This paper is available online at http://journal.taiwanmathsoc.org.tw

HALF LIGHTLIKE SUBMANIFOLDS IN INDEFINITE \mathcal{S}-MANIFOLDS

Jae Won Lee and Dae Ho Jin

Abstract

In an indefinite metric g.f.f-manifold, we study half lightlike submanifolds M tangent to the characteristic vector fields. We discuss the existence of totally umbilical half lightlike submanifolds of an indefinite \mathcal{S} space form.

0. Introduction

Sasakian manifolds with semi-Riemannian metric have been considered ([11]), and recently many authors ($[2,3,8,9,10]$) study lightlike submanifolds of indefinite Sasakian manifolds. In analogy with the framework of Riemannian geomtery, Brunetti and Pastore [2] introduced indefinite \mathcal{S}-manifolds have represented a natural generalization of indefinite Sasakian manifolds. They have studied the geometry of lightlike hypersurfaces of indefinite \mathcal{S}-manifolds [3]. In the case of an indefinite Sasakian manifolds, Jin [10] extended lightlike hypersurfaces to half lightlike submanifolds, which is a special case of r-lightlike submanifolds [5] such that $r=1$ and its geometry is more general than that of coisotropic submanifolds. It will be extended to half lightlike submanifolds on an indefinite \mathcal{S}-manifold.

We begin with some basic information about half lightlike submanifolds of a semi-Riemannian manifold in Section 1. Afterwards, for an indefinite metric $g . f . f$ manifold we consider a half lightlike submanifold M tangent to the charateristic vector fields, we introduce a particular screen distribution $S(T M)$, using the properties of the indefinite \mathcal{S}-manifold. Then we deal with totally umbilical half lightlike submanifolds of an indefinite \mathcal{S}-space form in Section 3.

1. Lightlike Submanifolds

It is well known that the radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ of half lightlike submanifolds M of a semi-Rimannian manifold (\bar{M}, \bar{g}) of codimension 2

[^0]is a vector subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$, of rank 1. Thus there exists complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$ respectively, which called the screen and coscreen distribution on M, such that
\[

$$
\begin{equation*}
T M=\operatorname{Rad}(T M) \oplus_{o r t h} S(T M), T M^{\perp}=\operatorname{Rad}(T M) \oplus_{o r t h} S\left(T M^{\perp}\right) \tag{1.1}
\end{equation*}
$$

\]

where the symbol $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a half lightlike submanifold by $M=(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of any vector bundle E over M. Choose $L \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ as a unit vector field with $\bar{g}(L, L)=\omega= \pm 1$. Consider the orthogonal complementary distribution $S(T M)^{\perp}$ to $S(T M)$ in $T \bar{M}$. Certainly $\xi \in \Gamma(\operatorname{Rad}(T M))$ and L belong to $\Gamma\left(S(T M)^{\perp}\right)$. Hence we have the following orthogonal decomposition

$$
S(T M)^{\perp}=S\left(T M^{\perp}\right) \oplus_{o r t h} S\left(T M^{\perp}\right)^{\perp}
$$

where $S\left(T M^{\perp}\right)^{\perp}$ is the orthogonal complementary to $S\left(T M^{\perp}\right)$ in $S(T M)^{\perp}$. For any null section ξ of $\operatorname{Rad}(T M)$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a uniquely defined null vector field $N \in \Gamma(l \operatorname{tr}(T M))$ [5] satisfying

$$
\begin{equation*}
\bar{g}(\xi, N)=1, \bar{g}(N, N)=\bar{g}(N, X)=\bar{g}(N, L)=0, \forall X \in \Gamma(S(T M)) \tag{1.2}
\end{equation*}
$$

We call $N, l \operatorname{tr}(T M)$ and $\operatorname{tr}(T M)=S\left(T M^{\perp}\right) \oplus_{\text {orth }} l \operatorname{tr}(T M)$ the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to $S(T M)$ respectively. Thus $T \bar{M}$ is decomposed as follows:

$$
\begin{align*}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{o r t h} S(T M) \tag{1.3}\\
& =\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \oplus_{o r t h} S(T M) \oplus_{o r t h} S\left(T M^{\perp}\right)
\end{align*}
$$

