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MULTIPLE SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS
IN UNBOUNDED CYLINDER DOMAINS

Tsing-San Hsu* and Huei-Li Lin

Abstract. In this paper, we show that if Q(x) satisfies some suitable con-
ditions, then the quasilinear elliptic Dirichlet problem −∆ pu + |u|p−2u =
Q(x)|u|q−2u in an unbounded cylinder domain Ω has at least two solutions in
which one is a positive ground state solution and the other is a nodal solution.

1. INTRODUCTION AND MAIN RESULTS

Throughout this article, let x = (y, z) be the generic point of RN with y ∈ Rm,

z ∈ R
n, N = m + n ≥ 3, m ≥ 0, n ≥ 1, 2 ≤ p < N and 2 ≤ p < q < p∗ =

Np/(N − p). In this paper, we concerned with the existence of solutions of the
quasilinear elliptic equation:

(1.1)

{ −∆pu+ |u|p−2u = Q(x) |u|q−2 u in Ω,

u ∈W 1,p
0 (Ω), u �≡ 0,

where ω ⊆ Rm is a bounded smooth domain, 0 ∈ Ω = ω × Rn ⊆ RN is an
unbounded cylinder domain, ∆pu is the p-Laplacian operator, that is,

∆pu =
N∑

i=1

∂

∂xi
(|∇u|p−2 ∂u

∂xi
),

and Q(x) is a positive, bounded and continuous function in Ω. Moreover, Q(x)
satisfies assumption (A1) below.

(A1) Q(x) ≥ Q∞ > 0 in Ω, Q(x) �≡ Q∞ and

lim
|z|→∞

Q(x) = Q∞ uniformly for y ∈ ω.
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For p = 2, It is well-known that Equation (1.1) has infinitely many solutions if
Ω is bounded (see [19], and the references therein). Here, we only interest in
unbounded domains. If Ω = R

N , the existence of solutions of Equation (1.1)
has been investigated, among others, in [3, 4, 6, 7, 15-17, 25] (where general
nonlinearities are considered). In [25], Zhu proved the multiplicity of the solutions of
Equation (1.1) as follows. Assume N ≥ 5 and Q(x) satisfies the assumption (A1),
Equation (1.1) has a positive ground state solution. Moreover, if Q(x) satisfies
Q(x) ≥ Q∞ + C|x|−γ as |x| → ∞, where C, γ > 0 are some constants, then
Equation (1.1) has a nodal solution. Let us recall that, by a nodal solution we mean
the solution of Equation (1.1) with change of sign.

More recently, Hsu [10] extended the results of Zhu [25] with Ω = R
N to

Ω = ω × Rn. In the present paper, motivated by [10] we extend the results of
Hsu [10] with p = 2 to 2 ≤ p < N . When Q(x) ≡ Q∞ for all x ∈ R

N , Li-Yan
[14, Theorem 3.1] and Serrin-Tang [21, p.899] showed the existence of a positive
ground state solution w ∈ W 1,p(RN). In addition, w has the asymptotic behavior
(see Lemma 3.5). In our article, we deal with Equation (1.1) in an unbounded
cylinder domain for 2 ≤ p < N . First, we use the Global Compactness Lemma
by Benci-Cerami [5] (or Alves-Carrião-Medeiros [1]) to obtain a positive “ground
state solution”. In order to prove that Equation (1.1) has an another solution which
is nodal, we need to estimate the asymptotic behavior of solutions. For p = 2,
any positive solution of Equation (1.1) has the exponential decay at infinity by the
standard elliptic regularity theorem and the maximum principle. For p > 2, it is
more difficulties to deal with that any positive solution of Equation (1.1) also has
the asymptotic behavior in an unbounded cylinder domain (see section 3). We will
apply the arguments in [9, 18, 20, 22, 24] to establish the asymptotic behavior of any
positive solution of Equation (1.1) (see Lemma 3.3). To the best of our knowledge,
the results of this paper are new for the case 2 < p < N and Ω = ω × R

n.
We now state the main results of this paper.

Theorem 1.1. Suppose N ≥ 3, 2 ≤ p < N and Q(x) satisfies assumption
(A1), then Equation (1.1) possesses a positive ground state solution in unbounded
cylinder domains.

Theorem 1.2. Suppose N ≥ 3, 2 ≤ p < N , Q(x) satisfies assumption (A1)
and there exist positive constants δ < ( 1+λ1

p−1 )1/p, C0 and R0 such that

Q(x) ≥ Q∞ +C0 exp(−δ |z|) for |z| ≥ R0, uniformly for y ∈ ω,

where λ1 is the first eigenvalue of the Dirichlet problem −∆ p in ω. Then Equation
(1.1) possesses a nodal solution in unbounded cylinder domains in addition to a
positive solution.
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Theorem 1.3. Suppose Ω = R
N , N ≥ 3, 2 ≤ p < N and Q(x) satisfies

assumption (A1), then Equation (1.1) possesses a positive ground state solution in
R

N .

Theorem 1.4. Suppose Ω = R
N , N ≥ 3, 2 ≤ p < N , Q(x) satisfies assumption

(A1) and there exist positive constants δ < ( 1
p−1)1/p, C0 and R0 such that

Q(x) ≥ Q∞ + C0 exp(−δ |x|) for |x| ≥ R0.

