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HALF LIGHTLIKE SUBMANIFOLDS IN INDEFINITE S-MANIFOLDS

Jae Won Lee and Dae Ho Jin

Abstract. In an indefinite metric g.f.f-manifold, we study half lightlike
submanifolds M tangent to the characteristic vector fields. We discuss the
existence of totally umbilical half lightlike submanifolds of an indefinite S-
space form.

0. INTRODUCTION

Sasakian manifolds with semi-Riemannian metric have been considered ([11]),
and recently many authors ([2, 3, 8, 9, 10]) study lightlike submanifolds of indefi-
nite Sasakian manifolds. In analogy with the framework of Riemannian geomtery,
Brunetti and Pastore [2] introduced indefinite S-manifolds have represented a natu-
ral generalization of indefinite Sasakian manifolds. They have studied the geometry
of lightlike hypersurfaces of indefinite S-manifolds [3]. In the case of an indefinite
Sasakian manifolds, Jin [10] extended lightlike hypersurfaces to half lightlike sub-
manifolds, which is a special case of r-lightlike submanifolds [5] such that r = 1
and its geometry is more general than that of coisotropic submanifolds. It will be
extended to half lightlike submanifolds on an indefinite S-manifold.

We begin with some basic information about half lightlike submanifolds of a
semi-Riemannian manifold in Section 1. Afterwards, for an indefinite metric g.f.f -
manifold we consider a half lightlike submanifold M tangent to the charateristic
vector fields, we introduce a particular screen distribution S(TM), using the prop-
erties of the indefiniteS-manifold. Then we deal with totally umbilical half lightlike
submanifolds of an indefinite S-space form in Section 3.

1. LIGHTLIKE SUBMANIFOLDS

It is well known that the radical distribution Rad(TM) = TM ∩ TM ⊥ of half
lightlike submanifolds M of a semi-Rimannian manifold (M̄, ḡ) of codimension 2
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is a vector subbundle of the tangent bundle TM and the normal bundle TM ⊥, of
rank 1. Thus there exists complementary non-degenerate distributions S(TM) and
S(TM⊥) of Rad(TM) in TM and TM⊥ respectively, which called the screen
and coscreen distribution on M , such that

(1.1) TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where the symbol ⊕orth denotes the orthogonal direct sum. We denote such a half
lightlike submanifold by M = (M, g, S(TM)). Denote by F (M) the algebra of
smooth functions on M and by Γ(E) the F (M) module of smooth sections of any
vector bundle E over M . Choose L ∈ Γ(S(TM⊥)) as a unit vector field with
ḡ(L, L) = ω = ±1. Consider the orthogonal complementary distribution S(TM)⊥

to S(TM) in TM̄ . Certainly ξ ∈ Γ(Rad(TM)) and L belong to Γ(S(TM)⊥).
Hence we have the following orthogonal decomposition

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥. For
any null section ξ of Rad(TM) on a coordinate neighborhood U ⊂ M , there exists
a uniquely defined null vector field N ∈ Γ(ltr(TM)) [5] satisfying

(1.2) ḡ(ξ, N ) = 1, ḡ(N, N ) = ḡ(N, X) = ḡ(N, L) = 0, ∀X ∈ Γ(S(TM)).

We call N, ltr(TM) and tr(TM) = S(TM⊥)⊕orthltr(TM) the lightlike transver-
sal vector field, lightlike transversal vector bundle and transversal vector bundle
of M with respect to S(TM) respectively. Thus TM̄ is decomposed as follows :

(1.3)
TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

Let ∇̄ be the Levi-Civita connection of M̄ and P the projection morphism of
Γ(TM) on Γ(S(TM)) with respect to the decomposition (1.1). The local Gauss
and Weingarten formulas of M and S(TM) are given respectively by

(1.4) ∇̄XY = ∇XY + B(X, Y )N + D(X, Y )L,

(1.5) ∇̄XN = −AN X + τ(X)N + ρ(X)L,

(1.6) ∇̄XL = −ALX + µ(X)N,

(1.7) ∇XPY = ∇∗
XPY + C(X, PY )ξ,

(1.8) ∇Xξ = −A∗
ξX − τ(X)ξ,
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for all X, Y ∈ Γ(TM), where ∇ and ∇∗ are induced linear connections on TM

and S(TM) respectively, B and D are called the local second fundamental forms
of M , C is called the local second fundamental form on S(TM). AN , A∗

