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FROM STEINER TRIPLE SYSTEMS TO 3-SUN SYSTEMS

Chin-Mei Fu, Nan-Hua Jhuang, Yuan-Lung Lin and Hsiao-Ming Sung

Abstract. An n-sun is the graph with 2n vertices consisting of an n-cycle
with n pendent edges which form a 1-factor. In this paper we show that the
necessary and sufficient conditions for the decomposition of complete tripartite
graphs with at least two partite sets having the same size into 3-suns and give
another construction to get a 3-sun system of order n, for n ≡ 0, 1, 4, 9 (mod
12). In the construction we metamorphose a Steiner triple system into a 3-sun
system. We then embed a cyclic Steiner triple system of order n into a 3-sun
system of order 2n− 1, for n ≡ 1 (mod 6).

1. INTRODUCTION

A decomposition of a graph G is a set H = {H1, H2, . . . , Ht} of subgraphs of
G such that E(H1) ∪ E(H2) ∪ · · · ∪ E(Ht) = E(G) and E(Hi) ∩ E(Hj) = ∅ for
i �= j. For convenience, we say that G can be decomposed into H1, H2, · · · , Ht. If
Hi is isomorphic to a graph H for each i = 1, 2, . . . , t, then we say that G has an
H decomposition. A Steiner triple system of order n (more simply triple system) is
a pair (X, T ) where X is an n-set and T is a collection of edge disjoint triangles (or
triples) which partition the edge set of Kn with the vertex set X . It is well known
[3] that the spectrum for Steiner triple systems(STS) is precisely the set of all n ≡ 1
or 3 (mod 6). A 3-sun is a graph with six vertices a, b, c, d, e, f consisting of a
triangle (a, b, c) and a 1-factor {{a, d}, {b, e}, {c, f}}. We will denote this 3-sun
by (a, b, c; d, e, f). A 3-sun system of order n,(3SS(n)), is a pair (Y, S) where
Y is an n-set and S is a collection of edge disjoint 3-suns which partition the edge
set of Kn with the vertex set Y . In [6], Yin had shown that the spectrum for 3-sun
system is precisely n ≡ 0, 1, 4, 9 (mod 12) and if (Y, S) is a 3-sun system of order
n then |S| = n(n − 1)/12.

Received May 17, 2010, accepted December 18, 2010.
Communicated by Hung-Lin Fu.
2010 Mathematics Subject Classification: 05B30.
Key words and phrases: Steiner triple system, 3-Sun, 3-Sun system, Cyclic, Decomposition.
This research is supported by NSC 98-2115-M-032-005-MY3.

531



532 Chin-Mei Fu, Nan-Hua Jhuang, Yuan-Lung Lin and Hsiao-Ming Sung

In this paper we give the different constructions to get 3-sun systems of order
n. Since a 3-sun is a tripartite graph, in Section 2, we consider the decomposition
of a complete tripartite graph Kp,p,r into 3-suns. We obtain that the necessary and
sufficient conditions for the existence of a decomposition of Kp,p,r into 3-suns. In
Section 3, we use recursive construction to construct 3-sun systems of order n when
n ≡ 0, 4 (mod 12). For n ≡ 1 (mod 12), we construct a cyclic 3-sun system of order
n. For n ≡ 9 (mod 12), we metamorphose a Kirkman triple system(KTS) of order
n into a 3-sun system of order n. Clearly the triangles of a 3-sun system cannot
form a triple system. So the following problem is immediate. What is the largest
cyclic Steiner triple system can be embedded in the partial triple system consisting
of the triangles of a 3-sun system? In Section 4, we embed a cyclic Steiner triple
system of order 6m + 1 into a 3-sun system of order 12m + 1.

2. DECOMPOSE Kp,q,r INTO 3-SUNS

Let p, q, r be positive integers. For convenience, we will let A={a1, a2, · · · , ap},
B = {b1, b2, · · · , bq}, C = {c1, c2, · · · , cr} be three partite sets of Kp,q,r.

Lemma 2.1. Let p, q, r be positive integers and p ≥ q ≥ r. If Kp,q,r has a
3-sun decomposition, then 6 | (pq + qr + pr) and r ≥ max{ p

3 , pq
p+q}.

Proof. If Kp,q,r has a 3-sun decomposition, then 6 | (pq + qr + pr) and
there are pq+qr+pr

6 3-suns. Since a 3-sun has three vertices of degree 3 and each
belongs to different partite sets, we have (p + q)r ≥ 3 · pq+qr+pr

6 . It implies that
(p + q)r ≥ pq, thus r ≥ pq

p+q . Since Kp,q,r can be decomposed into at most qr

3-suns, we have pq+qr+pr
6 ≤ qr. Combining the inequality (p+q)r ≥ pq, we obtain

that r ≥ p
3 . Therefore, r ≥ max{p

3 , pq
p+q}.

If p = q = r, then Kp,q,r has a 3-sun decomposition provided that p is even.
For example, K2,2,2 can be decomposed into two 3-suns: (a1, b1, c1; b2, c2, a2) and
(a2, b2, c2; b1, c1, a1). Since Kn,n,n can be decomposed into n2 triangles from a
Latin square of order n, we obtain that Kp,p,p has a 3-sun decomposition if and
only if p is even.

Next we will consider the decomposition of Kp,p,r.

Lemma 2.2. Let p ≥ 2 and r ≥ 2 be integers. If Kp,p,r has a 3-sun decom-
position, then p

2 ≤ r ≤ 5p
2 and (1) p ≡ 0 (mod 6), (2) p ≡ 2 (mod 6), r ≡ 2

(mod 3), or (3) p ≡ 4 (mod 6), r ≡ 1 (mod 3).

