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ON-LINE 3-CHOOSABLE PLANAR GRAPHS

Ting-Pang Chang1 and Xuding Zhu

Abstract. This paper proves that if G is a triangle-free planar graph in which

no 4-cycle is adjacent to a 4-cycle or a 5-cycle, then G is on-line 3-choosable.

1. INTRODUCTION

Given a graph G and a function f from V (G) to N. An f -assignment of G
is a mapping L which assigns each vertex v of G a set L(v) of f(v) integers as
permissible colours. Given a list assignment L of G, an L-colouring of G is a

mapping c : V (G) → N such that c(v) ∈ L(v) for each vertex v and c(u) 6= c(v)
for each edge uv. We say G is L-colourable if there exists an L-colouring of G. We
say G is f -choosable if for every f -assignment L, G is L-colourable. If f(v) = k
for all v ∈ V (G), then f -choosable is called k-choosable. The choice number

ch(G) of G is the least number k such that G is k-choosable. List colouring of
graphs was introduced in the 1970’s by Vizing [5] and independently by Erd"os,

Rubin and Taylor [2], and has been studied extensively in the literature [4]. On-line

list colouring of graphs was introduced by Schauz [3].

The on-line list colouring of graphs is defined through a two-person game.

Definition 1. Given a graph G and a mapping f : V (G) → N, the on-line f -list

colouring game on G is a game with two players: Alice and Bob. At the beginning,

all vertices of G are uncoloured. In the ith move, Alice chooses a nonempty subset
Vi of uncoloured vertices of G and assign colour i as a permissible colour to each

vertex of Vi. Bob chooses an independent setXi contained in Vi and colour vertices

of Xi by colour i. If for some integerm, at the end of themth step, there is a vertex

v which has been assigned f(v) permissible colours, i.e., is contained in f(v) of
the Vi’s, but is not coloured, i.e., not contained in any of the Xi’s, then Alice wins

the game. Otherwise, in the end, each vertex v is assigned in at most f(v) colours
and all vertices are coloured and Bob wins the game.
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Definition 2. Suppose f : V (G) → N. We say G is on-line f -choosable if

Bob has a winning strategy in any f -list colouring game on G. We say G is on-

line k-choosable if G is on-line f -choosable for the constant function f = k. The

on-line choice number chOL(G) of G is the least number k such that G is on-line

k-choosable.

It follows from definition that for any graph G, chOL(G) ≥ ch(G). It is recently
proved by Dvorák, Lidický and Skrekovski [1] that if G is a triangle-free planar

graph without 4-cycles adjacent to a 4- or 5-cycle, then G is 3-choosable. In this
paper, we strengthen this result and show that such graphs are on-line 3-choosable.

2. THE PROOF

For a subset U of V (G), let 1U be the characteristic function of U and f |U be
the restriction of f to U . Lemmas 3, 4, 5, 6 7 are proved in [3].

Lemma 3. If G is on-line f -choosable and g(x) ≥ f(x) for all x ∈ V (G),
then G is on-line g-choosable.

Lemma 4. Let A = {x : f(x) > degG(x)}. If G − A is on-line f |G−A-

choosable, then G is on-line f -choosable.

Lemma 5. Let u and v be two nonadjacent vertices. IfG is on-line f -choosable,
then G+uv is on-line (f +f(u)1{v})-choosable. If f(u) = 1 and G+uv is on-line

(f + 1{v})-choosable, then G is on-line f -choosable.

Lemma 6. Suppose G = (V, E) is a graph and A is an independent set such

that f(v) = 1 for all v ∈ A. Let g : V (G) − A → N be defined as g(x) =
f(x)−|A∩NG(x)|. Then G is on-line f -choosable if and only if G−A is on-line

g-choosable.

Lemma 7. Suppose G1 and G2 are on-line f1 and f2 choosable where f2(x) =
1 for ∀x ∈ V (G1) ∩ V (G2). Let g : V (G1) ∪ V (G2) → N be defined as g(x) =
f1(x)1V (G1) + f2(x)1V (G2)−V (G1). Then G1 ∪ G2 is on-line g-choosable.