Let $\bar{\nabla}$ be the Levi-Civita connection of \bar{M} and P the projection morphism of $\Gamma(T M)$ on $\Gamma(S(T M))$ with respect to the decomposition (1.1). The local Gauss and Weingarten formulas of M and $S(T M)$ are given respectively by

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N+D(X, Y) L \tag{1.4}\\
\bar{\nabla}_{X} N=-A_{N} X+\tau(X) N+\rho(X) L \tag{1.5}\\
\bar{\nabla}_{X} L=-A_{L} X+\mu(X) N \tag{1.6}\\
\nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{1.7}\\
\nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi \tag{1.8}
\end{gather*}
$$

for all $X, Y \in \Gamma(T M)$, where ∇ and ∇^{*} are induced linear connections on $T M$ and $S(T M)$ respectively, B and D are called the local second fundamental forms of M, C is called the local second fundamental form on $S(T M) . A_{N}, A_{\xi}^{*}$ and A_{L} are linear operators on $T M$ and τ, ρ and ϕ are 1-forms on $T M$. We say that $h(X, Y)=B(X, Y) N+D(X, Y) L$ is the second fundamental tensor of M. Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free, and B and D are symmetric. From the facts $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$ and $D(X, Y)=\omega \bar{g}\left(\bar{\nabla}_{X} Y, L\right)$, we know that B and D are independent of the choice of $S(T M)$ and satisfy

$$
\begin{equation*}
B(X, \xi)=0, D(X, \xi)=-\omega \mu(X), \forall X \in \Gamma(T M) \tag{1.9}
\end{equation*}
$$

The induced connection ∇ of M is not metric and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{1.10}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma(T M)$, where η is a 1-form on $T M$ such that

$$
\begin{equation*}
\eta(X)=\bar{g}(X, N), \forall X \in \Gamma(T M) \tag{1.11}
\end{equation*}
$$

But the connection ∇^{*} on $S(T M)$ is metric. The above three local second fundamental forms are related to their shape operators by

$$
\begin{array}{cc}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0, \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0, \\
\omega D(X, P Y)=g\left(A_{L} X, P Y\right), & \bar{g}\left(A_{L} X, N\right)=\omega \rho(X), \\
\omega D(X, Y)=g\left(A_{L} X, Y\right)-\mu(X) \eta(Y), \forall X, Y \in \Gamma(T M)
\end{array}
$$

By (1.12) and (1.13), we show that A_{ξ}^{*} and A_{N} are $\Gamma(S(T M))$-valued shape operators related to B and C respectively and A_{ξ}^{*} is self-adjoint on $T M$ and

$$
\begin{equation*}
A_{\xi}^{*} \xi=0 \tag{1.16}
\end{equation*}
$$

But A_{N} is not self-adjoint on $S(T M)$. We know that A_{N} is self-adjoint in $S(T M)$ if and only if $S(T M)$ is an integrable distribution [5]. From (1.15), we show that A_{L} is not self-adjoint on $T M . A_{L}$ is self-adjoint in $T M$ if and only if $\mu(X)=0$ for all $X \in \Gamma(S(T M))$ [9]. From (1.4), (1.8) and (1.9), we have

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi-\omega \mu(X) L, \forall X \in \Gamma(T M) \tag{1.17}
\end{equation*}
$$

Denote by \bar{R} and R the curvature tensors of the connections $\bar{\nabla}$ and ∇ respectively. Using the local Gauss-Weingarten formulas (1.4) \sim (1.6) for M, we have the Gauss-Codazzi equations for M, for all $X, Y, Z \in \Gamma(T M)$:

$$
\begin{align*}
& \bar{R}(X, Y) Z \\
= & R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \\
& +D(X, Z) A_{L} Y-D(Y, Z) A_{L} X+\left\{\left(\nabla_{X} B\right)(Y, Z)\right. \tag{1.18}\\
& -\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z)-\tau(Y) B(X, Z) \\
& +\mu(X) D(Y, Z)-\mu(Y) D(X, Z)\} N+\left\{\left(\nabla_{X} D\right)(Y, Z)\right. \\
& \left.-\left(\nabla_{Y} D\right)(X, Z)+\rho(X) B(Y, Z)-\rho(Y) B(X, Z)\right\} L
\end{align*}
$$