ξ and
AL are linear operators on TM and τ, ρ and φ are 1-forms on TM . We say that
h(X, Y ) = B(X, Y )N +D(X, Y )L is the second fundamental tensor of M . Since
∇̄ is torsion-free, ∇ is also torsion-free, and B and D are symmetric. From the
facts B(X, Y ) = ḡ(∇̄XY, ξ) and D(X, Y ) = ωḡ(∇̄XY, L), we know that B and
D are independent of the choice of S(TM) and satisfy

(1.9) B(X, ξ) = 0, D(X, ξ) = −ωµ(X), ∀X ∈ Γ(TM).

The induced connection ∇ of M is not metric and satisfies

(1.10) (∇Xg)(Y, Z) = B(X, Y ) η(Z) + B(X, Z) η(Y ),

for all X, Y, Z ∈ Γ(TM), where η is a 1-form on TM such that

(1.11) η(X) = ḡ(X, N ), ∀X ∈ Γ(TM).

But the connection ∇∗ on S(TM) is metric. The above three local second funda-
mental forms are related to their shape operators by

(1.12) B(X, Y ) = g(A∗
ξX, Y ), ḡ(A∗

ξX, N ) = 0,

(1.13) C(X, PY ) = g(ANX, PY ), ḡ(ANX, N ) = 0,

(1.14) ωD(X, PY ) = g(ALX, PY ), ḡ(ALX, N ) = ωρ(X),

(1.15) ωD(X, Y ) = g(ALX, Y ) − µ(X)η(Y ), ∀X, Y ∈ Γ(TM).

By (1.12) and (1.13), we show that A∗
ξ and AN are Γ(S(TM))-valued shape oper-

ators related to B and C respectively and A∗
ξ is self-adjoint on TM and

(1.16) A∗
ξξ = 0.

But AN is not self-adjoint on S(TM). We know that AN is self-adjoint in S(TM)
if and only if S(TM) is an integrable distribution[5]. From (1.15), we show that
AL is not self-adjoint on TM . AL is self-adjoint in TM if and only if µ(X) = 0
for all X ∈ Γ(S(TM)) [9]. From (1.4), (1.8) and (1.9), we have

(1.17) ∇̄Xξ = −A∗
ξX − τ(X)ξ − ωµ(X)L, ∀X ∈ Γ(TM).
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Denote by R̄ and R the curvature tensors of the connections ∇̄ and ∇ respec-
tively. Using the local Gauss-Weingarten formulas (1.4) ∼ (1.6) for M , we have
the Gauss-Codazzi equations for M , for all X, Y, Z ∈ Γ(TM):

(1.18)

R̄(X, Y )Z

= R(X, Y )Z + B(X, Z)ANY − B(Y, Z)ANX

+D(X, Z)ALY − D(Y, Z)ALX+{(∇XB)(Y, Z)

−(∇Y B)(X, Z)+τ(X)B(Y, Z)− τ(Y )B(X, Z)

+µ(X)D(Y, Z)−µ(Y )D(X, Z)}N+{(∇XD)(Y, Z)

−(∇Y D)(X, Z)+ρ(X)B(Y, Z)−ρ(Y )B(X, Z)}L

2. CHARACTERISTIC HALF LIGHTLIKE SUBMANIFOLDS OF

INDEFINITE g.f.f -MANIFOLDS

A manifold M̄ is called a globally framed f-manifold ( or g.f.f -manifold) if it
is endowed with a non null (1, 1)-tensor field φ̄ of constant rank, such that kerφ̄

is parallelizable i.e. there exist global vector fields ξ̄α, α ∈ {1, · · · , r}, with their
dual 1- forms η̄α, satisfying φ̄2 = −I +

∑r
α=1 η̄α ⊗ ξ̄α and η̄α(ξ̄β) = δα

β .
The g.f.f -manifold (M̄2n+r , φ̄, ξ̄α, η̄α), α ∈ {1, · · · , r}, is said to be an in-

definite metric g.f.f -manifold if ḡ is a semi-Riemannian metric, with index ν,
0 < ν < 2n + r, satisfying the following compatibility condtion