Proof. By counting the number of edges of Kp,p,r, if Kp,p,r has a 3-sun
decomposition, then 6 | p(p + 2r). It follows that p should be even and 3|p or
3|p + 2r. This implies either p ≡ 0 (mod 6), p ≡ 2 (mod 6) and r ≡ 2 (mod 3) or



From Steiner Triple Systems to 3-Sun Systems 533

p ≡ 4 (mod 6) and r ≡ 1 (mod 3). If p ≥ r, by Lemma 2.1, r ≥ max{p
3 , p2

p+p},
we have r ≥ p

2 . If r ≥ p, then Kr,p,p can be decomposed into at most p2 3-suns.
We have p2 ≥ p2+2pr

6 , thus r ≤ 5p
2 . Combining above two results, we obtain

p
2 ≤ r ≤ 5p

2 .

Lemma 2.3. Let p be even. If Kp,p,s and Kp,p,t have 3-sun decompositions,
then Knp,np,ms+(n−m)t has a 3-sun decomposition for 0 ≤ m ≤ n.

Proof. The first two partite sets of Knp,np,ms+(n−m)t can be partitioned
into n groups each group containing p elements and the third partite set can be
partitioned into n groups, m of them containing s elements, the others containing t

elements. Since Kn,n,n can be decomposed into n2 triangles from a Latin square of
order n, Knp,np,ms+(n−m)t can be decomposed into n2 triangles and each triangle
corresponds to a Kp,p,t or a Kp,p,s. Thus Knp,np,ms+(n−m)t can be decomposed into
nm copies of Kp,p,s and n(n−m) copies of Kp,p,t. Since Kp,p,s and Kp,p,t have a
3-sun decomposition respectively, Knp,np,ms+(n−m)t has a 3-sun decomposition.

Lemma 2.4. Let p and r be positive integers. If p ≡ 2 (mod 6), r ≡ 2
(mod 3), or p ≡ 4 (mod 6), r ≡ 1 (mod 3), and p

2 ≤ r ≤ 5p
2 , then Kp,p,r has a

3-sun decomposition.

Proof.
(1) p ≤ r ≤ 5p

2 . By Lemma 2.2, if K2,2,r has a 3-sun decomposition, then r = 2
or 5. K2,2,2 has already been done. We can decompose K2,2,5 into four 3-suns:
(a1, b1, c1; c4, c5, b2), (a1, b2, c2; c5, c3, a2), (a2, b1, c3; c5, c2, a1), (a2, b2, c4;
c1, c5, b1). By using the decomposition of K2,2,2 and K2,2,5, we can get the
following construction. Let k be a positive integer. If p = 6k+2 = (3k+1)·2
and r=3t+2 ≤ 15k+5, let m=5k−t+1, then r=m·2+(3k+1−m)·5. By Lemma
2.3, K6k+2,6k+2,r has a 3-sun decomposition. If p = 6k+4 = (3k+2) ·2 and
r = 3t+1 ≤ 15k+10, let m = 5k− t+3, then r = m ·2+(3k +2−m) ·5.
By Lemma 2.3, K6k+4,6k+4,r has a 3-sun decomposition.

(2) p
2 ≤ r < p. We can decompose Kp,p,r into 3-suns as follows.
Let s = � r

3	. Then �p
6	 ≤ s ≤ �p

3	. Let q = �p
3	 − s.

(i) For m = 1, 2, . . . , q, i = 0, 1, 2, . . . , p− 1,
(a2m−1+i, b1+i, cm+i; b3m−1+i, a2m+i, a p

2
+i) and

(a2q+2m−1+i, b1+i, cq+m+i; b3q+3m−1+i, a2q+2m+i, bq+2m+i).
Notice that the indices of a and b are restricted to Zp = {1, 2, . . . , p}
and the indices of c are restricted to Z p

2
= {1, 2, . . . , p

2}
(ii) For m = 1, 2, . . . , r − p

2 , j = 0, 1, 2, . . . , p
2 − 1,

(a4q+2m−1+j, b1+j, c p
2
+m; c2q+m+j, a4q+2m+j, b p

2
+1+j) and
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(a4q+2m−1+j′ , b1+j′, c2q+m+j′ ; c p
2
+m, a4q+2m+j′ , b p

2
+1+j′), j ′ = p

2 , p
2 +

1, . . . , p− 1.
Notice that the indices of a and b are restricted to Zp and the values of
2q + m + j and 2q + m + j ′ are restricted to Z p

2
.

Lemma 2.5. Let p and r be positive integers. If p ≡ 0 (mod 6) and p/2 ≤
r ≤ 5p/2, then Kp,p,r has a 3-sun decomposition.

Proof.
(1) If p = 6, then 3 ≤ r ≤ 15. Combining K2,2,2 and K2,2,5, by Lemma 2.3,

we can get that K6,6,r has a 3-sun decomposition for r = 6, 9, 12, 15, For the
rest of r, the decomposition of K6,6,r can be found in Appendix.

(2) Let k ≥ 2 be a positive integer. If p = 6k, then 3k ≤ r ≤ 15k. Let i = � r
k	

and m = r − ik ≥ 0, then r can be written as m(i + 1) + (k − m)i. By (1)
and Lemma 2.3, we obtain that Kp,p,r has a 3-sun decomposition.

By Lemma 2.2, 2.4 and 2.5, we obtain

Theorem 2.6. Let p and r be positive integers. Kp,p,r has a 3-sun decomposi-
tion if and only if p

2 ≤ r ≤ 5p
2 and (1) p ≡ 0 (mod 6), (2) p ≡ 2 (mod 6), r ≡ 2

(mod 3), or (3) p ≡ 4 (mod 6), r ≡ 1 (mod 3).