2. Characteristic Half Lightlike Submanifolds of Indefinite $g . f . f$-Manifolds

A manifold \bar{M} is called a globally framed f-manifold (or g.f.f-manifold) if it is endowed with a non null $(1,1)$-tensor field $\bar{\phi}$ of constant rank, such that $\operatorname{ker} \bar{\phi}$ is parallelizable i.e. there exist global vector fields $\overline{\xi_{\alpha}}, \alpha \in\{1, \cdots, r\}$, with their dual 1- forms $\bar{\eta}^{\alpha}$, satisfying $\bar{\phi}^{2}=-I+\sum_{\alpha=1}^{r} \bar{\eta}^{\alpha} \otimes \bar{\xi}_{\alpha}$ and $\bar{\eta}^{\alpha}\left(\bar{\xi}_{\beta}\right)=\delta_{\beta}^{\alpha}$.

The g.f. f-manifold $\left(\bar{M}^{2 n+r}, \bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}\right), \alpha \in\{1, \cdots, r\}$, is said to be an indefinite metric $g . f . f$-manifold if \bar{g} is a semi-Riemannian metric, with index ν, $0<\nu<2 n+r$, satisfying the following compatibility condtion

$$
\bar{g}(\bar{\phi} X, \bar{\phi} Y)=\bar{g}(X, Y)-\sum_{\alpha=1}^{r} \epsilon_{\alpha} \bar{\eta}^{\alpha}(X) \bar{\eta}^{\alpha}(Y)
$$

for any $X, Y \in \Gamma(T \bar{M})$, being $\epsilon_{\alpha}= \pm 1$ according to whether $\bar{\xi}_{\alpha}$ is spacelike or timelike. Then, for any $\alpha \in\{1, \cdots, r\}$, one has $\bar{\eta}^{\alpha}(X)=\epsilon_{\alpha} \bar{g}\left(X, \bar{\xi}_{\alpha}\right)$. An indefinite metric g.f.f-manifold is called an indefinite \mathcal{S}-manifold if it is normal and $d \bar{\eta}^{\alpha}=\Phi$, for any $\alpha \in\{1, \cdots, r\}$, where $\Phi(X, Y)=\bar{g}(X, \bar{\phi} Y)$ for any X, $Y \in \Gamma(T \bar{M})$. The normality condition is expressed by the vanishing of the tensor field $N=N_{\bar{\phi}}+2 \sum_{\alpha=1}^{r} d \bar{\eta}^{\alpha} \otimes \bar{\xi}_{\alpha}, N_{\bar{\phi}}$ the Nijenhuis torsion of $\bar{\phi}$. Furthermore, as proved in [2], the Levi-Civita connection of an indefinite \mathcal{S}-manifold satisfies:

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \bar{\phi}\right) Y=\bar{g}(\bar{\phi} X, \bar{\phi} Y) \bar{\xi}+\bar{\eta}(Y) \bar{\phi}^{2}(X) \tag{2.1}
\end{equation*}
$$

where $\bar{\xi}=\sum_{\alpha=1}^{r} \bar{\xi}_{\alpha}$ and $\bar{\eta}=\sum_{\alpha=1}^{r} \epsilon_{\alpha} \bar{\eta}^{\alpha}$. We recall that $\bar{\nabla}_{X} \bar{\xi}_{\alpha}=-\epsilon_{\alpha} \bar{\phi} X$ and $\operatorname{ker} \bar{\phi}$ is an integrable flat distribution since $\bar{\nabla}_{\bar{\xi}_{\alpha}} \bar{\xi}_{\beta}=0$.(more details in [2]).

An indefinite \mathcal{S}-manifold $\left(\bar{M}, \bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}\right)$ is called an indefinite \mathcal{S}-space form, denoted by $\bar{M}(c)$, if it has the constant $\bar{\phi}$-sectional curvature c [2]. The curvature
tensor \bar{R} of this space form $\bar{M}(c)$ is given by