ḡ(φ̄X, φ̄Y ) = ḡ(X, Y ) −
r∑

α=1

εαη̄α(X)η̄α(Y )

for any X , Y ∈ Γ(TM̄), being εα = ±1 according to whether ξ̄α is spacelike
or timelike. Then, for any α ∈ {1, · · · , r}, one has η̄α(X) = εαḡ(X, ξ̄α). An
indefinite metric g.f.f-manifold is called an indefinite S-manifold if it is normal
and dη̄α = Φ, for any α ∈ {1, · · · , r}, where Φ(X, Y ) = ḡ(X,φ̄Y ) for any X ,
Y ∈ Γ(TM̄). The normality condition is expressed by the vanishing of the tensor
field N = Nφ̄ + 2

∑r
α=1 dη̄α ⊗ ξ̄α, Nφ̄ the Nijenhuis torsion of φ̄. Furthermore, as

proved in [2], the Levi-Civita connection of an indefinite S-manifold satisfies:

(∇̄Xφ̄)Y = ḡ(φ̄X, φ̄Y )ξ̄ + η̄(Y )φ̄2(X),(2.1)

where ξ̄ =
∑r

α=1 ξ̄α and η̄ =
∑r

α=1 εαη̄α. We recall that ∇̄X ξ̄α = −εαφ̄X and
kerφ̄ is an integrable flat distribution since ∇̄ξ̄α

ξ̄β = 0.( more details in [2]).
An indefinite S-manifold (M̄, φ̄, ξ̄α, η̄α) is called an indefinite S-space form,

denoted by M̄(c), if it has the constant φ̄-sectional curvature c [2]. The curvature
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tensor R̄ of this space form M̄(c) is given by

(2.2)

4R̄(X, Y, Z, W )

= −(c + 3ε){ḡ(φ̄Y, φ̄Z)ḡ(φ̄X, φ̄W ) − ḡ(φ̄X, φ̄Z)ḡ(φ̄Y, φ̄W )}
−(c−ε){Φ(W, X)Φ(Z, Y )−Φ(Z, X)Φ(W,Y )+2Φ(X, Y )Φ(W, Z)}
−{η̄(W )η̄(X)ḡ(φ̄Z, φ̄Y ) − η̄(W )η̄(Y )ḡ(φ̄Z, φ̄X)

+η̄(Y )η̄(Z)ḡ(φ̄W, φ̄X)− η̄(Z)η̄(X)ḡ(φ̄W, φ̄Y )}

for any vector fields X, Y, Z, W ∈ Γ(TM̄).

Theorem 2.1. Let M be a half lightlike submanifold of an indefinite S-manifold
M̄ such that all the charateristic vector fields ξ̄α are tangent to M . Then there
exist a screen S(TM) such that

φ̄(S(TM)⊥) ⊂ S(TM).

Proof. Since φ̄ is skew symmetric with respect to ḡ, we have ḡ(φ̄ξ, ξ) = 0.
Thus φ̄ξ blongs to TM ⊕ S(TM⊥). If Rad(TM) ∩ φ̄(Rad(TM)) 	= {0}, then
there exists a non-vanishing smooth real valued function f such that φ̄ξ = fξ.
Apply φ̄ to the equation and φ̄-properties, we have (f2 + 1)ξ = 0. Therefore,
we get f2 + 1 = 0, which is a contradition. Thus Rad(TM) ∩ φ̄(Rad(TM)) =
{0}. Moreover, if S(TM⊥) ∩ φ̄(Rad(TM)) 	= {0}, then there exists a non-
vanishing smooth real valued function h such that φ̄ξ = hL. In this case, we
have h2 = ḡ(hL, hL) = ḡ(φ̄ξ, φ̄ξ) = 0, which is a contradiction to h 	= 0. Thus
we have S(TM⊥) ∩ φ̄(Rad(TM)) = {0}. This enables one to choose a screen
distribution S(TM) such that it cotains φ̄(Rad(TM)) as a vector subbundle. From
the facts ḡ(φ̄N, N ) = 0 and ḡ(φ̄N, ξ) = −ḡ(N, φ̄ξ) = 0, using the above method,
we also show that φ̄(ltr(TM)) is a vector subbundle of S(TM) of rank 1. On
the other hand, from the facts ḡ(φ̄L, L) = 0, ḡ(φ̄L, ξ) = −ḡ(L, φ̄ξ) = 0 and
ḡ(φ̄L, N ) = −ḡ(L, φ̄N ) = 0, we show that φ̄(S(TM⊥)) is also a vector subbundle
of S(TM).