We close this section by decomposing K2n,2n,2n into cyclic 3-suns. Let A, B,
and C be three partite sets of K2n,2n,2n. K2n,2n,2n can be decomposed into cyclic

3-suns if there is an automorphism which is a permutation with three orbits and
each orbits has length 2n, see [4]. Let t = (ai, bj, ck; bu, cv, aw) be a 3-sun in
K2n,2n,2n, where ai, aw ∈ A, bj, bu ∈ B, and ck, cv ∈ C. We define dAB(t) =
{0j−i, 0u−i}, dBC(t) = {1k−j , 1v−j}, dCA(t) = {2i−k, 2w−k}, the indices are
taken modulo 2n. Let d(t) = dAB(t) ∪ dBC(t) ∪ dCA(t). We call d(t) is the
difference set of t = (ai, bj, ck; bu, cv, aw). Let D(H) = {d(t)|t ∈ H}, where
H is a collection of 3-suns in K2n,2n,2n. If T contains n 3-suns in K2n,2n,2n

and D(T ) = {0i, 1i, 2i|i = 0, 1, · · · , 2n − 1}, then we call that T is a set of
base 3-suns in K2n,2n,2n. That is, K2n,2n,2n can be decomposed into cyclic 3-suns⋃2n−1

x=0 (T + x) = {(ai+x, bj+x, ck+x; bu+x, cv+x, aw+x)| (ai, bj, ck; bu, cv, aw) ∈
T, x = 0, 1, · · · , 2n − 1}. The indices of a, b, and c are taken modulo 2n. For
example, if T = {(a1, b1, c1; b2, c2, a2)} and D(T ) = {00, 01, 10, 11, 20, 21}, then
K2,2,2 can be decomposed into cyclic 3-suns. Therefore, if we can find the base
3-suns in K2n,2n,2n, then K2n,2n,2n can be decomposed into cyclic 3-suns.

Theorem 2.7. Let n be a positive integer. K2n,2n,2n can be decomposed into
cyclic 3-suns.

Proof. Construct the base 3-suns in K2n,2n,2n as follows:
The following indices of a, b, and c are restricted to the set {1, 2, . . . , 2n}.
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(1) n is odd. Let m = n−1
2 ,

(i) k = 0, 1, . . . , m, (a1, b4k+1, cn+2k+1; b4k+2, c1, an−2k+1) ∈ T .
(ii) k = 0, 1, . . . , m− 1, (a1, b4k+3, c2k+2; b4k+4, c1, a2n−2k) ∈ T .

We have D(T ) = {04k, 04k+1, 1n−2k, 12n−4k, 2n−2k, 22n−4k|k = 0, 1, . . . , m}
∪ {04k+2, 04k+3, 12n−2k−1, 12n−4k−2, 22n−2k−1, 22n−4k−2|k = 0, 1, . . . , m−
1} = {0i, 1i, 2i|i = 0, 1, . . . , 2n− 1}.

(2) n is even. Let m = n
2 ,

(i) (a1, b1, cn+1; b2, c1, an+1) ∈ T .
(ii) k = 1, 2, . . . , m− 1, (a1, b4k+1, cn+2k+1; b4k+2, cn+6k+1, a4k+1) ∈ T .
(iii) k = 0, 1, . . . , m− 1, (a1, b4k+3, c2k+2; b4k+4, c6k+4, a4k+3) ∈ T .

We have D(T ) = {00, 01, 1n, 10, 2n, 20} ∪ {04k, 04k+1, 1n−2k, 1n+2k, 2n−2k,
2n+2k|k = 1, 2, . . . , m−1} ∪{04k+2, 04k+3, 12n−2k−1, 12k+1, 22n−2k−1, 22k+1

|k = 0, 1, 2, . . . , m − 1} = {0i, 1i, 2i|i = 0, 1, . . . , 2n− 1}.

Therefore, K2n,2n,2n can be decomposed into cyclic 3-suns.

3. 3-SUN SYSTEM OF ORDER n

In this section, we will construct the 3-sun system of order n, 3SS(n), i.e.,
decomposing Kn into 3-suns. The spectrum of 3SS(n) is precisely n ≡ 0, 1, 4, 9
(mod 12). First we will see the construction of 3SS(n) for n ≡ 0, 4 (mod 12), by
using the decomposition of complete tripartite graphs into 3-suns. Let the vertex set
of Kn be {1, 2, . . . , n}.

Example 3.1.
(a) 3SS(12) = {(1, 3, 4; 9, 11, 12), (1, 5, 11; 2, 8, 12), (1, 7, 10; 8, 12, 3),

(2, 6, 12; 4, 5, 10), (2, 8, 11; 5, 9, 4), (3, 5, 12; 6, 10, 1), (3, 7, 9; 2, 5, 12),
(4, 6, 9; 7, 11, 2), (4, 8, 10; 5, 12, 2), (6, 7, 8; 1, 2, 3), (9, 10, 11; 5, 6, 7)}.

(b) 3SS(24) = {(1, 2, 4; 8, 9, 23), (1, 3, 7; 16, 24, 8), (1, 5, 6; 22, 8, 13),
(1, 9, 21; 10, 17, 5), (1, 11, 18; 12, 20, 3), (1, 13, 23; 14, 19, 5), (2, 3, 5; 8, 10, 18),
(2, 6, 7; 21, 8, 14), (2, 10, 22; 11, 18, 6), (2, 12, 19; 13, 21, 4), (2, 14, 24; 15, 20, 6),
(3, 4, 6; 8, 11, 17), (3, 11, 23; 12, 19, 7), (3, 15, 17; 16, 21, 7), (3, 13, 20; 14, 22, 5),
(4, 5, 7; 8, 12, 20), (4, 12, 24; 13, 20, 8), (4, 14, 21; 15, 23, 6), (4, 16, 18; 9, 22, 8),
(5, 9, 19; 10, 23, 1), (5, 13, 17; 14, 21, 1), (5, 15, 22; 16, 24, 7), (6, 10, 20; 11, 24, 2),
(6, 14, 18; 15, 22, 2), (6, 16, 23; 9, 17, 8), (7, 11, 21; 12, 17, 3), (7, 15, 19; 16, 23, 3),
(7, 9, 24; 10, 18, 1), (8, 12, 22; 13, 18, 4), (8, 16, 20; 9, 24, 4), (8, 14, 19; 15, 17, 6),
(8, 10, 17; 11, 19, 2), (9, 10, 12; 14, 21, 6), (9, 11, 16; 20, 5, 14), (9, 13, 15; 3, 14, 18),
(10, 11, 13; 14, 22, 7), (10, 15, 16; 4, 14, 19), (11, 12, 15; 14, 23, 1),
(12, 13, 16; 14, 24, 2), (17, 18, 21; 19, 13, 8), (17, 22, 23; 4, 19, 10),
(17, 20, 24; 12, 1, 19), (18, 20, 22; 19, 15, 3), (18, 23, 24; 7, 19, 11),
(20, 21, 23; 19, 16, 2), (21, 22, 24; 19, 9, 5)}.
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Lemma 3.2. If n ≡ 0 (mod 12), then there exists a 3-sun system of order n.