$$
\begin{align*}
& 4 \bar{R}(X, Y, Z, W) \\
= & -(c+3 \epsilon)\{\bar{g}(\bar{\phi} Y, \bar{\phi} Z) \bar{g}(\bar{\phi} X, \bar{\phi} W)-\bar{g}(\bar{\phi} X, \bar{\phi} Z) \bar{g}(\bar{\phi} Y, \bar{\phi} W)\} \\
& -(c-\epsilon)\{\Phi(W, X) \Phi(Z, Y)-\Phi(Z, X) \Phi(W, Y)+2 \Phi(X, Y) \Phi(W, Z)\} \tag{2.2}\\
& -\{\bar{\eta}(W) \bar{\eta}(X) \bar{g}(\bar{\phi} Z, \bar{\phi} Y)-\bar{\eta}(W) \bar{\eta}(Y) \bar{g}(\bar{\phi} Z, \bar{\phi} X) \\
& +\bar{\eta}(Y) \bar{\eta}(Z) \bar{g}(\bar{\phi} W, \bar{\phi} X)-\bar{\eta}(Z) \bar{\eta}(X) \bar{g}(\bar{\phi} W, \bar{\phi} Y)\}
\end{align*}
$$

for any vector fields $X, Y, Z, W \in \Gamma(T \bar{M})$.
Theorem 2.1. Let M be a half lightlike submanifold of an indefinite \mathcal{S}-manifold \bar{M} such that all the charateristic vector fields $\bar{\xi}_{\alpha}$ are tangent to M. Then there exist a screen $S(T M)$ such that

$$
\bar{\phi}\left(S(T M)^{\perp}\right) \subset S(T M) .
$$

Proof. Since $\bar{\phi}$ is skew symmetric with respect to \bar{g}, we have $\bar{g}(\bar{\phi} \xi, \xi)=0$. Thus $\bar{\phi} \xi$ blongs to $T M \oplus S\left(T M^{\perp}\right)$. If $\operatorname{Rad}(T M) \cap \bar{\phi}(\operatorname{Rad}(T M)) \neq\{0\}$, then there exists a non-vanishing smooth real valued function f such that $\bar{\phi} \xi=f \xi$. Apply $\bar{\phi}$ to the equation and $\bar{\phi}$-properties, we have $\left(f^{2}+1\right) \xi=0$. Therefore, we get $f^{2}+1=0$, which is a contradition. Thus $\operatorname{Rad}(T M) \cap \bar{\phi}(\operatorname{Rad}(T M))=$ $\{0\}$. Moreover, if $S\left(T M^{\perp}\right) \cap \bar{\phi}(\operatorname{Rad}(T M)) \neq\{0\}$, then there exists a nonvanishing smooth real valued function h such that $\bar{\phi} \xi=h L$. In this case, we have $h^{2}=\bar{g}(h L, h L)=\bar{g}(\bar{\phi} \xi, \bar{\phi} \xi)=0$, which is a contradiction to $h \neq 0$. Thus we have $S\left(T M^{\perp}\right) \cap \bar{\phi}(\operatorname{Rad}(T M))=\{0\}$. This enables one to choose a screen distribution $S(T M)$ such that it cotains $\bar{\phi}(\operatorname{Rad}(T M))$ as a vector subbundle. From the facts $\bar{g}(\bar{\phi} N, N)=0$ and $\bar{g}(\bar{\phi} N, \xi)=-\bar{g}(N, \bar{\phi} \xi)=0$, using the above method, we also show that $\bar{\phi}(\operatorname{trr}(T M))$ is a vector subbundle of $S(T M)$ of rank 1 . On the other hand, from the facts $\bar{g}(\bar{\phi} L, L)=0, \bar{g}(\bar{\phi} L, \xi)=-\bar{g}(L, \bar{\phi} \xi)=0$ and $\bar{g}(\bar{\phi} L, N)=-\bar{g}(L, \bar{\phi} N)=0$, we show that $\bar{\phi}\left(S\left(T M^{\perp}\right)\right)$ is also a vector subbundle of $S(T M)$.

Note 2. Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $T M^{*}=T M / \operatorname{Rad}(T M)$ considered by Kupeli [12]. Thus all screens $S(T M)$ are mutually isomorphic. For this reason, we consider only half lightlike submanifolds equipped with a screen $S(T M)$ such that $\bar{\phi}\left(S(T M)^{\perp}\right) \subset$ $S(T M)$. We call such a screen $S(T M)$ the generic screen of M.

Definition 1. Let M be a half lightlike submanifold of \bar{M} such that all the charateristic vector fields $\bar{\xi}_{\alpha}$ are tangent to M. A screen distribution $S(T M)$ is said to be characteristic if $\operatorname{ker} \bar{\phi} \subset S(T M)$ and $\bar{\phi}\left(S(T M)^{\perp}\right) \subset \Gamma(S(T M))$.

