗) /∈ −intC(x∗), ∀y ∈ S(x∗).

Since K is closed, g is continuous and (3.9) holds, we have x∗ ∈ X0. It
follows from (3.10) and closedness of W (x∗) that f(x∗, y) ∈ W (x∗), ∀y ∈ S(x∗).
i.e., x∗ ∈ Ω. Hence (3.8) hold.

Now we assume that (3.3) holds. Clearly, T2(.) is increasing with ε > 0. By
the Kuratowski theorem (see [14]), we have

(3.11) H(T2(ε), Ω) → 0, as ε → 0.

Let {xn} be any generalized type I LP approximating solution sequence for
(VQEP). Then there exists εn > 0 with εn → 0 such that (2.2), (2.3) and (2.5) hold.
Thus, xn ∈ T2(εn). It follows from (3.11) that d(xn, Ω) → 0. So ∃un ∈ Ω, such
that

(3.12) d(xn, un) → 0.
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Since Ω is compact, there exists a subsequence {unj} of {un} and a solution
x∗ ∈ Ω satisfying

(3.13) unj → x∗.

From (3.12) and (3.13), we get d(xnj , x
∗) → 0.

Conversely, let (VQEP) be generalized type I LP well-posed. Observe that for
every ε > 0,

H(T2(ε), Ω) = max{e(T2(ε), Ω), e(Ω, T2(ε))} = e(T2(ε), Ω).

Hence,
α(T2(ε)) ≤ 2H(T2(ε), Ω) + α(Ω)

(3.14) = 2e(T2(ε), Ω),

where α(Ω) = 0 since Ω is compact. From Theorem 3.1(ii), we know that
e(T2(ε), Ω) → 0 as ε → 0. It follows from (3.14) that (3.3) holds. This com-
pletes the proof.

By similar argument with the proof of Theorem 3.2, we can prove the following
result:

Theorem 3.3. Let X be complete. Assume that
(i) the vector-valued function f is continuous on X1 × X1;
(ii) the mapping W : X → 2Y defined by W (x) = Y \ −intC(x) is closed;
(iii) S be lower semi-continuous and closed on X1.

Then (VQEP) is type I LP well-posed if and only if

T1(ε) �= ∅, ∀ε > 0 and lim
ε→0

α(T1(ε)) = 0.

4. CRITERIA AND CHARACTERIZATIONS INVOVLING THE GAP FUNCTIONS OF THE (VQEP)

In this subsection, we give some criteria and characterizations for the four types
of LP well-posedness of (VQEP) involving the gap functions of (VQEP).

Chen, Yang and Yu [15] introduced a nonlinear scalarization function ξe : X ×
Z → R defined by:

ξe(x, y) = inf{λ ∈ R : y ∈ λe(x)− C(x)}.

Definition 4.1. A mapping φ : X1 → R ∪ {+∞} is said to be a gap function
on X0 for (VQEP) if

(i) φ(x) ≥ 0, ∀x ∈ X0 ∩ X2;
(ii) φ(x∗) = 0 and x∗ ∈ X0 ∩ X2 iff x∗ ∈ Ω.
We introduce a function as follows:
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(4.1) φ(x) = sup
y∈S(x)

{−ξe(x, f(x, y))},∀x ∈ X1.

By Proposition 4 in [12], we can easily obtain the following Proposition 4.1:

Proposition 4.1. If for any x ∈ X0 ∩ X2, f(x, x) ∈ −∂C(x), where ∂C(x) is
the topological boundary of C(x). Then the mapping φ defined by (4.1) is a gap
function of (VQEP).

Proposition 4.2. Let function φ defined by (4.1). Assume that
(i) the vector-valued function f is continuous on X × X 1;
(ii) the mapping W : X → 2Y defined by W (x) = Y \ −intC(x) is upper-

semi-continuous;
(iii) S is lower semi-continuous on X 1.
Then φ is lower semi-continuous from X 1 to R∪ {+∞}. Further assume that

the solution set Ω of (VQEP) is nonempty, then Dom(φ) �= ∅.