Then Equation (1.1) possesses a nodal solution in R
N in addition to a positive

solution.

This paper is organized as follows. In section 2, we give preliminary results and
a Global Compactness Lemma. In section 3, we establish some regularity lemmas
and asymptotic behavior of the solution of Equation (1.1). In section 4, we prove
the existence of a positive ground state solution. In section 5, we show the existence
of another solution which is nodal.

2. PRELIMINARIES

In this paper, we always assume that Ω is an unbounded cylinders or R
N

(N ≥ 3) and C, C0, C1, C2, . . . denote (possibly different) positive constants un-
less otherwise specified. Now we begin our discussion by giving some definitions
and some known results. First we recall the definition of W 1,p(Ω),

W 1,p(Ω) = {u ∈ Lp(Ω)|∂iu ∈ Lp(Ω), i = 1, 2, . . . , N},
‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω),

where ‖ · ‖Lp(Ω) denotes the norm in Lp(Ω). The space W 1,p
0 (Ω) is the completion

of the space D(Ω) of C∞-functions with compact support with respect to the norm
‖ · ‖W 1,p(Ω). Associated with Equation (1.1), we consider the energy functionals a,
b and J, for u ∈W 1,p

0 (Ω)

a(u) =
∫

Ω

(|∇u|p + up) dx,

b(u) =
∫

Ω
Q (x) |u|q dx,

J(u) =
1
p
a(u) − 1

q
b(u).

Define
α = inf

u∈M(Ω)
J(u),
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where M (Ω) =
{
u ∈W 1,p

0 (Ω) \ {0} | a(u) = b(u)
}
. By Huang-Li [12, Theorem

2, 4], there is a positive ground state solution w of Equation (2.1)

(2.1)

{ −∆pu+ |u|p−2u = Q∞ |u|q−2 u in Ω,

u ∈W
1,p
0 (Ω) .

We also define
a∞(u) =

∫
Ω

(|∇u|p + up) dx,

b∞(u) =
∫

Ω
Q∞ |u|q dx,

J∞(u) =
1
p
a∞(u)− 1

q
b∞(u),

α∞ = inf
u∈M∞(Ω)

J∞(u),

where M∞ (Ω) =
{
u ∈W

1,p
0 (Ω) \ {0} | a∞(u) = b∞(u)

}
.

We need the following definition and lemmas to prove the main theorems.

Definition 2.1. For β ∈ R, a sequence {uk} is a (PS)β−sequence in W 1,p
0 (Ω)

for J if J (uk) = β+ ok(1) and J ′ (uk) = ok(1) strongly in W−1,p′ (Ω) as k → ∞
where W−1,p′ (Ω) is the dual space of W 1,p

0 (Ω) and 1/p+ 1/p′ = 1.

Lemma 2.2. Let β ∈ R and let {uk} be a (PS)β−sequence in W 1,p
0 (Ω) for J,

then {uk} is a bounded sequence in W 1,p
0 (Ω). Moreover,

a (uk) = b (uk) + ok(1) =
qp

q − p
β + ok(1) as k → ∞

and β ≥ 0.

Proof. By p ≥ 2, we have that

p
√
a(uk) ≤ 1 if a(uk) ≤ 1 and p

√
a(uk) ≤

√
a(uk) if a(uk) ≥ 1.

For sufficiently large k, we have

|β| + 2 +
√
a (uk) ≥ |β| + 1 + p

√
a (uk)

≥ J (uk)− 1
q

〈
J ′ (uk) , uk

〉
=
(

1
p
− 1
q

)
a (uk) .

It follows that {uk} is bounded in W 1,p
0 (Ω). Since {uk} is a bounded sequence in

W 1,p
0 (Ω), then 〈J ′ (uk) , uk〉 = ok(1) as k → ∞. Thus,
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β + ok(1) = J (uk) =
(

1
p
− 1
q

)
a (uk) + ok(1) =

(
1
p
− 1
q

)
b (uk) + ok(1),

that is, a (uk) = b (uk) + ok(1) = qp
q−pβ + ok(1) as k → ∞ and β ≥ 0.

Lemma 2.3. (i) For each u ∈ W
1,p
0 (Ω) \ {0} , there exists a number su > 0

such that suu ∈ M(Ω).
(ii) Let {uk} be a (PS)β−sequence in W 1,p

0 (Ω) for J with β > 0. Then there is a
sequence {sk} in R

+ such that {skuk} ⊂ M(Ω), sk = 1 + ok(1) and J(skuk) =
β + ok(1) as k → ∞. In particular, the statement holds for J ∞.

Proof. (i) For s ≥ 0 and u ∈W
1,p
0 (Ω) \ {0} , let

hu(s) = J(su) =
1
p
a(u)sp − 1

q
b(u)sq.

Then h′u(s) = a(u)sp−1 − b(u)sq−1. Let su = (a(u)
b(u)

)1/(q−p), then su > 0 and
h′u(su) = 0, that is, suu ∈ M(Ω).
(ii) By Lemma 2.2 and β > 0, we may assume {uk} is in W 1,p

0 (Ω) \ {0} for all k.
Thus, by (i) there exists a sequence {sk} in R

+ such that {skuk} ⊂ M(Ω), that is,
spka(uk) = sqkb(uk) for each k. Since a(uk) = b(uk)+ok(1) and J(uk) = β+ok(1)
as k → ∞, we have that sk = 1 + ok(1) as k → ∞. Hence, J(skuk) = β + ok(1)
as k → ∞.