Proof. By Example 3.1, there are 3-sun systems of order 12 and 24 respectively.
Let n = 12m where m ≥ 3. Let m = 3s + p where s ≥ 1 and 0 ≤ p ≤ 2. Kn can
be viewed as the union of two K12s’s, one K12s+12p and one K12s,12s,12s+12p. By
Lemma 2.5, K12s,12s,12t can be decomposed into 3-suns if s

2 ≤ t ≤ 5s
2 . By Example

3.1 and the above construction, Kn can be recursively decomposed into 3-suns as
n > 24, except n = 60. Since K60 can be viewed as the union of one K12, two
K24’s and one K24,24,12, K60 has a 3-sun system. The proof is completed.

Example 3.3.
(a) 3SS(16) = {(1, 2, 4; 13, 8, 11), (1, 5, 9; 6, 12, 13),

(1, 14, 15; 8, 3, 5), (1, 3, 16; 7, 10, 5), (2, 3, 5; 14, 9, 13), (2, 6, 10; 7, 13, 14),
(2, 15, 16; 9, 4, 6), (3, 4, 6; 15, 10, 14), (3, 7, 11; 8, 14, 15), (4, 5, 7; 16, 11, 15),
(4, 8, 12; 9, 15, 16), (5, 6, 8; 10, 12, 16), (6, 7, 9; 11, 13, 16), (7, 8, 10; 12, 14, 1),
(8, 9, 11; 13, 15, 2), (9, 10, 12; 14, 16, 3), (10, 11, 13; 15, 1, 4), (11, 12, 14; 16, 2, 5),
(12, 13, 15; 1, 3, 6), (13, 14, 16; 2, 4, 7)}.

(b) 3SS(28) = {(1, 2, 4; 22, 10, 14), (1, 3, 28; 9, 13, 6), (1, 6, 25; 13, 19, 8),
(1, 5, 10; 12, 17, 23), (1, 8, 15; 7, 19, 22), (1, 20, 24; 14, 3, 8), (1, 26, 27; 11, 4, 7),
(2, 3, 5; 23, 11, 15), (2, 6, 11; 13, 18, 24), (2, 7, 26; 14, 20, 9), (2, 9, 16; 8, 20, 23),
(2, 21, 25; 15, 4, 9), (2, 27, 28; 12, 5, 8), (3, 4, 6; 24, 12, 16), (3, 7, 12; 14, 19, 25),
(3, 8, 27; 15, 21, 10), (3, 10, 17; 9, 21, 24), (3, 22, 26; 16, 5, 10), (4, 5, 7; 25, 13, 17),
(4, 8, 13; 15, 20, 26), (4, 11, 18; 10, 22, 25), (4, 23, 27; 17, 6, 11), (4, 9, 28; 16, 22, 11),
(5, 6, 8; 26, 14, 18), (5, 9, 14; 16, 21, 27), (5, 12, 19; 11, 23, 26), (5, 24, 28; 18, 7, 12),
(6, 7, 9; 27, 15, 19), (6, 10, 15; 17, 22, 28), (6, 13, 20; 12, 24, 27), (7, 8, 10; 28, 16, 20),
(7, 11, 16; 18, 23, 1), (7, 14, 21; 13, 25, 28), (8, 9, 11; 14, 17, 21), (8, 12, 17; 22, 24, 2),
(9, 10, 12; 15, 18, 22), (9, 13, 18; 23, 25, 3), (10, 11, 13; 16, 19, 23),
(10, 14, 19; 24, 26, 4), (11, 12, 14; 17, 20, 24), (11, 15, 20; 25, 27, 5),
(12, 13, 15; 18, 21, 25), (12, 16, 21; 26, 28, 6), (13, 14, 16; 19, 22, 26),
(13, 17, 22; 27, 1, 7), (14, 15, 17; 20, 23, 27), (14, 18, 23; 28, 2, 8),
(15, 16, 18; 21, 24, 28), (15, 19, 24; 26, 3, 9), (16, 17, 19; 22, 25, 1),
(16, 20, 25; 27, 4, 10), (17, 18, 20; 23, 26, 2), (17, 21, 26; 28, 5, 11),
(18, 19, 21; 24, 27, 3), (18, 22, 27; 1, 6, 12), (19, 20, 22; 25, 28, 4),
(19, 23, 28; 2, 7, 13), (20, 21, 23; 26, 1, 5), (21, 22, 24; 27, 2, 6),
(22, 23, 25; 28, 3, 7), (23, 24, 26; 1, 4, 8), (24, 25, 27; 2, 5, 9), (25, 26, 28; 3, 6, 10)}.

Lemma 3.4. 3SS(n) exists if n = 40, 52, 64.

Proof. K40 can be viewed as the union of two K12’s, one K16 and one K12,12,16.
K52 can be viewed as the union of two K12’s, one K28 and one K12,12,28. K64

can be viewed as the union of one K16, two K24’s and one K24,24,16. According
to Example 3.1 and 3.3, K12, K16, K24, and K28 can be decomposed into 3-suns.
By Lemma 2.5, K12,12,16, K12,12,28, and K24,24,16 can be decomposed into 3-suns.
Hence, Kn can be decomposed into 3-suns for n = 40, 52, 64.