Note 2. Although S(TM) is not unique, it is canonically isomorphic to the
factor vector bundle TM∗ = TM/Rad(TM) considered by Kupeli [12]. Thus all
screens S(TM) are mutually isomorphic. For this reason, we consider only half
lightlike submanifolds equipped with a screen S(TM) such that φ̄(S(TM)⊥) ⊂
S(TM). We call such a screen S(TM) the generic screen of M .

Definition 1. Let M be a half lightlike submanifold of M̄ such that all the
charateristic vector fields ξ̄α are tangent to M . A screen distribution S(TM) is
said to be characteristic if kerφ̄ ⊂ S(TM) and φ̄(S(TM)⊥) ⊂ Γ(S(TM)).
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Definition 2. A half lightlike submanifold M of M̄ is said to be characteristic
if kerφ̄ ⊂ TM and a characteristic screen distribution (S(TM)) is chosen.

Proposition 2.1. [3]. Let (M, g, S(TM)) be a lightlike hypersurface of an
indefinite S-manifold (M̄, φ̄, ξ̄α, η̄α, ḡ). Then M is a characteristic lightlike sub-
manifold of M̄ .

By Theorem 2.1, the characteristic screen S(TM) is expressed as follow :

S(TM) = {φ̄(Rad(TM))⊕ φ̄(ltr(TM))}⊕orth φ̄(S(TM⊥) ⊕orth Do,

where Do is the uniquely defined non-degenerate ditribution. Then each ξ̄α ∈ Do

and the general decompositions (1.1) and (1.3) reduce to

(2.3) TM = Do ⊕ F

(2.4) TM̄ = Do ⊕ E ,

(2.5) TM = D ⊕ φ̄(ltr(TM))⊕ φ̄(S(TM⊥))

where D := Do ⊕ φ̄(Rad(TM))⊕ Rad(TM) and

E := {φ̄(Rad(TM))⊕ φ̄(ltr(TM))}⊕ {Rad(TM)⊕ ltr(TM)⊕ S(TM⊥)},
F := {φ̄(Rad(TM))⊕ φ̄(ltr(TM))}⊕ Rad(TM).

Similar to the definition of φ̄-invariant submanifold([1], p122), we adopt the cond-
tion φ̄(V) ⊆ V for the φ̄-invariance of a distribution V . Then D0 and D are φ̄-
invariant. Obviously, considering the orthogoanl decompositions Do = D′

o ⊥ kerφ
and D = D′ ⊥ kerφ, we get φ̄(D′

o) = D′
o, φ̄(D′) = D′, and the decompositions

in (2.3)∼(2.5) are reduced. For example,

TM = D′
o ⊕ kerφ ⊕ F .

Now, Consider null vector fields U and V , and a non-null vector field W such
that

(2.6) U = −φ̄N, V = −φ̄ξ, W = −φ̄L.

Denote by S the projection morphism of TM on D. From (3.3) any vector field X
on M is expressed as follows

(2.7) X = SX + u(X)U + w(X)W, φ̄X = φX + u(X)N + w(X)L,

where u, v and w are 1-forms locally defined on M by

(2.8) u(X) = g(X, V ), v(X) = g(X, U), w(X) = ε g(X, W )



Half Lightlike Submanifolds in Indefinite S-manifolds 527

and φ is a tensor field of type (1, 1) globally defined on M by

φX = φ̄SX, ∀X ∈ Γ(TM).