Now we shall use these lemmas to prove the following result:

Theorem 8. Assume G is a triangle-free plane graph in which no 4-cycle is
adjacent to a 4-cycle or a 5-cycle. Let C be its outer face. Assume P is a path

of length at most 3 such that E(P ) ⊆ E(C), V (P ) 6= V (C) and f : V (G) → N
satisfies the following conditions:

1. f(v) = 3 for all v ∈ V (G) − V (C).

2. 2 6 f(v) 6 3 for all v ∈ V (C) − V (P ).
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3. f(v) = 1 for all v ∈ V (P ).

4. The set {v : f(v) = 2} is an independent set in G.

5. Each vertex v with f(v) = 2 has at most one neighbor in P .

Then the graph G − E(P ) is on-line f -choosable.

Theorem 8 has the following easy consequence.

Corollary 9. Let G be a triangle-free plane graph in which no 4-cycle is
adjacent to a 4-cycle or a 5-cycle, and its outer face is bounded by an induced
cycle C of length at most 7. If f(x) = 1 for x ∈ V (C) and f(x) = 3 for
x ∈ V (G)− V (C), then G − E(C) is on-line f -choosable.

Proof. Let u1vu2 be an arbitrary subpath of C and P be the subpath of C which
contains the other vertices in C. Let g be the function defined as g(v) = f(v) + 2,
g(ui) = f(ui) + 1 for i = 1, 2, and g(x) = f(x) otherwise. The graph G− P and

the function g satisfy the assumptions of Theorem 8. It follows that G − E(P ) is
on-line g-choosable. By applying Lemma 5, G − E(C) is on-line f -choosable.

Proof of Theorem 8. Suppose G − E(P ) is a smallest counterexample, i.e.,
G − E(P ) has the minimum number of edges for which there is a mapping f
satisfying the condition of Theorem 8 and G − E(P ) is not on-line f -choosable.
We first derive several properties of this counterexample. By applying Lemma 4,

each vertex v of G has degree at least f(v). A cycle K in G is separating if K 6= C
and the interior of K contains at least one vertex. A chord of cycle K is an edge

in G joining two non-consecutive vertices of K.

Lemma 10. If K is a separating cycle in G, then the length of K is at least 8.

Proof. Suppose the length of K at most 7. Since G is triangle-free and no

4-cycle is adjacent to a 5-cycle, K has no chord. Let G1 be the subgraph of G

drawn inside K and G2 be the subgraph of G drawn outside K. By the minimality
of G−E(P ), G2−E(P ) is on-line f |G2 -choosable. By the minimality of G−E(P )
and Corollary 9, G1 − E(K) is on-line g-choosable where g = f |G1 , except that

g(x) = 1 for x ∈ V (K). By applying Lemma 7, we conclude that G − E(P ) is
on-line f -choosable, a contradiction.

Lemma 11. The graph G is 2-connected.

Proof. Suppose v is a cut vertex of G and G1 and G2 are nontrivial induced

subgraphs of G such that G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v}. Assume
P ⊆ G1. By the minimality of G − E(P ) together with f , G1 − E(P ) is on-line
f |G1 -choosable and G2 is on-line g-choosable where g = f |G2 except that g(v) = 1.
Assume P * G1 and P * G2. Then v ∈ V (P ). Let Pi be the subpath of P in
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Gi for i = 1, 2. By the minimality of G − E(P ) together with f , G1 − E(P1)
is on-line f |G1-choosable and G2 − E(P2) is on-line f |G2 -choosable. By applying

Lemma 7, G − E(P ) is on-line f -choosable. This is a contradiction.

By applying Lemma 11, C is a cycle.

Lemma 12. The cycle C has no chord.

Proof. Suppose e = uv is a chord of C, separating G into two subgraphs

G1 and G2 intersecting in e. Assume first that P ⊆ G1. By the minimality of

G−E(P ), G1−E(P ) is on-line f |G1 -choosable and G2−e is on-line g-choosable

where g = f |G2 except that g(u) = g(v) = 1. By applying Lemma 7, G − E(P )
is on-line f -choosable. Assume P * Gi for i = 1, 2. Let Pi be the subpath of

P in Gi for i = 1, 2. Since G is triangle-free and has no 4-cycle adjacent to a 4-
or 5-cycles, either G1 or G2 has three vertices in C − P . Assume G2 has three

vertices in C − P . By the minimality of G − E(P ) together with f , G1 − E(P1)
is on-line f |G1 -choosable and G2 − (E(P2) ∪ {e}) is on-line g-choosable where
g = f |G2 except that g(u) = g(v) = 1. By applying Lemma 7, G−E(P ) is on-line
f -choosable. This is a contradiction.