Definition 2. A half lightlike submanifold M of \bar{M} is said to be characteristic if $\operatorname{ker} \bar{\phi} \subset T M$ and a characteristic screen distribution $(S(T M))$ is chosen.

Proposition 2.1. [3]. Let $(M, g, S(T M))$ be a lightlike hypersurface of an indefinite \mathcal{S}-manifold $\left(\bar{M}, \bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}, \bar{g}\right)$. Then M is a characteristic lightlike submanifold of \bar{M}.

By Theorem 2.1, the characteristic screen $S(T M)$ is expressed as follow:

$$
S(T M)=\{\bar{\phi}(\operatorname{Rad}(T M)) \oplus \bar{\phi}(l t r(T M))\} \oplus_{o r t h} \bar{\phi}\left(S\left(T M^{\perp}\right) \oplus_{o r t h} D_{o}\right.
$$

where D_{o} is the uniquely defined non-degenerate ditribution. Then each $\bar{\xi}_{\alpha} \in D_{o}$ and the general decompositions (1.1) and (1.3) reduce to

$$
\begin{gather*}
T M=D_{o} \oplus \mathcal{F} \tag{2.3}\\
T \bar{M}=D_{o} \oplus \mathcal{E} \tag{2.4}\\
T M=D \oplus \bar{\phi}(l \operatorname{tr}(T M)) \oplus \bar{\phi}\left(S\left(T M^{\perp}\right)\right) \tag{2.5}
\end{gather*}
$$

where $D:=D_{o} \oplus \bar{\phi}(\operatorname{Rad}(T M)) \oplus \operatorname{Rad}(T M)$ and

$$
\begin{aligned}
\mathcal{E} & :=\{\bar{\phi}(\operatorname{Rad}(T M)) \oplus \bar{\phi}(\operatorname{ltr}(T M))\} \oplus\left\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M) \oplus S\left(T M^{\perp}\right)\right\} \\
\mathcal{F} & :=\{\bar{\phi}(\operatorname{Rad}(T M)) \oplus \bar{\phi}(l \operatorname{tr}(T M))\} \oplus \operatorname{Rad}(T M)
\end{aligned}
$$

Similar to the definition of $\bar{\phi}$-invariant submanifold([1], p122), we adopt the condtion $\bar{\phi}(\mathcal{V}) \subseteq \mathcal{V}$ for the $\bar{\phi}$-invariance of a distribution \mathcal{V}. Then D_{0} and D are $\bar{\phi}$ invariant. Obviously, considering the orthogoanl decompositions $D_{o}=D_{o}^{\prime} \perp \operatorname{ker} \phi$ and $D=D^{\prime} \perp \operatorname{ker} \phi$, we get $\bar{\phi}\left(D_{o}^{\prime}\right)=D_{o}^{\prime}, \bar{\phi}\left(D^{\prime}\right)=D^{\prime}$, and the decompositions in (2.3) $\sim(2.5)$ are reduced. For example,

$$
T M=D_{o}^{\prime} \oplus \operatorname{ker} \phi \oplus \mathcal{F}
$$

Now, Consider null vector fields U and V, and a non-null vector field W such that

$$
\begin{equation*}
U=-\bar{\phi} N, \quad V=-\bar{\phi} \xi, \quad W=-\bar{\phi} L \tag{2.6}
\end{equation*}
$$

Denote by S the projection morphism of $T M$ on D. From (3.3) any vector field X on M is expressed as follows

$$
\begin{equation*}
X=S X+u(X) U+w(X) W, \quad \bar{\phi} X=\phi X+u(X) N+w(X) L \tag{2.7}
\end{equation*}
$$

where u, v and w are 1-forms locally defined on M by

$$
\begin{equation*}
u(X)=g(X, V), \quad v(X)=g(X, U), \quad w(X)=\epsilon g(X, W) \tag{2.8}
\end{equation*}
$$

and ϕ is a tensor field of type $(1,1)$ globally defined on M by

$$
\phi X=\bar{\phi} S X, \quad \forall X \in \Gamma(T M)
$$

We note that if $X \in \Gamma(T M)$, then $S X \in C, \phi X=\bar{\phi}(S X) \in D$, so that $S(\phi X)=\phi X$. Furthermore, since $\bar{\phi}(\phi X)=\bar{\phi}(S \phi X)=\bar{\phi} S(\phi X)=\phi^{2} X$, we can write $\phi^{2} X=-X+\bar{\eta}^{\alpha}(X) \bar{\xi}_{\alpha}+u(X) U+w(X) W$ by applying $\bar{\phi}$ to the second equation in (2.7). Finally, since $U \in \bar{\phi}(l \operatorname{tr}(T M))$ and $W \in \bar{\phi}\left(S\left(T M^{\perp}\right)\right)$, we have $\phi U=0, \phi W=0, \bar{\eta}^{\alpha} \circ \phi=0$, and $u(\phi X)=0, w(\phi X)=0$ for any $X \in \Gamma(T M)$. Thus we can state the following:

Theorem 2.2. Let $\left(\bar{M}, \bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}\right)$ be an indefinite \mathcal{S}-manifold, and let $(M, g$, $S(T M)$) be a characteristic half lightlike submanifold of \bar{M} such that ξ and N are globally defined on M. Then $\left(\bar{M}, \bar{\phi}, \bar{\xi}_{\alpha}, U, L, \bar{\eta}^{\alpha}, u, w\right)$ is a g.f.f-manifold.

For any $X, Y \in \Gamma(T M)$, we compute the field $\left(\nabla_{X} \phi\right) Y$. Using (1.4), (1.5) and (2.7), we get

$$
\begin{aligned}
\left(\bar{\nabla}_{X} \bar{\phi}\right) Y= & \left(\nabla_{X} \phi\right) Y-u(Y) A_{N} X-w(Y) A_{L} X \\
& +\left\{B(X, \phi Y)+\left(\nabla_{X} u\right)(Y)+u(Y) \tau(X)+w(Y) \varphi(X)\right\} N \\
& +\left\{D(X, \phi Y)+\left(\nabla_{X} w\right) Y+u(Y) \phi(X)\right\} L \\
& +B(X, Y) U+D(X, Y) W
\end{aligned}
$$

then, from (2.1), comparing the components along $T M, \operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$, we have:

$$
\begin{align*}
\left(\nabla_{X} \phi\right) Y= & u(Y) A_{N} X+w(Y) A_{L} X-B(X, Y) U \\
& -D(X, Y) W+\bar{g}(\bar{\phi} X, \bar{\phi} Y) \bar{\xi}+\bar{\eta}(Y) \bar{\phi}^{2}(X) \tag{2.9}\\
\left(\nabla_{X} u\right)(Y)= & -B(X, \phi Y)-u(Y) \tau(X)-w(Y) \varphi(X) \tag{2.10}
\end{align*}
$$

Definition 3. Let $\left(\bar{M}, \bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}, \bar{g}\right)$ be an indefinite $g . f . f$-manifold and $(M, g$, $S(T M)$) a half lightlike submanifold of \bar{M}. Then M is called totally geodesic if any geodesic of M with respect to the induced connection ∇ is a geodesic of M with respect to $\bar{\nabla}$.

It is easy to see that M is totally geodesic if and only if the local second fundamental forms B, D vanish identically.(i.e., $B \equiv 0$ and $D \equiv 0$)

Theorem 2.3. Let $\left(\bar{M}, \bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}, \bar{g}\right)$ be an indefinite \mathcal{S}-manifold and $(M, g$, $S(T M))$ a half lightlike submanifold of \bar{M}. Then M is totally geodesic if and only if for any $X \in \Gamma(T M)$ and for any $Y \in \Gamma(D)$,

$$
\begin{align*}
\left(\nabla_{X} \phi\right) Y & =\bar{g}(\bar{\phi} X, \bar{\phi} Y) \bar{\xi}+\bar{\eta}(Y) \bar{\phi}^{2}(X) \tag{2.12}\\
A_{N} X & =-\left(\nabla_{X} \phi\right) U+\bar{g}(X, U) \bar{\xi} \tag{2.13}\\
A_{L} X & =-\left(\nabla_{X} \phi\right) W+\bar{g}(X, W) \bar{\xi} \tag{2.14}
\end{align*}
$$