We note that if X ∈ Γ(TM), then SX ∈ C, φX = φ̄(SX) ∈ D, so that
S(φX) = φX . Furthermore, since φ̄(φX) = φ̄(SφX) = φ̄S(φX) = φ2X , we can
write φ2X = −X + η̄α(X)ξ̄α + u(X)U + w(X)W by applying φ̄ to the second
equation in (2.7). Finally, since U ∈ φ̄(ltr(TM)) and W ∈ φ̄(S(TM⊥)), we have
φU = 0 , φW = 0, η̄α ◦φ = 0, and u(φX) = 0, w(φX) = 0 for any X ∈ Γ(TM).
Thus we can state the following:

Theorem 2.2. Let (M̄, φ̄, ξ̄α, η̄α) be an indefinite S-manifold, and let (M, g,

S(TM)) be a characteristic half lightlike submanifold of M̄ such that ξ and N
are globally defined on M . Then (M̄, φ̄, ξ̄α, U, L, η̄α, u, w) is a g.f.f -manifold.

For any X , Y ∈ Γ(TM), we compute the field (∇Xφ)Y . Using (1.4), (1.5)
and (2.7), we get

(∇̄Xφ̄)Y = (∇Xφ)Y − u(Y )ANX − w(Y )ALX

+{B(X, φY ) + (∇Xu)(Y ) + u(Y )τ(X) + w(Y )ϕ(X)}N
+{D(X, φY ) + (∇Xw)Y + u(Y )φ(X)}L
+B(X, Y )U + D(X, Y )W

then, from (2.1), comparing the components along TM , ltr(TM) and S(TM⊥),
we have:

(2.9)
(∇Xφ)Y = u(Y )ANX + w(Y )ALX − B(X, Y )U

−D(X, Y )W + ḡ(φ̄X, φ̄Y )ξ̄ + η̄(Y )φ̄2(X)

(2.10) (∇Xu)(Y ) = −B(X, φY ) − u(Y )τ(X)− w(Y )ϕ(X)

(2.11) (∇Xw)Y = −D(X, φY ) − u(Y )φ(X)

Definition 3. Let (M̄, φ̄, ξ̄α, η̄α, ḡ) be an indefinite g.f.f -manifold and (M, g,
S(TM)) a half lightlike submanifold of M̄ . Then M is called totally geodesic if
any geodesic of M with respect to the induced connection ∇ is a geodesic of M
with respect to ∇̄.

It is easy to see that M is totally geodesic if and only if the local second
fundamental forms B, D vanish identically.(i.e., B ≡ 0 and D ≡ 0)

Theorem 2.3. Let (M̄, φ̄, ξ̄α, η̄α, ḡ) be an indefinite S-manifold and (M, g,
S(TM)) a half lightlike submanifold of M̄ . Then M is totally geodesic if and only
if for any X ∈ Γ(TM) and for any Y ∈ Γ(D),
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(2.12) (∇Xφ)Y = ḡ(φ̄X, φ̄Y )ξ̄ + η̄(Y )φ̄2(X)

(2.13) ANX = −(∇Xφ)U + ḡ(X, U)ξ̄

(2.14) ALX = −(∇Xφ)W + ḡ(X, W )ξ̄

Proof. We assume that M is totally geodesic, that is for all X, Y ∈ Γ(TM),
B(X, Y ) ≡ 0 and D(X, Y ) ≡ 0. In (2.9), for any Y ∈ Γ(D), we have u(Y ) = 0
and w(Y ), and hence (∇Xφ)Y = ḡ(φ̄X, φ̄Y )ξ̄ + η̄(Y )φ̄2(X). Again, replacing
Y in (2.9) by U , we have (∇Xφ)U = ANX + ḡ(φ̄X, φ̄U)ξ̄ + η̄(U)φ̄2(X), from
which we obtain ANX = −(∇Xφ)U + ḡ(X, U)ξ̄ In analogy with (2.13), we have
ALX = −(∇Xφ)W + ḡ(X, W )ξ̄

Conversely, we suppose that the conditions (2.12), (2.13), and (2.14) hold. If
Y ∈ Γ(TM), using decompositon (2.5), there exists locally smooth functions f and
h such that Y = Yd + fU + hW , and for any X ∈ Γ(TM), we obtain B(X, Y ) =
B(X, Yd) + fB(X, U) + hB(X, W ) and D(X, Y ) = D(X, Yd) + fD(X, U) +
hD(X, W ) . Using (2.9) and (2.12) with Y = Yd, we find B(X, Yd)U+D(X, Yd)W =
u(Yd)ANX + w(Yd)ALX = 0, which implies B(X, Yd) = D(X, Yd) = 0. From
(2.9), putting Y = U and using (2.13), we get B(X, U)U + D(X, U)W = 0,
which implies B(X, U) = D(X, U) = 0. Again, from (2.9), putting Y = W and
using (2.14), we get B(X, W )U + D(X, W )W = 0, which implies B(X, W ) =
D(X, W ) = 0. The proof is complete.