Lemma 2.4. There exists a constant c > 0 such that ‖u‖
W 1,p

0 (Ω)
≥ c > 0 for

each u ∈ M(Ω), where c is independent of u.

Proof. For each u ∈ M(Ω), by the Sobolev inequality, we get

‖u‖p

W 1,p
0 (Ω)

=
∫

Ω

Q(x)|u|qdx ≤ C1 ‖u‖q

W 1,p
0 (Ω)

.

This implies that ‖u‖W 1,p
0 (Ω) ≥ C1

−1/(q−p) = c > 0 for each u ∈ M(Ω).

Remark 2.5. From the above lemma, we can easily deduce that there exists a
constant µ1 > 0, independent of u, such that∫

Ω

|u|qdx > µ1 for each u ∈ M(Ω).

Lemma 2.6. Let u ∈ M(Ω) satisfy J (u) = min
v∈M(Ω)

J (v) = α. Then u is a

nonzero solution of Equation (1.1) in Ω.
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Proof. We define g (v) = a(v) − b(v) for v ∈ W 1,p
0 (Ω)\ {0} . Note that

〈g′(u), u〉 = (p− q) a(u) �= 0. Since the minimum of J is achieved at u and is
constrained on M(Ω), by the Lagrange multiplier theorem, there exists a number
λ ∈ R such that J ′ (u) = λg′ (u) in W−1,p′(Ω). Then we have

0 =
〈
J ′ (u) , u

〉
= λ

〈
g′ (u) , u

〉
.

Thus, λ = 0 and J ′ (u) = 0 in W−1,p′(Ω). Therefore, u is a nonzero solution of
Equation (1.1) in Ω such that J (u) = α.

Lemma 2.7. Let u be a sign-changing solution of Equation (1.1). Then J(u) ≥
2α. In particular, the result holds for J ∞.

Proof. Define u+ = max {u, 0} and u− = max {−u, 0} . Since u is a sign-
changing solution of Equation (1.1), then u− is nonnegative and nonzero. Multiply
Equation (1.1) by u− and integrate it to obtain∫

Ω
(|∇u|p−2∇u∇u− + |u|p−2uu−)dx =

∫
Ω
Q(x) |u|q−2 uu−dx,

that is, u− ∈ M(Ω) and J(u−) ≥ α. Similarly, J(u+) ≥ α. Hence,

J(u) = J(u+)+J(u−) ≥ 2α.

Lemma 2.8. (Global Compactness Lemma) Let {uk} be a (PS)β−sequence in
W 1,p

0 (Ω) for J and u0 ∈W 1,p
0 (Ω) such that, uk ⇀ u0 weakly in W 1,p

0 (Ω). Then
either
(i) uk → u0 strongly in W 1,p

0 (Ω) or
(ii) there are a subsequence {uk} , an integer l ≥ 0, sequences

{
xi

k

}∞
k=1

⊆ R
N of

the form (0, zi
k) ∈ Ω with |xi

k| → ∞ as k → ∞, functions and w i �= 0 in W 1,p
0 (Ω)

for 1 ≤ i ≤ l such that

−∆pu0 + |u0|p−2u0 = Q(x) |u0|q−2 u0 in W−1,p′(Ω),

−∆pwi + |wi|p−2wi = Q∞ |wi|q−2 wi in W−1,p′(Ω),

uk = u0 +
∑l

i=1
wi(· − xi

k) + ok(1) strongly in W 1,p
0 (Ω) ,

J(uk) = J(u0) +
l∑

i=1

J∞ (wi) + ok(1).

Proof. The proof can be obtained by using the arguments in Alves [2],
Benci-Cerami [5] or see Alves-Carrião-Medeiros [1, Lemma 3.3].
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3. ASYMPTOTIC BEHAVIOR

In this section, we will prove the C1,α
loc regularity as well as the asymptotic

behavior of the weak solutions of Equation (1.1).

Lemma 3.1. Let 1 < p < N , 2 ≤ q ≤ p∗ and u ∈W 1,p
0 (Ω) be a weak solution

of Equation (1.1). Then u ∈ Ls(Ω) for s ∈ [p,+∞). Moreover, u ∈ L∞(Ω) and
decays uniformly to zero, as |x| → ∞.

Proof. The proof is based on the classical Moser’s iteration scheme as it was
adapted by Ôtani for the bounded domain case in [18, Theorem II]. Let S denote
the Sobolev embedding constant defined by

(3.1) ‖v‖Lp∗(Ω) ≤ S‖∇v‖Lp(Ω) for all v ∈W
1,p
0 (Ω).

Let k ∈ N and L = ‖Q‖L∞(Ω)S. Then we introduce the sequences

(3.2)
qk+1 = q∗kp

∗/p, q∗k = qk − q + p, q1 = p∗,

Lk+1 = Lp/q∗k(qk − q + 1)−1/q∗k(q∗k/p)
p/q∗kL

qk/q∗k
k , L1 = ‖u‖Lp∗(Ω),

We claim that, for every k ∈ N, the following estimate is true:

(3.3) ‖u‖Lqk (Ω) ≤ Lk.