Proof. First, it is obvious that φ(x) > −∞, ∀x ∈ X1. Otherwise, suppose that
there exists x0 ∈ X1 such that φ(x0) = −∞. Then

ξe(x0, f(x0, y)) ≥ +∞, ∀y ∈ S(x0).

which is impossible, since ξe(x0, ·) is a finite function on X .
Second, we show that φ is lower semi-continuous on X1. Indeed, ξe(., .) is

upper semi-continuous by the condition (i), (ii) and Theorem 2.1 in [15]. It follows
from Proposition 19 in Section 1 of Chapter 3 [16] that φ defined by (4.1) is lower
semi-continuous on X1. Furthermore, if Ω �= ∅, by Proposition 4.1, we see that
Dom(f) �= ∅. This completes the proof.

In order to relate the various LP well-posedness of (VQEP) with that of con-
strained minimization problems studied in [7], we recall the various LP well-
posedness of the following general constrained program [7]:

(P )
minφ(x)
s.t. x ∈ X ′

1

g(x) ∈ K.

where X ′
1 ⊆ X1 is nonempty and closed set and φ : X1 → R∪ {∞} is proper and

lower semicontinuous. The feasible set of (P) is X ′
0 = {x ∈ X ′

1 : g(x) ∈ K}. The
optimal set and optimal value of (P) are denoted by Ω̄ and v̄, respectively. Note that
if Dom(φ) ∩ X

′
0 �= ∅, then v̄ < +∞, where Dom(φ) = {x ∈ X1 : φ(x) < +∞}.

Definition 4.1. [7] (i) A sequence {xn} ⊂ X ′
1 is called a type I LP minimizing

sequence for (P) if
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(4.2) lim sup
n→+∞

φ(xn) ≤ v̄,

and

(4.3) d(xn, X ′
0) → 0.

(ii){xn} ⊂ X ′
1 is called a type II LP minimizing sequence for (P) if

(4.4) lim
n→∞φ(xn) = v̄,

and (4.3) hold.
(iii) {xn} ⊂ X ′

1 is called a generalized type I LP minimizing sequence for (P)
if

(4.5) d(g(xn), K) → 0,

and (4.2) hold.
(iv) {xn} ⊂ X ′

1 is called a generalized type II LP minimizing sequence for (P)
if (4.4) and (4.5) hold.

Definition 4.2. (P) is said to be type I (resp. type II, generalized type I,
generalized type II) LP well-posed if Ω̄ �= ∅, and for any type I (resp. type II,
generalized type I, generalized type II) LP minimizing sequence {xn} for (P), there
exists a subsequence {xnj} of {xn} and x̄ ∈ Ω̄ such that xnj → x̄.

In the rest of this paper, we set X
′
1 in (P ) equal to X1 ∩ X2. Note that if S

is closed on X1, then X
′
1 is closed. The following lemma reveals some relation-

ship between LP approximating solution sequence of (VQEP) and LP minimizing
sequence of (P).

Lemma 4.1. Let the function φ defined by (4.1).
(i) {xn} ⊂ X1 is a sequence such that there exist {εn} ⊆ R+ with εn → 0

satisfying (2.2) and (2.3) if and only if {x n} ⊂ X ′
1 and (4.2) holds with v̄ = 0.

(ii) {xn} ⊂ X1 is a sequence such that there exist {εn} ⊆ R+ with εn → 0
satisfying (2.2) and (2.3) and for any n ∈ N, there exists y n ∈ S(xn) satisfying
(2.4) if and only if {xn} ⊂ X ′

1 and (4.4) holds with v̄ = 0.

Proof. (i) Let {xn} ⊂ X1 be any sequence, if there exists {εn} ⊆ R+ with
εn → 0 satisfying (2.2) and (2.3), then we can easily verify that {xn} ⊂ X ′

1 and
φ(xn) ≤ εn. It follows that (4.2) holds with v̄ = 0.