Lemma 3.5. If n ≡ 4 (mod 12), then there exists a 3-sun system of order n.
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Proof. Let n = 12m+4. By Example 3.3 and Lemma 3.4, we have 3SS(16),
3SS(28), 3SS(40), 3SS(52), and 3SS(64). Let m = 3s + p where s ≥ 2 and
0 ≤ p ≤ 2. K36s+12p+4 can be viewed as the union of two K12s’s, one K12(s+p)+4

and one K12s,12s,12(s+p)+4. By Lemma 3.2 and recursive construction, K12s and
K12(s+p)+4 can be decomposed into 3-suns. By Lemma 2.5, K12s,12s,12(s+p)+4 can
be decomposed into 3-suns. Hence, the proof is completed.

Next, we will construct cyclic 3-sun systems of order n for n ≡ 1 (mod 12). A
3-sun system 3SS(n) on the elements of Zn = {1, 2, . . . , n} is said to be cyclic if
whenever (a, b, c; x, y, z) is a 3-sun, so also is (a+1, b+1, c+1; x+1, y+1, z+1).

Example 3.6.

(a) The 3-suns (i, i + 1, i + 3; i + 4, i + 6, i + 9), 1 ≤ i ≤ 13, form a cyclic
3SS(13).

(b) The 3-suns (i, i+1, i+5; i+9, i+12, i+17), (i, i+2, i+8; i+13, i+16, i+23),
(i, i + 3, i + 10; i + 16, i + 20, i + 28), 1 ≤ i ≤ 37, form a cyclic 3SS(37).

By [1,5], suppose that {1, 2, . . . , 3m} can be partitioned into m triples {a, b, c}
such that a + b = c or a + b + c ≡ 0 (mod 6m + 1). Then the triples {0, a, a + b}
form a (6m + 1, 3, 1) difference system and so lead to the construction of cyclic
STS(6m+1). A Skolem triple system of order m is a partition of {1, 2, . . . , 3m}
into m triples {i, ai, i + ai}, 1 ≤ i ≤ m. An O′Keefe triple system of order m
is a partition of {1, 2, . . . , 3m−1, 3m+1} into m triples {i, ai, i+ai}, 1 ≤ i ≤ m.
It is well-known that if m ≡ 0, 1 (mod 4) then a Skolem triple system of order m
exists and if m ≡ 2, 3 (mod 4) then an O’Keefe triple system of order m exists. Let
t = (a, b, c; d, e, f) be a 3-sun in Kn. Since t contains a triangle (a, b, c) and one 1-
factor {{a, d}, {b, e}, {c, f}}, we obtain two difference triples {b− a, c− b, a− c}
and {d − a, e − b, f − c} where the values are taken modulo n. Next, we will
metamorphose a cyclic STS(12m + 1) into a cyclic 3SS(12m + 1).

Lemma 3.7. If n ≡ 1 (mod 12), then there exists a cyclic 3SS(n).

Proof. Let n = 12k + 1.

(1) k is even.
If k = 2, then the 3-suns in a cyclic 3SS(25) are constructed as follows.
For i = 1, 2, . . . , 25,
(i, i + 1, i + 12; i + 2, i + 8, i + 21) and (i, i + 3, i + 8; i + 4, i + 9, i + 18).
It is easy to check that the union of four difference triples is the set {1, 2, . . . , 12}.
If k ≥ 4, then the 3-suns are constructed as follows.
For i = 1, 2, . . . , n,
(i, i + 1, i + 6k; i + k, i + 4k, i + 11k − 1),
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(i, i + 2k − 1, i− 1 + 9k
2 ; i + 2k, i + 5k − 1, i− 1 + 19k

2 ),
and j = 1, 2, . . . , k

2 − 1,
(i, i + 2j, i + 3k + j; i + 2j + 1, i + 5k + j − 1, i + 8k + 2j),
(i, i+ k + 2j − 1, i+ 7k

2 + j − 1; i+ k + 2j, i+ 11k
2 + j − 2, i+ 9k + 2j − 2).

Since from each 3-sun we can get two difference triples, these difference
triples form a Skolem triple system of order 2k when k is even and k ≥ 2,
see[1]. Therefore, we have a cyclic 3SS(12k + 1), k is even.

(2) k is odd.
In Example 3.6, we have a cyclic 3SS(13) and a cyclic 3SS(37). We consider
when k ≥ 5, the 3-suns are constructed as follows.
For i = 1, 2, . . . , n,
(i, i+ 2j, i + 3k + j + 1; i + 2j + 1, i + 5k + j − 1, i + 8k + 2j + 1), where
j = 1, 2, . . . , k−1

2 .
(i, i+k+2j−1, i+ 7k+1

2 + j; i+k+2j +2, i+ 11k−3
2 + j, i+9k+2j +2),

where j = 1, 2, . . . , k−5
2 .

(i, i + 2k − 1, i + 5k; i + 2k − 4, i + 4k + 2, i + 9k − 1),
(i, i + k + 2, i + 6k + 1; i + 2k − 2, i + 3k + 4, i + 10k + 1), and
(i, i + 1, i + 11k+3

2 ; i + 2k, i + 2k + 2, i + 19k+5
2 )

Since from each 3-sun we can get two difference triples, these difference
triples form an O′Keefe triple system of order 2k when k is odd and
k ≥ 5, see[1]. Therefore, we have a cyclic 3SS(12k + 1), k is odd.

Next we will metamorphose a KTS(12k+ 9) into a 3SS(12k+ 9). A parallel
class in a Steiner triple system (S, T ) is a set of triples in T that partitions S. If
the triples in T can be partitioned into parallel classes, then we say STS(v) is a
Kirkman triple system of order v, denoted by KTS(v). It is well-known [2] that
there exists a KTS(v) if and only if v ≡ 3 (mod 6).

Lemma 3.8. If n ≡ 9 (mod 12), then there is a 3-sun system of order n.