By applying the previous lemma, C is an induced cycle.

Lemma 13. l(C) > 5 where l(C) means the length of C.

Proof. Assume V (C) = {p, q, r, s} and f(p) = 3. We consider the on-line
g-list colouring game on graph G, where g(x) = 1 for x ∈ V (C) and g(x) = 3
for x ∈ V (G) − V (C). Let G

′
= G − C and h = g|G−p − 1N

G
′ (p). Then

(G− p)− {qr, rs} together with h satisfies the assumptions of Theorem 8. By the
minimality of G − E(P ), (G − p) − {qr, rs} is on-line h-choosable. By applying

Lemmas 5 and 6, G− E(P ) is on-line f -choosable. This is a contradiction.

For k ≥ 2, a k-chord of C is a path Q = q0q1...qk of length k such that

V (C) ∩ V (Q) = {q0, qk}.

Lemma 14. The graph G has no 2-chord uvw such that f(u) = 2 or {u, w} ⊆
V (P ).

Proof. Assume P ′ = uvw is such a 2-chord of C. Let G1 and G2 be the

two subgraphs of G separated by P ′. Without loss of generality, we may assume
that |V (G1) ∩ V (P )| > |V (G2) ∩ V (P )|. Let Pi be the subpath of P in Gi for

i = 1, 2. By the minimality of G − E(P ), G1 − E(P1) is on-line f |G1-choosable

and G2 − (E(P2) ∪ E(P ′)) is on-line g-choosable where g = f |G2 except that

g(u) = g(v) = g(w) = 1. By applying Lemma 7, G−E(P ) is on-line f -choosable.

This is a contradiction.
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Lemma 15. The graph G has no 3-chord uvwx such that u /∈ V (P ) and f(x)
= 2.

Proof. Assume P ′ = uvwx is a 2-chord of C. Let G1 and G2 be the two

subgraphs of G separated by P ′. As u, x /∈ V (P ), we may assume that P ⊆ G1. By

the minimality of G− E(P ), G1 − E(P ) is on-line f |G1-choosable. Let g = f |G2

except that g(u) = g(v) = g(w) = g(x) = 1. Since f(x) = 2, all neighbours y

of x in G2 have f(y) = 3. As G has no 2-chord, we conclude that each vertex y
with g(y) = 2 has at most one neighbour in P ′. So G2 − E(P ′) together with g
satisfy the conditions of Theorem 8. By the minimality of G−E(P ), G2 − E(P ′)
is on-line g-choosable. By applying Lemma 7, G − E(P ) is on-line f -choosable.
This is a contradiction.

By applying Lemma 13, l(C) > 5. By applying Lemma 7 if needed, we can
assume that |V (P )| = 4. Suppose P = p1p2p3p4. Let x1x2x3x4x5 be the part of

the facial walk of C, where x1 is the neighbour of p4 on C different from p3.

Lemma 16. If K = x1x2x3v1 or K = x2x3x4v1 is a cycle, where v1 /∈ V (C),
then there are no edges between V (C) − V (K) and {v1}.

Proof. Assume K = x1x2x3v1 (respectively, K = x2x3x4v1) is a cycle,

where v1 /∈ V (C). If v1 is adjacent to y where y ∈ V (C) − V (K), then let G1

and G2 be the two subgraphs of G separated by the path yv1x3 (respectively, by the

path yv1x4 ), where G1 contains x2. Let P1 = P and P2 = yv1x3 (respectively,

P2 = yv1x4). Let g = f |G2 except that g(y) = g(v1) = g(x3) = 1 (respectively,
g(y) = g(v1) = g(x4) = 1). Note that the out-face of G2 has length at least 5,
because G has no 4-cycle adjacent to a 5-cycle. So G2 − E(P2) and g satisfy the
condition of Theorem 8. By the minimality of G − E(P1), G1 − E(P1) is on-line
f |G1 -choosable, and G2 − E(P2) is on-line g-choosable. By applying Lemma 7,
G − E(P ) is on-line f -choosable.