For the converse, let {xn} ⊂ X ′
1 and (4.2) hold. We can see that {xn} ⊂ X1

and (2.2) hold. Furthermore, by (4.2), we have that there exist {εn} ⊆ R+ with
εn → 0 such that φ(xn) ≤ εn. That is,
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sup
y∈S(xn)

{−ξe(xn, f(xn, y))} ≤ εn.

Hence,
ξe(xn, f(xn, y)) ≥ −εn, ∀y ∈ S(xn).

It follows from Proposition 2.3 (iii) in [15] that (2.3) holds.
(ii) Let {xn} ⊂ X1 be any sequence, we can verify that lim inf

n→+∞ φ(xn) ≥ 0 hold
if and only if there exists {αn} ⊆ R+ with αn → 0 such that for any n ∈ N there
exists yn ∈ S(xn) satisfying

f(xn, yn) − αne(xn) ∈ −C(xn).

From proof of (i), we know that

lim sup
n→+∞

φ(xn) ≤ 0

and {xn} ⊂ X ′
1 hold if and only if {xn} ⊆ X1, such that there exist {βn} ⊆ R+

with βn → 0 satisfy (2.2) and (2.3). Finally, we let εn = max{αn, βn} and the
conclusion follows. This completes the proof.

Theorem 4.1. Assume that Ω �= ∅. Then
(i) (VQEP) is generalized type I (resp. generalized type II) LP well-posed if

and only if (P) is generalized type I (resp. generalized type II) LP well-posed with
φ(x) defined by (4.1).

(ii) If (VQEP) is type I (resp. type II) LP well-posed, then (P) is type I (resp.
type II) LP well-posed with φ(x) defined by (4.1).

Proof. Let φ(x) be defined by (4.1). Since Ω �= ∅, it is easily checked that
x̄ ∈ Ω is a solution of (VQEP) if and only if x̄ is an optimal solution of (P) with
v̄ = φ(x̄) = 0.

(i) Similar to the proof of Lemma 4.1, it is also routine to check that a sequence
{xn} is a generalized type I (resp., generalized type II) LP approximating solution
sequence of (VQEP) if and only if it is a generalized type I (resp., generalized type
II) LP approximating solution sequence of (P). So, (VQEP) is generalized type I
(resp. generalized type II) LP well-posed if and only if (P) is generalized type I
(resp. generalized type II) LP well-posed with φ(x) defined by (4.1).

(ii) Since X0
′ ⊆ X0, d(x, X0) ≤ d(x, X0

′
) for any x. This fact together with

Lemma 4.1 implies that a type I (resp. type II) LP minimizing sequence of (P) is a
type I (resp. type II) LP approximating solution sequence of (VQEP). So the type I
(resp. type II) LP well-posedness of (VQEP) implies that the type I (resp. type II)
LP well-posedness of (P) with φ(x) defined by (4.1).This completes the proof.

Next section, we give some criteria and characterizations for types of LP well-
posedness of (VQEP).
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Now consider a real-valued function c = c(t, s, r) defined for t, s, r ≥ 0 suffi-
ciently small, such that

(4.6) c(t, s, r) ≥ 0, ∀t, s, r, c(0, 0, 0) = 0,

(4.7) sn → 0, tn ≥ 0, rn = 0, c(tn, sn, rn) → 0 implythat tn → 0.

Theorem 4.2. If (VQEP) is type II LP well-posed, the set-valued map S is
closed-valued, then there exists a function c satisfying (4.6) and (4.7) such that

(4.8) |φ(x)| ≥ c(d(x, Ω), d(x,X0), d(x, S(x))),∀x ∈ X1,

where φ(x) is defined by (4.1). Conversely, suppose that Ω is nonempty compact,
and (4.8) hold for some c satisfying (4.6) and (4.7). Then (VQEP) is type II LP
well-posed.

Proof. Let c(t, s, r) be the real-valued function defined by

(4.9) c(t, s, r)=inf{|φ(x)| : x∈X1, d(x, Ω)=t, d(x,X0)=s, d(x, S(x))=r}.