Proof. Let n = 12k + 9 where k ≥ 0. Then there exists a KTS(12k + 9)
with 6k + 4 parallel classes. Let (S, T ) be a KTS(12k+ 9). π and π ′ are any two
distinct parallel classes in T . Consider π ∪ π ′. If (x, y, z) ∈ π and (x, a, b) ∈ π′,
then the edges {x, y}, {y, z}, and {x, z} can not be contained in any triple in π ′.
That means y, z, a, and b are distinct. Using this property, we give a direction to
each edge, such that each triple (x, a, b) in π ′ forms a directed cycle 〈x, a, b〉 with
the edge set {(x, a), (a, b), (b, x)}. Similarly, we have 〈y, c, d〉 and 〈z, e, f〉 in π′.
Any triangle in π with its out-edge from π′ forms a 3-sun. Thus we can get a 3-sun
(x, y, z; a, c, e) in π ∪ π′. Therefore, the edge-set of the union of any two distinct
parallel classes of KTS(12k + 9) can be decomposed into 4k + 3 3-suns. Hence,
we obtain a 3-sun system of order n.
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Example 3.9. There is a 3SS(9) constructed from a KTS(9).

Proof. Let (Z9, T ) be a KTS(9) with 4 parallel classes π1, π2, π3, and π4,
where π1 = {(1, 2, 3), (4, 5, 6), (7, 8, 9)}, π2 = {(1, 4, 7), (2, 5, 8), (3, 6, 9)}, π3 =
{(1, 5, 9), (2, 6, 7), (3, 4, 8)}, and π4 = {(1, 6, 8), (2, 4, 9), (3, 5, 7)}. We give a di-
rection to each edge in π2 and π4 as follows: π′

2 = {〈1, 4, 7〉, 〈2, 5, 8〉, 〈3, 6, 9〉}, π′
4 =

{〈1, 6, 8〉, 〈2, 4, 9〉, 〈3, 5, 7〉}. Then the edge-set of π1 ∪π′
2 can be decomposed into

three 3-suns, (1, 2, 3; 4, 5, 6), (4, 5, 6; 7, 8, 9), and (7, 8, 9; 1, 2, 3). π3∪π′
4 can be de-

composed into three 3-suns, (1, 5, 9; 6, 7, 2), (2, 6, 7; 4, 8, 3), and (3, 4, 8; 5, 9, 1).

By Lemma 3.2, 3.5, 3.7, and 3.8, we obtain the following theorem.

Theorem 3.10. There exists a 3-sun system of order n, if and only if n ≡
0, 1, 4, 9 (mod 12).

4. EMBEDDING A CYCLIC STEINER TRIPLE SYSTEM IN A 3-SUN SYSTEM

Let (Y, S) be a 3-sun system of order n and P be the collection of triangles
in S. Then (Y, P ) is a partial triple system of order n. We say that the Steiner
triple system (X, T ) is embedded in a 3-sun system (Y, S) provided X ⊆ Y and
T ⊆ P . Subsequently, we give a construction for a 3-sun system of order 12m + 1
embedding a cyclic Steiner triple system of order 6m + 1.

Theorem 4.11. Let m be a positive integer. Let (X, T ) be a cyclic Steiner triple
system of order 6m + 1. Then there is a 3-sun system (Y, S) of order 12m + 1,
such that (X, T ) is embedded in (Y, S).

Proof. Let X = {v1, v2, . . . , v6m, v6m+1}, U = {u1, u2, . . . , u6m} and X∩U

= ∅. Set Y = X ∪ U . Let (X, T ) be a cyclic STS(6m+ 1). Suppose E1, E2, . . .,
and Em are base triples in T . For convenience, we give an order for the elements
in each base triple such that E i = 〈va1

i
, va2

i
, va3

i
〉, for all i = 1, 2, . . . , m, and

a1
i < a2

i < a3
i .

Define a collection S of 3-suns over Y as follows:
(1) For i = 1, 2, . . . , m, j = 0, 1, 2, . . . , 6m.

Define tki,j := ak
i + j ∈ Z6m+1 = {1, 2, . . . , 6m + 1}, for all k = 1, 2, 3.

Bi,j := (vt1i,j
, vt2i,j

, vt3i,j
; u2m+3i+t1i,j−3, u2m+3i+t2i,j−2, u2m+3i+t3i,j−1) where

the indices of u are restricted to Z6m = {1, 2, . . . , 6m− 1, 6m}.
Therefore, there are m(6m + 1) 3-suns.

(2) Define αk = vk , k = 1, 2, . . . , 6m.
For i = 1, 2, . . . , m− 1 and j = 0, 1, 2, . . . , 6m− 1,
B′

i,j :=(u1+j , u2m−2(i−1)+j, α2−i+j; u2m+1−2(i−1)+j, u4m+1−(i−1)+j, u5m+1+j)
And B′

m,j := (u1+j, u2+j, α5m+2+j; u3+j, βj, u5m+1+j) where

βj :=
{

v6m+1 if j = 0, 1, 2, . . . , 2m− 2, 5m− 1, 5m, . . . , 6m− 1.

u3m+2+j if j = 2m− 1, 2m, . . . , 5m− 3, 5m− 2.
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The indices of α and u are restricted to Z6m = {1, 2, . . . , 6m}. Hence, there
are 6m2 3-suns.

From (1), the base triples in T is the triangles of Bi,0, for i = 1, 2, . . . , m. Therefore,
(X, T ) is embedded in (Y, S).

