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AN ULM-LIKE CAYLEY TRANSFORM METHOD FOR INVERSE
EIGENVALUE PROBLEMS

Weiping Shen* and Chong Li

Abstract. We propose an Ulm-like Cayley transform method for solving in-
verse eigenvalue problems, which avoids solving approximate Jacobian equa-
tions comparing with other known methods. A convergence analysis of this
method is provided and the R-quadratic convergence property is proved under
the assumption of the distinction of the given eigenvalues. Numerical exper-
iments are given in the last section and comparisons with the inexact Cayley
transform method [1] are made.

1. INTRODUCTION

Inverse eigenvalue problems (IEPs) arise in a variety of applications such as
inverse Sturm-Liouville’s problem, inverse vibrating string problem, nuclear spec-
troscopy and molecular spectroscopy (see [2, 3, 7, 9, 14, 15, 18, 20, 23, 25, 26,
27, 30, 32]). In particular, a recent survey paper on structured inverse eigenvalue
problems by Chu and Golub (see [7]) is a good reference for these applications. In
many of these applications, the problem size n can be large. For example, large
inverse Toeplitz eigenvalue problems and large discrete inverse Sturm-Liouville’s
problems considered in [7, 27].

The IEPs we considered here is defined as follows. Let c= (c1, c2, . . . , cn)T ∈
R
n and {Ai}ni=0 be a sequence of real symmetric n× n matrices. Define

(1.1) A(c) := A0 +
n∑
i=1

ciAi
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and denote its eigenvalues by {λi(c)}ni=1 with the ordering λ1(c) ≤ λ2(c) ≤ · · · ≤
λn(c). Let {λ∗i }ni=1 be given with λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n. Then the IEP considered
here is to find a vector c∗ ∈ R

n such that

(1.2) λi(c∗) = λ∗i for each i = 1, 2, . . . , n.

The vector c∗ is called a solution of the IEP (1.2).
Recall that solving the IEP (1.2) is equivalent to solving the equation f(c) = 0

on R
n, where the function f : R

n → R
n is defined by

f(c) = (λ1(c) − λ∗1, λ2(c) − λ∗2, . . . , λn(c)− λ∗n)
T for any c ∈ R

n.

Based on this equivalence, Newton’s method can be applied to the IEP, and it
converges quadratically (see [12, 21, 34]). However, Newton’s method has two
disadvantages from the point of view of practical calculation: one is that it re-
quires solving a complete eigenproblem for the matrix A(c), and the other that it
requires solving exactly the Jacobian equations. Since then many researchers com-
mitted themselves to overcoming these two disadvantages of Newton’s method. To
overcome the first disadvantage, different Newton-like methods, where each outer it-
eration, instead of the exact eigenvectors of the matrix A(c), adopts approximations
to them, have been proposed and studied in [5, 6, 12, 34]. In particular, Friedland et
al. considered in [12] a type of Newton-like method where the approximate eigen-
vectors were found by using the one-step inverse power method, and the Cayley
transform method which forms approximate Jacobian equations by applying matrix
exponentials and Cayley transforms. To overcome the second disadvantage and al-
leviate the over-solving problem, inexact methods for solving the IEPs have been
proposed. For example, the inexact Newton-like method and the inexact Cayley
transform method was proposed in [4] and [1] respectively. Motivated by Moser’s
method and Ulm’s method (see [10, 13, 17, 19, 24, 28, 29, 33, 35]), we have
proposed in paper [31] an Ulm-like method for solving the IEPs (with A0 = 0) ,
which avoids solving the approximate Jacobian equations and hence is more stable
comparing with the inexact Newton-like method. A Numerical example for which
the Ulm-like method converges but not the inexact Newton-like method is provided
in that paper.

Combining Ulm’s method with the Cayley transform method, we propose an
Ulm-like Cayley transform method for solving the IEPs in this paper, which also
avoids solving the Jacobian equations in each outer iteration. It should be noted
that the Ulm-like Cayley transform method covers both the cases A0 = 0 and
A0 �= 0. Under the classical assumption (which is also used in [1, 4]) that the
given eigenvalues are distinct and the Jacobian matrix J(c∗) is nonsingular, we
prove that this method converges with R-quadratic convergence. Comparing with
the inexact Cayley transform method in [1], the Ulm-like Cayley transform method
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seems more stable, and reduces the difficulty though they have the same costs.
Numerical experiments are given in the last section to illustrate the comparisons
with the inexact Cayley transform method.

2. ULM-LIKE CAYLEY TRANSFORM METHOD

Let [1, n] denote the set of {1, 2, . . . , n}. As usual, let R
n×n denote the set of

all real n× n matrices. Let ‖ · ‖ denote the 2-norm in R
n. The induced 2-norm in

R
n×n is also denoted by ‖ · ‖, i.e.,

‖A‖ := sup
x∈Rn, x�=0

‖Ax‖
‖x‖ for each A ∈ R

n×n.

Let ‖ · ‖F denote the Frobenius norm in R
n×n . Then

‖A‖ ≤ ‖A‖F for each A ∈ R
n×n.