3. TOTALLY UMBILICAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE

S-MANIFOLD

Definition 4. Let (M̄, φ̄, ξ̄α, η̄α, ḡ) be an indefinite S-manifold and (M, g,
S(TM)) a half lightlike submanifold of M̄ . We say that M is totally umbilical [6]
if, on any coordinate neighborhoodU , there is a smooth vector field H ∈ Γ(tr(TM))
such that

h(X, Y ) = H g(X, Y ), ∀X, Y ∈ Γ(TM).

In case H = 0 on U , we say that M is totally geodesic.
It is easy to see that M is totally umbilical if and only if, on each coordinate

neighborhood U , there exist smooth functions β and δ such that

(3.1) B(X, Y ) = βg(X, Y ), D(X, Y ) = δg(X, Y ), ∀X, Y ∈ Γ(TM).

Theorem 3.1. Let M be a totally umbilical half lightlike submanifold of an
indefinite S-manifold M̄ . Then M is totally geodesic.
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Proof. Apply the operator ∇̄X to ḡ(φ̄ξ, L) = 0 with X ∈ Γ(TM) and use
(1.5), (1.6), (1.12), (1.14) and (1.17), we have

B(X, φ̄L) = D(X, φ̄ξ), ∀X ∈ Γ(TM).

As M is totally umbilical, from the last equation and (3.1), we have

βg(X, φ̄L) = ωδg(X, φ̄ξ), ∀X ∈ Γ(TM).

Replace X by φ̄N and φ̄L in this equation by turns, we have

(3.2) 0 = ωδ, ωβ = 0

Thus we have H = 0.

Theorem 3.2. Let (M̄(c), φ̄, ξ̄α, η̄α, ḡ) be an indefinite S-space form and
(M, g, S(TM)) a half lightlike submanifold of M̄ . If (M, g, S(TM)) is totally
umbilical, then c = ε =

∑r
α=1 εα.

Proof. Since η̄(ξ) = 0 and ḡ(φ̄ξ, φ̄X) = 0 for any X ∈ Γ(TM), M̄(c) is an
indefinite S-space form implies the Riemannian curvature R̄ in (2.2) is given by

(3.3)

4R̄(X, Y, Z, ξ)

= −(c − ε){Φ(ξ, X)Φ(Z, Y ) − Φ(Z, X)Φ(ξ, Y ) + 2Φ(X, Y )Φ(ξ, Z)}

= −(c − ε){ḡ(V, X)Φ(Z, Y )− Φ(Z, X)ḡ(V, Y ) + 2Φ(X, Y )ḡ(V, Z)},

for any X, Y, Z,∈ Γ(TM). So, replacing X , Y , Z by PX , ξ, PZ in (3.3), we find

(3.4)

4R̄(X, Y, Z, ξ)

= −(c − ε){−ḡ(V, PX)ḡ(PZ, V ) − 2ḡ(X, V )ḡ(V, Z)}
= 3(c− ε)u(PZ)u(PX)

On the other hand, from (1.18), we have

(3.5)

R̄(X, Y, Z, ξ)

= (∇XB)(Y, Z)− (∇Y B)(X, Z) + τ(X)B(Y, Z)

−τ(Y )B(X, Z) + µ(X)D(Y, Z)− µ(Y )D(X, Z)

Theorem 3.1, R̄(X, Y, Z, ξ) = 0 and therefore, we have 4R̄(X, Y, Z, ξ) = 3(c −
ε)u(PZ)u(PX). Choosing X = Z = U ∈ Γ(S(TM)), we obtain c = ε.

Corollary 3.3. There is no totally umbilical characteristic half lightlike sub-
manifolds of an indefinite S-space form M̄(c) with c 	= ε.
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