Example 4.12. Let X = {v1, v2, . . . , v7}, U = {u1, u2, . . . , u6} and Y = X ∪
U . Let (X, T ) be a cyclic STS(7). If {v1, v2, v4} is a base triple in T . Let
Ei = 〈va1

1
, va2

1
, va3

1
〉 = 〈v1, v2, v4〉, and S = {B1,j, B

′
1,j′ |j = 0, 1, . . . , 6, j ′ =

0, 1, . . . , 5}. By the construction in Theorem 4.1, we can get:
B1,0 =(v1, v2, v4; u3, u5, u2), B1,1 =(v2, v3, v5; u4, u6, u2), B1,2 =(v3, v4, v6; u5, u1, u4),
B1,3 =(v4, v5, v7; u6, u2, u5), B1,4 =(v5, v6, v1; u1, u3, u5), B1,5 =(v6, v7, v2; u2, u4, u6),
B1,6 =(v7, v1, v3; u3, u4, u1), B′

1,0 =(u1, u2, v1; u3, v7, u6), B′
1,1 =(u2, u3, v2; u4, u6, u1),

B′
1,2 =(u3, u4, v3; u5, u1, u2), B′

1,3 =(u4, u5, v4; u6, u2, u3), B′
1,4 =(u5, u6, v5; u1, v7, u4),

B′
1,5 = (u6, u1, v6; u2, v7, u5). Then (Y, S) is a 3SS(13) and (X, T ) is a cyclic STS(7)

embedded in a 3SS(13).

5. CONCLUSION AND OPEN QUESTION

There are further questions to be asked.

(1) If p > q > r ≥ 2, what is the necessary and sufficient condition for the
decomposition of Kp,q,r into 3-suns ?

(2) Can one embed any Steiner triple system into a 3-sun system?

APPENDIX

A. K6,6,3 can be decomposed into 12 3-suns as follows:
{(a1, b1, c1; b2, a2, b3), (a2, b2, c2; b3, a3, b1), (a3, b3, c3; b1, a1, b2),
(a4, b4, c1; b5, a5, a2), (a5, b5, c2; b6, a6, a3), (a6, b6, c3; b4, a4, a1),
(a4, b1, c3; b2, a5, b4), (a5, b2, c1; b3, a6, b5), (a6, b3, c2; b1, a4, b6),
(a1, b4, c2; b5, a2, a4), (a2, b5, c3; b6, a3, a5), (a3, b6, c1; b4, a1, a6)}.

B. K6,6,4 can be decomposed into 14 3-suns as follows:
{(a1, b1, c1; b2, c4, a3), (a2, b2, c2; b3, c3, a3), (a3, b3, c3; b1, a4, b4),
(a4, b4, c1; c4, a6, b5), (a6, b5, c2; c4, a5, b6), (a6, b6, c3; b2, a5, b1),
(a4, b1, c2; c3, a5, b3), (a5, b2, c4; b4, a4, b3), (a6, b3, c1; b1, a5, b2),
(a1, b4, c2; b3, a3, a5), (a2, b5, c3; b1, a3, a5), (a3, b6, c4; b2, a1, a2),
(a1, b5, c4; c3, a4, b4), (a2, b6, c1; b4, a4, a5)}.

C. K6,6,5 can be decomposed into 16 3-suns as follows:
{(a1, b1, c1; b2, a2, b5), (a2, b2, c2; b3, a3, b6), (a3, b3, c3; c2, a4, a1),
(a4, b4, c4; b5, a1, a5), (a2, b5, c4; b6, a6, b1), (a3, b6, c4; c1, a5, b2),
(a4, b1, c2; c3, a3, b5), (a6, b1, c3; c2, a5, b6), (a4, b2, c5; c1, c3, a2),



From Steiner Triple Systems to 3-Sun Systems 541

(a6, b2, c1; c4, a5, b4), (a5, b3, c1; c2, a6, b6), (a5, b5, c5; c3, a3, b3),
(a6, b4, c5; b6, a5, b1), (a2, b4, c3; c1, a3, b5), (a1, b3, c2; b5, c4, b4),
(a1, b6, c5; c4, a4, a3)}.

D. K6,6,7 can be decomposed into 20 3-suns as follows:
{(a1, b1, c1; c7, a4, a5), (a2, b2, c2; c1, a1, a4), (a3, b3, c3; b4, a2, a5),
(a4, b4, c4; b6, a1, b5), (a5, b5, c5; b2, a2, a1), (a6, b6, c6; c3, c1, a2),
(a2, b1, c3; c5, a5, b6), (a3, b2, c4; b6, c7, b1), (a4, b3, c5; c3, c6, b4),
(a5, b4, c6; b6, a2, a1), (a6, b5, c7; c5, a4, b4), (a3, b1, c5; c2, c6, b2),
(a4, b2, c6; c7, c3, a3), (a5, b3, c7; c2, c1, b6), (a6, b4, c1; b2, c3, a4),
(a1, b5, c2; b6, c3, b4), (a2, b6, c4; c7, c5, a6), (a6, b1, c2; b3, c7, b6),
(a1, b3, c4; c3, c2, a5), (a3, b5, c1; c7, c6, b2)}.

E. K6,6,8 can be decomposed into 22 3-suns as follows:
{(a1, b1, c1; b2, c8, a2), (a2, b2, c2; b4, c1, a6), (a3, b3, c3; c6, a2, a6),
(a4, b4, c4; b1, c1, a5), (a5, b5, c5; c8, a2, b6), (a6, b6, c6; b2, c3, a2),
(a2, b1, c3; c5, c7, a1), (a3, b2, c4; c7, c5, b1), (a4, b3, c5; b5, c1, b4),
(a5, b4, c6; c1, c2, a1), (a6, b5, c7; b3, c3, b4), (a1, b6, c8; c5, a3, a2),
(a3, b1, c5; c8, c2, a6), (a4, b2, c6; c1, c8, b1), (a5, b3, c7; b6, c6, a4),
(a6, b4, c8; b1, a3, a4), (a1, b5, c2; c7, c8, a5), (a2, b6, c4; c7, c1, a6),
(a3, b5, c1; c2, c6, a6), (a4, b6, c2; c3, c7, b3), (a1, b3, c4; b4, c8, b5),
(a5, b2, c3; b1, c7, b4)}.