For k = 1, (3.3) is obvious. We suppose that (3.3) holds for some k. We define,
for n ∈ N, the C1 real function ψn, as

(3.4) ψn(t) =

{
t, |t| ≤ n,

n + 1, |t| ≥ n + 2,
0 ≤ ψ′

n(t) ≤ 1.

Setting un = ψn(u) we obtain that |un|l−2un belongs to W 1,p
0 (Ω)∩L∞(Ω), for all

l ∈ [2,+∞). Multiplying Equation (1.1) by |un|qk−qun and integrating over Ω, we
derive

(3.5)
(qk − q + 1)

∫
Ω
|∇u|pψ′

n(u)|un|qk−qdx+
∫

Ω
|un|qk−q+1|u|p−1dx

=
∫

Ω
Q(x)|un|qk−q+1|u|q−1dx.

The definition of un implies that

(3.6)
∫

Ω
Q(x)|un|qk−q+1|u|q−1dx ≤

∫
Ω
|Q(x)||u|qkdx ≤ ‖Q‖L∞(Ω)‖u‖qk

Lqk (Ω).
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On the other hand, from (3.1) and (3.4) it follows that:

(3.7)

(qk − q + 1)
∫

Ω
|∇u|pψ′

n(u)|un|qk−qdx

≥ (qk − q + 1)
∫

Ω

|∇un|p|un|qk−qdx

≥ (qk − q + 1)(p/q∗k)
p

∫
Ω
|∇(|un|q∗k/p)|p|un|qk−qdx

≥ S−p(qk − q + 1)(p/q∗k)
p‖|un|q∗k/p‖p

Lp∗(Ω)
.

Hence from (3.5)− (3.7) we deduce

‖un‖q∗k
Lqk+1(Ω)

= ‖|un|q∗k/p‖p

Lp∗(Ω)
≤ ‖Q‖L∞(Ω)S

p(qk − q + 1)−1(q∗k/p)
pL

qk
k ,

which implies that
‖un‖q∗k

Lqk+1(Ω)
≤ Lk+1.

Let n→ +∞ and by induction, we prove that (3.3) holds for any k ∈ N.
Setting

ζ = p∗ logL(p∗ − min{p∗(q − p)/(p∗ − p), 0}).
We get the following estimate:

Lk ≤ (p∗/p)k−1L1 + {ζ((p∗/p)− 1)

+p∗ log(p∗/p)}((p∗/p)k−1 − 1)/((p∗/p) − 1)2.

Then the solution of Equation (1.1) satisfies the following L∞ estimate:

(3.8) ‖u‖L∞(Ω) ≤ lim
k→+∞

‖u‖Lqk (Ω) ≤ ed,

where d = [L1+{ζ((p∗/p)−1)+p∗ log(p∗/p)}/((p∗/p)−1)]/(p∗−(p∗/p)). Since
u ∈ Lp(Ω) ∩ L∞(Ω), using the interpolation inequality, we prove that u ∈ Ls(Ω)
for all s ∈ [p,∞]. By a similar argument used to prove Theorem 1 of Serrin [20]
(see also Gilbarg-Trudinger [9, Theorem 8.17]), for any open ball B2r(x) ⊂ Ω of
radius 2r centered at x ∈ Ω and some constant C(N, q2), the function u ∈W 1,p

0 (Ω)
such that

−∆pu ≤ h(x)

in the weak sense, satisfies the estimate

‖u‖L∞(Br(x)) ≤ C{‖u‖Lp(B2r(x)) + ‖h‖Lq2(B2r(x))}.
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Thus, for any solution of Equation (1.1) we have

‖u‖L∞(Br(x)) ≤ C{‖u‖Lp(B2r(x)) + ‖uq−1‖Lq2(B2r(x))}.

By the preceding results we know that uq−1 ∈ Lq2(Ω). Hence, the decay of u
follows.

For r > 0, we denote

Br = {(y, z) ∈ Ω||z| ≤ r}.
Then we have the following regularity lemma.

Lemma 3.2. If u ∈ W 1,p
0 (Ω) be a weak solution of Equation (1.1), then u ∈

C1,α
loc (Ω ∩Br), where r > 0 and α = α(r) ∈ (0, 1).

Proof. The proof is a direct consequence of Lemma 3.1 and the results of
Tolksdorf [22].

Finally, we are going to prove the exponential decay.

Lemma 3.3. Let u be a positive solution of Equation (1.1) in an unbounded
cylinder Ω = ω × R

n ⊆ R
m+n, m ≥ 2, n ≥ 1 and φ be the first positive

eigenfunction of the Dirichlet problem −∆ pφ = λ1φ
p−1 in ω, then for any ε > 0,

there exist constants Cε, C̃ε > 0 such that for all (y, z) ∈ Ω,

C̃εφ(y) exp
(
−(

1 + λ1 + ε

p− 1
)1/p |z|

)
≤ u(x) ≤ Cεφ(y) exp

(
−(

1 + λ1 − ε

p− 1
)1/p |z|

)
.

Proof. We divide the proof into the following steps:

Step 1. First, we claim that for any ε > 0 with 0 < ε < 1 + λ1, there exists a
constant Cε > 0 such that

u(x) ≤ Cεφ(y) exp
(
−(

1 + λ1 − ε

p− 1
)1/p |z|

)
for all (y, z) ∈ Ω.