Lemma 17. If K = x1x2x3v1v2 or K = x2x3x4v1v2 is a cycle, where v1, v2 /∈
V (C), then there are at most one edge between V (P ) and {v1, v2}. In addition,
there are no edges between V (C) − (V (P ) ∪ V (K)) and {v1, v2}.

Proof. Assume K =x1x2x3v1v2 (respectively, K = x2x3x4v1v2) is a cycle,

where v1, v2 /∈ V (C). By applying Lemma 14, G has no 2-chord connecting two
vertices of P . So each of v1, v2 is adjacent to at most one vertex of P . Assume there
are more than one edge between P and {v1, v2}. Then each of v1, v2 is adjacent to

one vertex of P .
Let z be a vertex in V (C) − (V (P ) ∪ V (K)). If v1 is adjacent to y where

y is p1 or z, then let G1 and G2 be the two subgraphs of G separated by the

path yv1x3 (respectively, by the path yv1x4 ), where G1 contains x2. Let P1 = P
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and P2 = yv1x3 (respectively, P2 = yv1x4). Let g = f |G2 except that g(y) =
g(v1) = g(x3) = 1 (respectively, g(y) = g(v1) = g(x4) = 1). Note that the out-
face of G2 has length at least 5, because G has no 4-cycle adjacent to a 5-cycle.
So G2 − E(P2) and g satisfy the condition of Theorem 8. By the minimality of
G − E(P1), G1 − E(P1) is on-line f |G1-choosable, and G2 − E(P2) is on-line
g-choosable. By applying Lemma 7, G − E(P ) is on-line f -choosable.

We know that v2 is not adjacent to p4, for otherwise G has a triangle or a

4-cycle adjacent to a 5-cycle. By the planarity, we must have v1 adjacent to p2 and

v2 adjacent to p3. But then there is a 4-cycle adjacent to a 5-cycle, contrary to our
assumption.

We choose a set X1 ⊆ {x1, x2, x3, x4} as follows:

Case 1. If l(C) 6 7, then X1 = V (C) − {p1, p2, p3, p4}.

Case 2. If f(x2) =f(x4)=2 and f(x1)=f(x3)=3, then X1 ={x1, x2, x3}.

Case 3. If f(x5) 6 2, f(x1) = f(x3) = 2 and f(x2) = f(x4) = 3, then X1 =
{x1, x2, x3, x4}.

Case 4. If f(x2) = f(x3) = 3, then X1 = {x1}.

Case 5. If f(x2) = 2 and f(x1) = f(x3) = f(x4) = 3, then X1 = {x1, x2}.

Case 6. If f(x1)=f(x3)=2 and f(x2)=f(x4)=f(x5)=3, then X1 =
{x1, x2, x3}.

LetX2 ⊆ V (G)−V (C) be defined as follows: z ∈ X2 if there exists a 2-chord
xzy or 3-chord xzvy such that x, y ∈ X1 (by Lemma 10, the chord is unique).

First we consider Cases 1, 2, 3.

Let m = max{i : xi ∈ X1}. Let G′ = G − E ′, where

E ′ = {uv : u ∈ X1 ∪ X2, v ∈ X1 ∪ X2 ∪ V (P )} ∪ {xmxm+1}.

Let g = f except that g(x) = 1 for x ∈ X1 ∪ X2.

We shall show that if G′ − E(P ) is on-line g-choosable, then G − E(P ) is
on-line f -choosable.

In Case 1, if l(C) = 5, then by our assumption (5), f(x1) = 3. Apply Lemma
5 to G′ and p1x1, then to (G′ + p1x1) and p4x1, we conclude that if G′ −E(P ) is
on-line g-choosable, then G − E(P ) is on-line f -choosable.