F. K6,6,10 can be decomposed into 26 3-suns as follows:
{(a1, b1, c1; b3, c8, b6), (a2, b2, c2; b4, a1, a4), (a3, b3, c3; c1, c2, b4),
(a4, b4, c4; c3, c1, b5), (a5, b5, c5; c2, c3, b6), (a6, b6, c6; c4, c3, b5),
(a2, b1, c3; b3, a6, a1), (a3, b2, c4; b5, c9, a2), (a4, b3, c5; c1, c4, b4),
(a5, b4, c6; c4, c2, b3), (a6, b5, c7; c3, c8, a3), (a1, b6, c8; c4, c7, a4),
(a3, b1, c5; b4, c2, b2), (a4, b2, c6; b6, c1, b1), (a5, b3, c7; c1, c8, a2),
(a6, b4, c8; c2, c7, a3), (a1, b5, c9; c5, c10, a2), (a2, b6, c10; c5, c9, a5),
(a4, b1, c7; b5, c4, a1), (a5, b2, c8; b6, c3, a2), (a6, b3, c9; c1, c10, a4),
(a1, b4, c10; c6, c9, a4), (a2, b5, c1; c6, c2, b3), (a3, b6, c2; c6, c4, a1),
(a5, b1, c9; c3, c10, a3), (a6, b2, c10; c5, c7, a3)}.

G. K6,6,11 can be decomposed into 28 3-suns as follows:
{(a1, b1, c1; b2, c8, b5), (a2, b2, c2; c7, c11, a4), (a3, b3, c3; c11, c2, b4),
(a4, b4, c4; c3, c11, b5), (a5, b5, c5; c11, c3, b6), (a6, b6, c6; c3, c4, b5),
(a2, b1, c3; b3, a6, a1), (a3, b2, c4; b5, c9, a2), (a4, b3, c5; c11, c4, b4),
(a5, b4, c6; c4, c2, b3), (a6, b5, c7; c4, c8, b6), (a1, b6, c8; c4, c11, a4),
(a3, b1, c5; c1, c2, b2), (a4, b2, c6; b6, c1, b1), (a5, b3, c7; c1, c8, a3),
(a6, b4, c8; c2, c7, a3), (a1, b5, c9; c5, c10, b6), (a2, b6, c10; c5, c3, a5),
(a4, b1, c7; b5, c4, a1), (a5, b2, c8; b6, c3, a2), (a6, b3, c9; c1, c10, a4),
(a1, b4, c10; c6, c9, a4), (a2, b5, c11; c6, c2, a6), (a3, b6, c2; c6, c1, a5),
(a5, b1, c9; c3, c10, a3), (a6, b2, c10; c5, c7, a3), (a1, b3, c11; c2, c1, b1),



542 Chin-Mei Fu, Nan-Hua Jhuang, Yuan-Lung Lin and Hsiao-Ming Sung

(a2, b4, c1; c9, a3, a4)}.
H. K6,6,13 can be decomposed into 32 3-suns as follows:

{(a1, b1, c1; c13, c2, a4), (a2, b2, c2; c1, c3, b3), (a3, b3, c3; b4, c4, a5),
(a4, b4, c4; c8, c1, b1), (a5, b5, c5; c10, c2, a6), (a6, b6, c6; c12, a5, a3),
(a2, b1, c3; b3, c12, a4), (a3, b2, c4; c8, c1, a5), (a4, b3, c5; c9, c6, b6),
(a5, b4, c6; c13, c2, a2), (a6, b5, c7; c13, c3, a3), (a1, b6, c8; c3, c1, a2),
(a3, b1, c5; c1, c6, b2), (a4, b2, c6; c11, c7, a1), (a5, b3, c7; c12, c1, a2),
(a6, b4, c8; c1, c3, b5), (a1, b5, c9; c2, c4, a2), (a2, b6, c10; c4, c3, a4),
(a4, b1, c7; c13, c8, b6), (a5, b2, c8; c1, c9, b3), (a6, b3, c9; c2, c10, b4),
(a1, b4, c10; c4, c5, a3), (a2, b5, c11; c13, c6, b4), (a3, b6, c12; c9, c4, a4),
(a5, b1, c9; c2, c10, b6), (a6, b2, c10; c3, c11, b5), (a1, b3, c11; c5, c13, b6),
(a2, b4, c12; c5, c7, b3), (a3, b5, c13; c11, c1, b4), (a4, b6, c2; b5, c13, a3),
(a6, b1, c11; c4, c13, a5), (a1, b2, c12; c7, c13, b5)}.

I. K6,6,14 can be decomposed into 34 3-suns as follows:
{(a1, b1, c1; c13, c2, a4), (a2, b2, c2; c1, c3, b3), (a3, b3, c3; c10, c4, a5),
(a4, b4, c4; b5, c1, b1), (a5, b5, c5; c14, c2, a6), (a6, b6, c6; c12, a5, a3),
(a2, b1, c3; c9, c12, a4), (a3, b2, c4; c2, c1, a5), (a4, b3, c5; c9, c6, b6),
(a5, b4, c6; c13, c2, a2), (a6, b5, c7; c13, c3, a3), (a1, b6, c8; c3, c2, a2),
(a3, b1, c5; c8, c6, b2), (a4, b2, c6; c11, c7, a1), (a5, b3, c7; c12, c1, a1),
(a6, b4, c8; c1, c3, b5), (a1, b5, c9; c2, c4, b2), (a2, b6, c10; c4, c3, a4),
(a4, b1, c7; c2, c14, b6), (a5, b2, c8; c1, c14, b1), (a6, b3, c9; c2, c10, b4),
(a1, b4, c10; c4, c5, a5), (a2, b5, c11; c14, c6, b4), (a3, b6, c12; c9, c4, a4),
(a5, b1, c9; c2, c10, b6), (a6, b2, c10; c3, c11, b5), (a1, b3, c11; c5, c8, b6),
(a2, b4, c12; c5, c7, b3), (a3, b5, c13; c11, c1, b6), (a4, b6, c14; c8, c1, b5),
(a6, b1, c11; c4, c13, a5), (a1, b2, c12; c14, c13, b5), (a2, b3, c13; c7, c14, a4),
(a3, b4, c14; c1, c13, a6)}.
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