Without loss of generality, we may assume ε < 1, and let βε = ( 1+λ1−ε
p−1 )1/p. Now

given ε > 0, by Lemma 3.1, we may choose ρ large enough such that

Q(x)uq−1(x) ≤ εup−1(x), for |z| ≥ ρ.

Consequently,

−∆pu+ (1− ε)up−1 ≤ Q(x)uq−1 − εup−1 ≤ 0, for all |z| ≥ ρ.

Let q = (qy, qz) ∈ ∂Ω, and B be a small ball in Ω such that q ∈ ∂B. Since
φ(y) > 0 for x = (y, z) ∈ B, φ(qy) = 0, u(x) > 0 for x ∈ B, u(q) = 0, by the
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Hopf lemma (see [24, Theorem 5]), we have that ∂φ
∂y (qy) < 0, ∂u

∂ν (q) < 0, where ν
is the outward unit normal vector at (qy, qz). Thus

lim
(y,z)→(qy ,qz)

u(y, z)
φ(y)

=
∂u
∂ν (qy, qz)

∂φ
∂y (qy)

> 0,

where (y, z) ∈ Ω and (y, z) → (qy, qz) normally. Note that u(y, z)φ−1(y) > 0 for
(y, z) ∈ Ω, thus

u(y, z)φ−1(y) > 0 for (y, z) ∈ Ω.

Since φ(y)e−βε|z| and u(x) are C1
(
Ω
)
, if set

Cε = sup
(y,z)∈Ω,|z|≤ρ

(
u(y, z)φ−1(y)eβε|z|

)
,

then Cε > 0 and

Cεφ(y)e−βε|z| ≥ u(y, z) for (y, z) ∈ Ω, |z| ≤ ρ.

Let Φ(y, z) = Cεφ(y)e−βε|z|, for (y, z) ∈ Ω. Then, for (y, z) ∈ Ω, |z| ≥ ρ, we
have −∆pΦ(y, z) + (1 − ε)Φp−1(y, z)

= (1 + λ1 − ε− (p− 1)βp
ε + n−1

|z| β
p−1
ε )Φp−1(y, z)

≥ 0.

Since p > 1, we have that the function ζ : R
N → R, ζ(x) = |x|p is convex, thus

(|x1|p−2x1 − |x2|p−2x2)(x1 − x2) ≥ 0 for all x1, x2 ∈ R
N .

We now take as a test function η = max{u − Φ, 0} ∈ W 1,p(Ωρ), where Ωρ =
{(y, z) ∈ Ω||z| > ρ}. Hence, combining these estimates, we get

0 ≥
∫

Ω

(
(|∇u|p−2∇u− |∇Φ|p−2∇Φ)η + (1 − ε)(up−1 − Φp−1)η

)
dx

≥ (1− ε)
∫
{x∈Ω|u≥Φ}

(up−1 − Φp−1)(u− Φ)dx ≥ 0 for all x ∈ Ωρ.

Therefore, the set {x = (y, z) ∈ Ω||z| ≥ ρ and u(x) ≥ Φ(x)} is empty. From this
we can easily get this claim.

Step 2. Given ε > 0, let γε = ( 1+λ1+ε
p−1 )1/p and

g(z) = (n− 1)γp−1
ε |z|−1 − ε.

We can choose ρ0 > 0 such that g(z) ≤ 0 for |z| ≥ ρ0. As in step 1, if we set

C̃ε = inf
(y,z)∈Ω,|z|≤ρ0

(
u(y, z)φ−1(y)eγε|z|

)
,
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then C̃ε > 0 and

C̃εφ(y)e−γε|z| ≤ u(y, z) for (y, z) ∈ Ω, |z| ≤ ρ0.

Now, let Ψ(y, z) = C̃εφ(y)e−γε|z|, for (y, z) ∈ Ω. If x = (y, z) ∈ Ω, |z| ≥ ρ0, we
have

−∆pu(x) + up−1(x) = Q(x)uq−1(x) ≥ 0, and

−∆pΨ(x) + Ψp−1(x) = g(z)Ψp−1(x) ≤ 0.

Repeating the same arguments as in setp 1, we also obtain that

u(x) ≥ C̃εφ(y) exp
(
−(

1 + λ1 + ε

p− 1
)1/p |z|

)
for (y, z) ∈ Ω.

This completes the proof.

Remark 3.4. In the case Q(x) ≡ Q∞ > 0, we have that every positive solution
of Equation (2.1) has the same asymptotic behavior as in Lemma 3.3.

By adopting the similar argument as in the above lemmas and Li-Yan [14,
Theorem 3.1], we obtain the following asymptotic behavior result of the solutions
of Equation (1.1) in R

N at infinity.

Lemma 3.5. Any positive solution w ∈ W 1,p(RN ) of Equation (1.1) with
2 ≤ p < N has the following asymptotic behavior.
(i) w ∈ L∞(RN) ∩C1,α(RN) for some 0 < α < 1 and lim

|x|→∞
w(x) = 0,

(ii) for any ε > 0, there exist constants C1, C2 > 0 such that

C1 exp
(
−(

1 + ε

p− 1
)1/p|x|

)
≤ w(x) ≤ C2 exp

(
−(

1 − ε

p− 1
)1/p|x|

)
for all x ∈ R

N .

Remark 3.6. Using the same arguments as in the above lemma, we can get that
any positive weak solution of Equation (2.1) in R

N also has the same asymptotic
behavior at infinity in Lemma 3.5.