Proof. We assume that M is totally geodesic, that is for all $X, Y \in \Gamma(T M)$, $B(X, Y) \equiv 0$ and $D(X, Y) \equiv 0$. In (2.9), for any $Y \in \Gamma(D)$, we have $u(Y)=0$ and $w(Y)$, and hence $\left(\nabla_{X} \phi\right) Y=\bar{g}(\bar{\phi} X, \bar{\phi} Y) \bar{\xi}+\bar{\eta}(Y) \bar{\phi}^{2}(X)$. Again, replacing Y in (2.9) by U, we have $\left(\nabla_{X} \phi\right) U=A_{N} X+\bar{g}(\bar{\phi} X, \bar{\phi} U) \bar{\xi}+\bar{\eta}(U) \bar{\phi}^{2}(X)$, from which we obtain $A_{N} X=-\left(\nabla_{X} \phi\right) U+\bar{g}(X, U) \bar{\xi}$ In analogy with (2.13), we have $A_{L} X=-\left(\nabla_{X} \phi\right) W+\bar{g}(X, W) \bar{\xi}$

Conversely, we suppose that the conditions (2.12), (2.13), and (2.14) hold. If $Y \in \Gamma(T M)$, using decompositon (2.5), there exists locally smooth functions f and h such that $Y=Y_{d}+f U+h W$, and for any $X \in \Gamma(T M)$, we obtain $B(X, Y)=$ $B\left(X, Y_{d}\right)+f B(X, U)+h B(X, W)$ and $D(X, Y)=D\left(X, Y_{d}\right)+f D(X, U)+$ $h D(X, W)$. Using (2.9) and (2.12) with $Y=Y_{d}$, we find $B\left(X, Y_{d}\right) U+D\left(X, Y_{d}\right) W=$ $u\left(Y_{d}\right) A_{N} X+w\left(Y_{d}\right) A_{L} X=0$, which implies $B\left(X, Y_{d}\right)=D\left(X, Y_{d}\right)=0$. From (2.9), putting $Y=U$ and using (2.13), we get $B(X, U) U+D(X, U) W=0$, which implies $B(X, U)=D(X, U)=0$. Again, from (2.9), putting $Y=W$ and using (2.14), we get $B(X, W) U+D(X, W) W=0$, which implies $B(X, W)=$ $D(X, W)=0$. The proof is complete.

3. Totally Umbilical Half Lightlike Submanifolds of an Indefinite \mathcal{S}-MANIFOLD

Definition 4. Let $\left(\bar{M}, \bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}, \bar{g}\right)$ be an indefinite \mathcal{S}-manifold and $(M, g$, $S(T M)$) a half lightlike submanifold of \bar{M}. We say that M is totally umbilical [6] if, on any coordinate neighborhood \mathcal{U}, there is a smooth vector field $\mathcal{H} \in \Gamma(\operatorname{tr}(T M))$ such that

$$
h(X, Y)=\mathcal{H} g(X, Y), \forall X, Y \in \Gamma(T M) .
$$

In case $\mathcal{H}=0$ on \mathcal{U}, we say that M is totally geodesic.
It is easy to see that M is totally umbilical if and only if, on each coordinate neighborhood \mathcal{U}, there exist smooth functions β and δ such that

$$
\begin{equation*}
B(X, Y)=\beta g(X, Y), D(X, Y)=\delta g(X, Y), \forall X, Y \in \Gamma(T M) . \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let M be a totally umbilical half lightlike submanifold of an indefinite \mathcal{S}-manifold \bar{M}. Then M is totally geodesic.

Proof. Apply the operator $\bar{\nabla}_{X}$ to $\bar{g}(\bar{\phi} \xi, L)=0$ with $X \in \Gamma(T M)$ and use (1.5), (1.6), (1.12), (1.14) and (1.17), we have

$$
B(X, \bar{\phi} L)=D(X, \bar{\phi} \xi), \forall X \in \Gamma(T M) .
$$

As M is totally umbilical, from the last equation and (3.1), we have

$$
\beta g(X, \bar{\phi} L)=\omega \delta g(X, \bar{\phi} \xi), \forall X \in \Gamma(T M) .
$$

Replace X by $\bar{\phi} N$ and $\bar{\phi} L$ in this equation by turns, we have

$$
\begin{equation*}
0=\omega \delta, \quad \omega \beta=0 \tag{3.2}
\end{equation*}
$$

Thus we have $\mathcal{H}=0$.
Theorem 3.2. Let $\left(\bar{M}(c), \bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}, \bar{g}\right)$ be an indefinite \mathcal{S}-space form and ($M, g, S(T M)$) a half lightlike submanifold of \bar{M}. If $(M, g, S(T M))$ is totally umbilical, then $c=\epsilon=\sum_{\alpha=1}^{r} \epsilon_{\alpha}$.