Since Ω �= ∅, it is obvious that c(0, 0, 0) = 0. Moreover, if sn → 0, tn ≥
0, rn = 0 and c(tn, sn, rn) → 0, then there exists a sequence {xn} ⊂ X1 with

(4.10) d(xn, Ω) = tn,

(4.11) d(xn, X0) = sn → 0,

(4.12) d(xn, S(xn)) = rn = 0,

such that

(4.13) |φ(xn)| → 0.

Since S is closed-valued, xn ∈ S(xn) for any n. This combined with (4.11), (4.13)
and Lemma 4.1 imply that {xn} is a type II approximating solution sequence of
(VQEP). By proposition 3.1, we have that tn → 0.

Conversely, let {xn} be a type II approximating solution sequence of (VQEP).
Then by (4.9) we have |φ(xn)| ≥ c(d(xn, Ω), d(xn, X0), d(xn, S(xn))). Let tn =
d(xn, Ω), sn = d(xn, X0), rn =d(xn, S(xn)). Then sn→0 and rn =0 ∀n ∈ N.
Moreover, by Lemma 4.1, we have |φ(xn)|→0. Then c(tn, sn, rn)→0. These facts
together with the properties of the function c implies that tn → 0. By proposition
3.1, we see that (VQEP) is type II well-posed. This completes the proof.
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Theorem 4.3. If (VQEP) is generalized type II LP well-posed, the set-valued
map S is closed-valued, then there exists a function c satisfying (4.6) and (4.7)
such that

(4.14) |φ(x)| ≥ c(d(x, Ω), d(g(x),K), d(x, S(x))), ∀x∈ X1,

where φ(x) is defined by (4.1). Conversely, suppose that Ω is nonempty compact,
and (4.14) hold for some c satisfying (4.6) and (4.7). Then (VQEP) is generalized
type II LP well-posed.

Proof. The proof is almost the same as Theorem 4.2. The only difference lies
in the proof of the first part of Theorem 4.2. Here we define

c(t, s, r) = inf{|φ(x)| : x ∈ X1, d(x, Ω) = t, d(g(x),K) = s, d(x, S(x)) = r}.

This completes the proof.

Definition 4.2. [6]. (i) Let Z be a topological space and let Z1 ⊂ Z be a
nonempty subset. Suppose that G : Z → R ∪ {+∞} is an extend real-valued
function. Then the function G is said to be level-compact on Z1 if for any s ∈ R
the subset {z ∈ Z1 : G(z) ≤ s} is compact.

(ii) Let Z be a finite dimensional normed space and Z1 ⊂ Z be nonempty. A
function h : Z → R ∪ {+∞} is said to be level-bounded on Z1 if Z1 is bounded
or

lim
z∈Z1,||z||→+∞

h(z) = +∞.

The following proposition presents some sufficient conditions for type I LP
well-posedness of (VQEP).

Proposition 4.3. Suppose that the solution set Ω is nonempty, for any x ∈
X0∩X2, f(x, x) ∈ −∂C(x), the vector-valued function f is continuous on X×X 1,
the mapping W : X → 2Y defined by W (x) = Y \ −intC(x) is upper-semi-
continuous and the set-valued map S is lower semi-continuous and closed on X 1.
Further assume that one of the following conditions holds.

(i) there exists 0 < δ1 < δ0 such that X1(δ1) is compact where

(4.15) X1(δ1) = {x ∈ X1 ∩ X2 : d(x, X0) ≤ δ1};

(ii) the function φ defined by (4.1) is level-compact on X 1 ∩ X2;
(iii) X is a finite-dimensional normed space and

(4.16) lim
x∈X1∩X2,||x||→+∞

max{φ(x), d(x, X0)} = +∞;
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(iv) there exists 0 < δ1 < δ0 such that φ is level-compact on X1(δ1) defined
by (4.15);

Then (VQEP) is type I LP well-posed.