4. EXISTENCE OF THE GROUND STATE SOLUTION

Lemma 4.1. If α < α∞, then α attains a minimizer u 0, that is, there exists a
positive ground state solution u 0 of Equation (1.1).

Proof. By Ekeland’s vaiational principle [8] and the definition of α, there
exists a minimizing sequence {uk} ⊂ M(Ω) such that

J(uk) → α and J ′|M(Ω)(uk) → 0 in W−1,p′(Ω) as k → ∞
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where 1/p+ 1/p′ = 1.
Let us define g(u) = a(u) − b(u) for all u ∈W 1,p

0 (Ω) \ {0}. Then we have

M(Ω) = {u ∈W 1,p
0 (Ω)\{0} | g(u) = 0}.

Thus there exists a sequence {θk} ⊂ R such that

J ′(uk) = θkg
′(uk) + ok(1) as k → ∞.

Since uk ∈ M(Ω) we have

〈J ′(uk), uk〉 = θk〈g′(uk), uk〉 + 〈ok(1), uk〉 = 0,

and
〈g′(uk), uk〉 = (p− q)a(uk) �= 0 for all k ∈ N.

Hence, θk → 0 as k → ∞. This implies J ′(uk) → 0 in W−1,p′(Ω) as k → ∞.
Thus {uk} is a (PS)α sequence for J . By Lemma 2.8 and α < α∞, we can obtain
(by choosing a subsequence if necessary)

uk → u0 strongly in W1,p
0 (Ω) as k → ∞.

Thus J(u0) = α and by Lemma 2.6 we have that u0 is a nonzero solution of Equa-
tion (1.1). By Lemma 2.7, u0 has constant sign in Ω. Without loss of generality,
we may assume that u−0 ≡ 0. Thus u0 ≥ 0 in Ω. By Lemmas 3.1, 3.2 and the
Harnack’s inequality [23, Theorem 1.1], we can show that u0 ∈ L∞(Ω)∩C1,α

loc (Ω)
for some 0 < α < 1 and u0 > 0 in Ω. This completes the proof.

Lemma 4.2. If w is a positive ground state solution of Equation (2.1) and Q
satisfies assumption (A1), then we have

sup
s≥0

J (sw) < α∞.

Proof. Let B1 = {(y, z) ∈ Ω||z| ≤ 1}, then we have

J (sw) ≤ sp

p

∫
Ω

(|∇w|p + wp)dx−C
sq

q

∫
B1

wqdx.

Therefore, there exists a number s1 > 0 such that

J (sw) < 0 for s ≥ s1.

Since J is continuous in W 1,p
0 (Ω), then there exists a number s0 > 0 such that

J (sw) < α∞ for 0 ≤ s < s0.
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Then we only need to prove

sup
s0≤s≤s1

J (sw) < α∞.

For s0 ≤ s ≤ s1, since Q satisfies assumption (A1) and sups≥0J
∞ (sw) =

J∞ (w) = α∞, then

J (sw) =
sp

p

∫
Ω
(|∇w|p + |w|p)dx− sq

q

∫
Ω
Q(x)wqdx

≤ J∞ (sw) − sq0
q

∫
Ω
(Q(x)−Q∞)wqdx

< α∞.

Hence, we have

sup
s≥0

J (sw) < α∞.

Theorem 4.3. Assume that Q satisfies the condition (A1), then Equation (1.1)
has a positive ground state solution v 1.

Proof. By Lemma 2.3 (i), there exists a number sw > 0 such that sww ∈
M(Ω). From the definition of α, we get that α ≤ J (sww) . Applying Lemma 4.2,
we have α < α∞. Thus, by Lemma 4.1 there exists a positive ground state solution
v1 of Equation (1.1).

5. EXISTENCE OF NODAL SOLUTION

In this section, Q satisfies assumption (A1), and the following assumption (A2)
below.

(A2) there exist positive constants δ < ( 1+λ1
p−1 )1/p, C0 and R0 such that

Q(x) ≥ Q∞ + C0 exp(−δ |z|) for |z| ≥ R0, uniformly for y ∈ ω.

Recall that µ1 is the same positive constant as in Remark 2.5 and

M(Ω) = {u ∈W 1,p
0 (Ω) \ {0} | a(u) = b(u)}.

We define

M0 =
{
u ∈W 1,p

0 (Ω) | u± ∈ M(Ω)
}
,

χ = {u ∈W 1,p
0 (Ω) |

∫
Ω

|u±|qdx > µ} and N = M(Ω) ∩ χ,

where u+ = max {u, 0}, u− = max {−u, 0} and µ ∈ (0, µ1

4 ).
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Lemma 5.1. (i) If u ∈W 1,p
0 (Ω) changes sign, then there are positive numbers

s± (u) = s± such that s+u+ ± s−u− ∈ M(Ω),
(ii) There exists a constant c ′ > 0 such that ‖u±‖

W 1,p
0 (Ω)

≥ c′ > 0 for each u ∈ N .

Proof. (i) Since u+ and u− are nonzero, by Lemma 2.3 (i) , it is easy to
obtain the result.
(ii) For each u ∈ N = M(Ω)∩χ, by the definition of χ and the Sobolev inequality
we have

µ <

∫
Ω

|u±|qdx ≤ C
∥∥u±∥∥q

W
1,p
0 (Ω)

.