Proof. Since $\bar{\eta}(\xi)=0$ and $\bar{g}(\bar{\phi} \xi, \bar{\phi} X)=0$ for any $X \in \Gamma(T M), \bar{M}(c)$ is an indefinite \mathcal{S}-space form implies the Riemannian curvature \bar{R} in (2.2) is given by

$$
\begin{align*}
& 4 \bar{R}(X, Y, Z, \xi) \\
= & -(c-\epsilon)\{\Phi(\xi, X) \Phi(Z, Y)-\Phi(Z, X) \Phi(\xi, Y)+2 \Phi(X, Y) \Phi(\xi, Z)\} \tag{3.3}\\
= & -(c-\epsilon)\{\bar{g}(V, X) \Phi(Z, Y)-\Phi(Z, X) \bar{g}(V, Y)+2 \Phi(X, Y) \bar{g}(V, Z)\},
\end{align*}
$$

for any $X, Y, Z, \in \Gamma(T M)$. So, replacing X, Y, Z by $P X, \xi, P Z$ in (3.3), we find

$$
\begin{align*}
& 4 \bar{R}(X, Y, Z, \xi) \\
= & -(c-\epsilon)\{-\bar{g}(V, P X) \bar{g}(P Z, V)-2 \bar{g}(X, V) \bar{g}(V, Z)\} \tag{3.4}\\
= & 3(c-\epsilon) u(P Z) u(P X)
\end{align*}
$$

On the other hand, from (1.18), we have

$$
\begin{align*}
& \bar{R}(X, Y, Z, \xi) \\
= & \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z) \tag{3.5}\\
- & \tau(Y) B(X, Z)+\mu(X) D(Y, Z)-\mu(Y) D(X, Z)
\end{align*}
$$

Theorem 3.1, $\bar{R}(X, Y, Z, \xi)=0$ and therefore, we have $4 \bar{R}(X, Y, Z, \xi)=3(c-$ є) $u(P Z) u(P X)$. Choosing $X=Z=U \in \Gamma(S(T M))$, we obtain $c=\epsilon$.

Corollary 3.3. There is no totally umbilical characteristic half lightlike submanifolds of an indefinite \mathcal{S}-space form $\bar{M}(c)$ with $c \neq \epsilon$.

References

1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progr. Math., 203, Birkhäuser Boston, MA, 2002.
2. L. Brunetti and A. M. Pastore, Curvature of a class of indefinite globally framed f-manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 51(3) (2008), 138-204.
3. L. Brunetti and A. M. Pastore, Lightlike hypersurfaces in indefinite \mathcal{S}-manifolds, Differential Geometry-Dynamical systems, 12 (2010), 18-40.
4. B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
5. K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
6. K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J., 26 (2003), 49-68.
7. K. L. Duggal and D. H. Jin, A class of Einstein lightlike submanifolds of an indefinite space form with a Killing co-screen distribution, preprint.
8. K. L. Duggal and B. Sahin, Lightlike lightlike submanifolds of indefinite Sasakian manifolds, Int. J. Math. Sci., 2007, Art. ID 57585, p. 21.
9. D. H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. of Pure and Applied Math., 41(4) (2010), 569-581.
10. D. H. Jin, Special half lightlike submanifolds of an indefinite Sasakian manifold, Bull. Korean Math. Soc., to appear.
11. T. H. Kang, S. D. Jung, B. H. Kim, H. K. Pak and J. S. Pak, Lightlike hypersurfaces of indefinite Sasakian manifolds, Indian J. Pure and Apple., Math., 34 (2003), 13691380.
12. D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

Jae Won Lee
Department of Mathematics
Sogang University
Sinsu-dong, Mapo-gu 121-742
Republic of Korea
E-mail: leejaewon@sogang.ac.kr

Dae Ho Jin
Department of Mathematics
Dongguk University
Gyeongju 780-714
Republic of Korea
E-mail: jindh@dongguk.ac.kr

[^0]: Received November 4, 2010, accepted December 10, 2010.
 Communicated by Shu-Cheng Chang.
 2010 Mathematics Subject Classification: 53C10, 53C40, 53C50.
 Key words and phrases: Half lightlike submanifolds, Indefinite globally framed f-structures.