Proof. First we show that each one of (i), (ii) and (iii) implies (iv). Clearly,
either of (i) and (ii) implies (iv). Now we show that condition (iii) implies condition
(iv). We notes that the set X1 ∩ X2 is closed by the closedness of S on X1. Then,
we need only to show that for any t ∈ R the set A = {x ∈ X1(δ1) : φ(x) ≤ t} is
bounded since X is finite-dimensional space and the function φ defined by (4.1) is
lower semi-continuous on X1 ∩ X2 and thus, A is closed. Suppose to the contrary,
there exists t ∈ R and {x′

n} ⊂ X1(δ1) such that ||x′
n|| → +∞ and φ(x′

n) ≤ t.
From {x′n} ⊂ X1(δ1) we have d(x′

n, X0) ≤ δ1. Thus, max{φ(x′
n), d(x′

n, X0)} ≤
max{t, δ1}, which contradicts condition (4.16).

Therefore, we only need to prove that if condition (iv) hold, then (VQEP) is
type I LP well-posed. Let {xn} be a type I LP approximating solution sequence
of (VQEP). Then there exists {εn} ⊂ R+ with εn > 0 such that (2.1), (2.2) and
(2.3) hold. From (2.1) and (2.2), we can assume without loss of generality that
{xn} ⊂ X1(δ1). By Lemma 4.1, we can assume without loss of generality that
{xn} ⊆ {x ∈ X1(δ1) : φ(x) ≤ 1}, where φ is defined by (4.1). By the level-
compact of φ on X1(δ1), there exist a subsequence {xnj} of {xn} and x̄ ∈ X1(δ1)
such that xnj → x̄. Taking limit in (2.1) we have x̄ ∈ X0. Since S is closed and
(2.2) holds, we also have x̄ ∈ S(x̄). That is,

(4.17) x̄ ∈ X0 ∩ X2 = X ′
0.

Furthermore, by Proposition 4.2 and Lemma 4.1, we have

φ(x̄) ≤ lim inf
j→+∞

φ(xnj ) ≤ lim sup
j→+∞

φ(xnj) ≤ 0.

This fact combined with (4.17) and Proposition 4.1 implies that φ(x̄) = 0 and
x̄ ∈ Ω. This completes the proof.

Similar to Proposition 4.3, we can prove the following result:

Proposition 4.4. Suppose that the solution set Ω is nonempty, for any x ∈
X0∩X2, f(x, x) ∈ −∂C(x), the vector-valued function f is continuous on X×X 1,
the mapping W : X → 2Y defined by W (x) = Y \ −intC(x) is upper-semi-
continuous and the set-valued map S is lower semi-continuous and closed on X 1.
Further assume that one of the following conditions holds.

(i) there exists 0 < δ1 < δ0 such that X2(δ1) is compact where

(4.18) X2(δ1) = {x ∈ X1 ∩ X2 : d(g(x), K) ≤ δ1};
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(ii) the function φ defined by (4.1) is level-compact on X1 ∩ X2;
(iii) X is a finite-dimensional normed space and

lim
x∈X1∩X2,||x||→+∞

max{φ(x), d(g(x), K)}= +∞;

(iv) there exists 0 < δ1 < δ0 such that φ is level-compact on X2(δ1) defined
by (4.18);

Then (VQEP) is generalized type I LP well-posed.

Remark 4.1. If X is a finite dimensional space, then the ”level-compactness”
condition in Propositions 4.3 and 4.4 can be replaced by the ”level-boundedness”
condition.

Remark 4.2. (i) Theorems 3.3, Propositions 4.1, 4.2, Theorems 4.1 and 4.2
respectively, generalize and extend Theorem 3.1, Propositions 4.1, 4.2, Theorems
4.1 and 4.2 in [10] from vector equilibrium problems case to the vector quasi-
equilibrium problems case. And so Theorems 3.2 and 4.3, respectively, generalize
and extend Theorems 3.1 and 4.2 in [10] in several ways.

(ii) Theorems 3.1(i), 3.1(2), 3.3, 3.2, Propositions 4.3 and 4.4, respectively,
generalize and extend Theorems 3.1, 3.5, 3.4, 3.6, propositions 4.2 and 4.3 in [9]
from scalar equilibrium problems case to the vector quasi-equilibrium problems
case.

(iii) It is easy to see that the results in this paper generalize and extend the main
results in [6] in several aspects.
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