This implies that ‖u±‖
W

1,p
0 (Ω)

≥ ( µ
C )1/q = c′ > 0 for each u ∈ N .

Define
γ = inf

u∈N
J(u).

Lemma 5.2. There exists a sequence {uk} ⊂ N such that J(uk) = γ + ok(1)
and J ′(uk) = ok(1) strongly in W −1,p′(Ω) as k → ∞.

Proof. See Alves-Carrião-Medeiros [1, Lemma 5.1].

Lemma 5.3. Let f and g be real-valued functions in Ω. If g(x) > 0 in Ω, then
one has the following inequalities.
(i) (f + g)+ ≥ f+, (ii) (f + g)− ≤ f−, (iii) (f − g)+ ≤ f+, (iv) (f − g)− ≥
f−.

Lemma 5.4. Let {uk} ⊂ N be a (PS)γ−sequence in W 1,p
0 (Ω) for J satisfying

α < γ < α+ α∞ (< 2α∞) .

Then there exists v2 ∈ M0 such that uk converges to v2 strongly in W 1,p
0 (Ω) .

Moreover, v2 is a higher energy solution of Equation (1.1) such that J(v 2) = γ.

Proof. By the definition of the (PS)γ−sequence in W 1,p
0 (Ω) for J, it is easy

to see that {uk} is a bounded sequence in W 1,p
0 (Ω) and satisfies∫

Ω
(
∣∣∇u±k ∣∣p +

∣∣u±k ∣∣p)dx =
∫

Ω
Q(x)

∣∣u±k ∣∣q dx+ ok(1).

By Lemma 5.1 (ii) , there exists a C > 0 such that

c′ ≤
∫

Ω
(
∣∣∇u±k ∣∣p +

∣∣u±k ∣∣p)dx =
∫

Ω
Q(x)

∣∣u±k ∣∣q dx+ ok(1).

Let v2 be the weak limit of {uk} in W 1,p
0 (Ω). By the Compactness Global Lemma

2.8, we have either uk → v2 strongly in W1,p
0 (Ω) or γ = J(v2) +

∑l
i=1 J

∞ (wi) ,
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where v2 is a solution of Equation (1.1) in Ω and wi is a solution of Equation (2.1)
in Ω. Since J∞ (wi) ≥ α∞ for each i ∈ N and α < α∞, we have l ≤ 1. Now we
want to show that l = 0. On the contrary, suppose that l = 1.
(i) w1 is a sign-changing solution of Equation (2.1): by Lemma 2.7, we have
γ ≥ 2α∞, which is a contradiction.
(ii) w1 is a constant sign solution of Equation (2.1): we may assume w1 > 0. By
the Compactness Global Lemma 2.8, there exists a sequence

{
x1

k

}
in Ω such that∣∣x1

k

∣∣→ ∞, and∥∥uk − v2 −w1

(· − x1
k

)∥∥
W 1,p

0 (Ω)
= ok(1) as k → ∞.

By the Sobolev continuous embedding inequality, we obtain∥∥uk − v2 −w1

(· − x1
k

)∥∥
Lq(Ω)

= ok(1) as k → ∞.

Since w1 > 0, by Lemma 5.3, then∥∥(uk − v2)
−∥∥

Lq(Ω)
= ok(1) as k → ∞.

Suppose v2 ≡ 0, we obtain
∥∥u−k ∥∥Lq(Ω)

= ok(1) as k → ∞. Then

0 < c′ ≤
∫

Ω

Q(x)
∣∣u−k ∣∣q dx = ok(1),

which is a contradiction. Hence, v2 �≡ 0. We have γ = J(v2)+J∞(w1) ≥ α+α∞,
which is a contradiction.
By (i) and (ii) , then l = 0. Thus, ‖uk − v2‖W

1,p
0 (Ω)

= ok(1) as k → ∞ and
J(v2) = γ. Similarly, by Lemma 5.3, we obtain that v2 is a sign-changing solution
of Equation (1.1) in Ω. By Lemma 2.7, 2α < γ.

Recall that w is the positive ground state solution of Equation (2.1) in Ω. Let
wk(x) = w(x+ek), where ek = (0, 0, ...0, k) ∈ RN and denote ẽk = (0, 0, ...0, k) ∈
R

n and BR = {(y, z) ∈ Ω||z| ≤ R} for R > 0. Then we have the following results.

Lemma 5.5. There are k0 ∈ N, real numbers t∗1 and t∗2 such that for k ≥ k0

t∗1v1 − t∗2wk ∈ M0 and γ ≤ J(t∗1v1 − t∗2wk),

where 1
p ≤ t∗1, t∗2 ≤ p.

Proof. See Alves-Carrião-Medeiros [1, Proposition 5.1].

Lemma 5.6. For all v, w ∈ R
N with N ≥ 1 and p ≥ 2, we have

(|v|p−2v − |w|p−2w)(v − w) ≥ |v − w|p.
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Proof. See Jianfu [13, Lemma 4.2].

Lemma 5.7. Let Θ be a domain in R
n. If f : Θ → R satisfies∫

Θ
|f (x) exp (σ |x|)| dx <∞ for some σ > 0,

then (∫
Θ
f (x) exp (−σ |x+ ẽk|) dx

)
exp (σk)

=
∫

Θ

f (x) exp (−σxn) dx+ ok(1) as k → ∞,

or (∫
Θ
f (x) exp (−σ |x− ẽk|) dx

)
exp (σk)

=
∫

Θ
f (x) exp (σxn) dx+ ok(1) as k → ∞.