If l(C) = 6, then by our assumption (4), for some i ∈ {1, 2}, f(xi) = 3.
Without loss of generality, assume that f(x1) = 3 and f(x2) ≥ 2. By Lemma
3, we may assume that f(x2) = 2. Apply Lemma 5 to G′ and p4x1, then to

(G′ + p4x1) and x2x1, and finally to (G′ + p4x1 + x2x1) and p1x2, we conclude
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that if G′ − E(P ) is on-line g-choosable, then G − E(P ) is on-line f -choosable.

In Figure 1, the dotted edges are edges added to G′. If the dotted edge xy has
an arrow pointed to y, it means that when this edge is added to G′, the function

value at vertex y increases according to Lemma 5. To apply Lemma 5, the added
edges are added one by one. The order in which the edges are added does make a

difference. However, in each of the graphs, it is easy to find an appropriate order

to add these edges. We need to choose the order of adding the edges carefully.

Fig. 1. For the proofs of Cases 1, 2, 3.

The case that l(C) = 7 is proved in the same way, see the 3nd, 4rd 5th and
6th graphs of Figure 1. Note that in the 5th graph X2 contains one vertex, and it

follows from Lemma 16 that there is no edge connecting X2 and P . In the 5th
graph, X2 contains two vertices, and it follows from Lemma 17 that there is at most

one edge connecting P and X2. The 6th graph indicates one of the two possibilities

connecting P and X2 by an edge.

The proofs for Case 2 and 3 are also by applying Lemma 5 and are indicated by

the 7th, 8th, 9th graphs, and the 10th, 11th and 12th graphs in Figure 1, respectively.

Let G′′ be the graph obtained from G′ by deleting vertices in the set X1 ∪ X2.

Let h = f |G′′ − 1NG′(X1∪X2). By Lemma 6, if G′′ − E(P ) is on-line h-choosable,

then G′ − E(P ) is on-line g-choosable.
So it remains to prove that G′′ − E(P ) is on-line h-choosable. By induction

hypothesis, it suffices to check that G′′ − E(P ) and h satisfy the conditions of

Theorem 8. Let C ′ be the outer face of G′′. As G has no 4-cycle adjacent to a 4-
or 5-cycle, we conclude that no vertex in C ′ is adjacent two vertices in X1 ∪ X2.
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By Lemmas 16 and 17, there are no edges between X1 ∪ X2 and V (C) − X1. So,

h(x) ≥ 2 for all x ∈ V (C ′) − V (P ). Since there is no edge between V (P ) and
X1 ∪ X2 in G′, h(x) = 1 for all x ∈ V (P ). Assume there exist two adjacent
vertices u, v in C ′ with h(u) = h(v) = 2. Then f(u) = 3 or f(v) = 3. If
f(u) = f(v) = 3, then there is a 4-cycle adjacent to 4- or 5-cycle, contrary to our
assumption. Otherwise, there is a 2-chord or 3-chord containing u, v, contrary to
Lemma 14 or 15. By applying Lemma 14, each vertex v with h(v) = 2 has at most
one neighbor in P . So G′′ − E(P ) and h indeed satisfy the condition of Theorem
8. This completes the proof of Cases 1, 2, 3.

For Cases 4, 5, 6, let G′ be the graph obtained from G by deleting edges in the

set {uv : u ∈ X1, v ∈ X1 ∪ V (P )}. Let g = f except that g(x) = 1 for x ∈ X1.

By Lemma 5, if G′ − E(P ) is on-line g-choosable, then G − E(P ) is on-line
f -choosable (see Figure 2). Let G′′ be the graph obtained from G′ by deleting
vertices in the set X1. Let h = f |G′′ − 1NG′(X1). By Lemma 6, if G′′ − E(P ) is
on-line h-choosable, then G′ − E(P ) is on-line g-choosable. Similarly as in Cases
1,2,3, it is easy to verify that G′′−E(P ) and h satisfy the conditions of Theorem 8.

So by the induction hypothesis, G′′−E(P ) is on-line h-choosable. This completes
the proof of Theorem 8.

Fig. 2. For the proofs of Cases 4, 5, 6.

By Lemma 3, 4 and Theorem 8, we can get the following theorem.

Theorem 18. If G is a triangle-free planar graph without 4-cycles adjacent to
a 4- or 5-cycle, then G is on-line 3-choosable.
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