Proof. We know σ |ẽk| ≤ σ |x|+ σ |x+ ẽk| , then

|f(x) exp (−σ |x+ ẽk|) exp (σ |ẽk|)| ≤ |f(x) exp (σ |x|)| .

Since −σ |x+ ẽk| + σ |ẽk| = −σ 〈x, ẽk〉|ẽk| + ok(1) = −σxn + ok(1) as k → ∞, the

lemma follows from the Lebesgue dominated convergence theorem.

Lemma 5.8. There exists a k∗0 ∈ N such that for k ≥ k∗0 ≥ k0

γ ≤ sup
1
p
≤t1,t2≤p

J(t1v1 − t2wk) < α+ α∞,

where v1 is a ground state solution of Equation (1.1) in Ω.

Proof. Since

J(t1v1 − t2wk) =
1
p
a(t1v1 + t2wk) − 1

q
b(t1v1 − t2wk).

holds and by Lemma 5.6 and using the inequality(
s − t)q ≥ sq + tq − C1(sq−1t+ stq−1

)
,

for any s, t > 0 and some positive constant C1, then we get

J(t1v1 − t2wk) ≤ I1 + I2 − I3,
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where

I1 =
1
p

∫
Ω
(|∇(t1v1)|p−2∇(t1v1)−|∇(t2wk)|p−2∇(t2wk))(∇(t1v1)−∇(t2wk))dx,

I2 =
1
p

∫
Ω
(|t1v1|p−2t1v1 − (t2wk)p−2(t2wk))(t1v1 − t2wk)dx,

and

I3 =
1
q
b(t1v1) +

1
q
b(t2wk) − C1

∫
Ω
((t1v1)q−1(t2wk) + t1v1(t2wk)q−1)dx.

Since v1 is a positive solution of Equation (1.1) in Ω and wk is related with a
positive ground state of Equation (2.1), we have

sup
1
p
≤t1,t2≤p

J(t1v1 − t2wk) ≤ sup
t1≥0

J(t1v1) + sup
t2≥0

J∞(t2w)

− 1
pqq

∫
Ω

(Q(x) −Q∞)wq
kdx

+ C2

(∫
Ω
vq−1
1 wk + wq−1

k v1

)
dx.

(i) First, by the H"older inequality and applying Lemma 3.3,

∫
BR0

vq−1
1 wkdx≤

(∫
BR0

vq
1dx

)q−1
q
(∫

BR0

wq
kdx

) 1
q

≤ C3

(∫
ω

∫
{z||z|≤R0}

φq(y) exp
(
−q(1+λ1−ε

p−1
)1/p |z+ẽk|

)
dydz

)1
q

≤ C4 exp
(

(
1 + λ1 − ε

p− 1
)1/pk

)
.

Applying Lemma 5.7, there exists a k1 ≥ k0 such that for k ≥ k1∫
Ω\R0

vq−1
1 wkdx

≤C5

∫
{z||z|≥R0}

exp
(
− (q − 1) (

1 + λ1 − ε

p− 1
)1/p |z|

)
exp

(
−(

1 + λ1 − ε

p− 1
)1/p |z + ẽk|

)
dz

≤C6 exp(−(
1 + λ1 − ε

p− 1
)1/pk).
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Similarly, we also obtain∫
BR0

wq−1
k v1dx ≤ C7 exp(− (q − 1) (

1 + λ1 − ε

p− 1
)1/pk),

∫
BR0

|Q(x)−Q∞|wq
kdx ≤ C8 exp(−q(1 + λ1 − ε

p− 1
)1/pk),

and there exists a k2 ≥ k1 such that for k ≥ k2∫
Ω\R0

wq−1
k v1dx ≤ C9 exp(−(

1 + λ1 − ε

p− 1
)1/pk).

(ii) Since Q satisfies assumption (A2) and 0 < δ < ( 1+λ1
p−1 )1/p, by Lemma 5.7,

there exists a k3 ≥ k2 such that for k ≥ k3∫
Ω\BR0

(Q(x) −Q∞)wq
k ≥ C10 exp(−δk).

By (i), (ii) and 2 ≤ p < q < p∗, choosing ε > 0, such that ( 1+λ1−ε
p−1 )1/p > δ, we

can find a k∗0 ≥ k3 ≥ k0 such that for k ≥ k∗0

C2

∫
Ω

(
vq−1
1 wk +wq−1

k v1

)
dx− 1

pqq

∫
Ω

(Q(x)−Q∞)wq
kdx < 0.

Since J(v1) = sup
t≥0

J(tv1) and J∞(w) = sup
t≥0

J∞(tw), we have for k ≥ k∗0

sup
1
p
≤t1,t2≤p

J(t1v1 − t2wk) < J(v1) + J∞(w) = α + α∞.

Now, we begin to show the proof of our main results

First, we consider that Ω is an unbounded cylinder domain. Theorem 1.1 follows
from Theorem 4.3. Theorem 1.2 follows immediately from Lemmas 5.2, 5.4, 5.5,
5.8, and Theorem 1.1. With the same argument, we also have that Theorem 1.3 and
Theorem 1.4 hold for Ω = R

N .
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