Let c= (c1, c2, . . . , cn)T ∈ R
n and {Ai}ni=1 ⊂ R

n×n be symmetric. As in (1.1),
define

A(c) = A0 +
n∑
i=1

ciAi,

Let λ1(c) ≤ λ2(c) ≤ · · · ≤ λn(c) be the eigenvalues of the matrix A(c), and let
{qi(c)}ni=1 be the normalized eigenvectors corresponding to {λi(c)}ni=1. Define
J(c) = ([J(c)]ij) by

[J(c)]ij := qi(c)TAjqi(c) for any i, j ∈ [1, n].

Let {λ∗i }ni=1 be given with λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n and write λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
n)
T .

Let c∗ be the solution of the IEP, i.e.,

λi(c∗) = λ∗i for each i ∈ [1, n].

As shown in [1, 4, 12], in the case when the given eigenvalues {λ∗
i }ni=1 are dis-

tinct, the eigenvalues of A(c) are distinct too for any point c in some neighborhood
of c∗. It follows that the function f(·) is analytic in the same neighborhood, and
J(c) is the Jacobian matrix of f at c in this neighborhood (see. [1, 4]). Recall that
Newton’s method, which converges quadratically (see. [21, 34]), involves solving
a complete eigenproblem for the matrix A(c). However, if we only compute it
approximately, we may still have fast convergence. This results in the following
Cayley transform method which forms approximate Jacobian equations by applying
matrix exponentials and Cayley transforms.

Algorithm 1. Cayley transform method

1. Given c0, compute the orthonormal eigenvectors {qi(c0)}ni=1 of A(c0). Let
P0 = [p0

1, . . . ,p
0
n] = [q1(c0), . . . , qn(c0)].
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2. For k = 0, 1, . . . until convergence, do:

(a) Form the approximate Jacobian matrix Jk and the vector bk as follows:

[Jk]ij = (pki )
TAjpki for each i, j ∈ [1, n],

(2.1) [bk]i = (pki )
TA0pki for each i ∈ [1, n].

(b) Solve ck+1 from the approximate Jacobian equation

(2.2) Jkck+1 = λ∗ − bk.

(c) Form the skew-symmetric matrix Yk:

(2.3) [Yk]ij =
(pki )

TA(ck+1)pkj
λ∗j − λ∗i

for each i, j ∈ [1, n] and i �= j.

(d) Compute Pk+1 = [pk+1
1 , . . . ,pk+1

n ] = [vk+1
1 , . . . , vk+1

n ]T by solving

(2.4) (I + 1
2Yk)v

k+1
j = hkj for each j ∈ [1, n],

where hkj is the jth column of Hk = (I − 1
2Yk)P

T
k .

In [12], it was proved that the Cayley transform method Algorithm 1 converges
with R-quadratic convergence. Note that in Algorithm 1, systems (2.2) and (2.4) are
solved exactly. Usually, one solves these systems by iterative methods, in particular
in the case when n is large. One could expect that it requires only a few iterations
to solve (2.4) iteratively. This is due to the fact that, as {ck} converges to c∗, ‖Yk‖
converges to zero (cf. [1, 12]). Consequently, the coefficient matrix on the left-hand
side of (2.4) approaches the identity matrix in the limit, and therefore (2.4) can be
solved efficiently by iterative methods. On the other hand, as for the approximate
Jacobian equation (2.2), iterative methods may bring an over-solving problem in
the sense that the last few iterations before convergence are usually insignificant as
far as the convergence of the outer iteration is concerned. This over-solving of the
inner iterations will cause a waste of time and does not improve the efficiency of
the whole method. To alleviate the over-solving problem and improve the efficiency
in solving the IEP, system (2.2) is solved in [1] approximately rather than exactly,
and the following inexact Cayley transform method was proposed there.

Algorithm 2. Inexact Cayley transform method

1. Given c0, compute the orthonormal eigenvectors {qi(c0)}ni=1 and the eigen-
values {λi(c0)}ni=1 of A(c0). Let P0 = [p0

1, . . . ,p
0
n] = [q1(c0), . . . , qn(c0)]

and ρ0 = (λ1(c0), . . . , λn(c0))T .



An Ulm-like Cayley Transform Method for IEP 371

2. For k = 0, 1, . . . until convergence, do:

(a) Same as (a) in Algorithm 1
(b) Solve ck+1 inexactly from the approximate Jacobian equation

(2.5) Jkck+1 = λ∗ − bk + rk,

until the residual rk satisfies

‖rk‖ ≤ ‖ρk − λ∗‖β
‖λ∗‖β , β ∈ (1, 2].

(c) Same as (c) in Algorithm 1
(d) Same as (d) in Algorithm 1
(e) Compute ρk+1 = (ρk+1

1 , . . . , ρk+1
n )T by

ρk+1
i = (pk+1

i )TA(ck+1)pk+1
i for each i = 1, 2, . . . , n.

Under the assumption that the given eigenvalues {λ∗
i}ni=1 are distinct and the

Jacobian matrix J(c∗) is invertible, it was proved in [1] that the inexact Cayley
transform method converges locally with root-convergence rate equal to β. In each
outer iteration of the inexact Cayley transform method, an approximate Jacobian
equation is required to solve. This still can be costly sometimes especially when ck

is close to the solution c∗. Furthermore, solving (2.5) may involve some precondi-
tioning problem.

Moser’s method (see [17, 24, 28]) to solve operator equations in Banach spaces
is defined as follows. Let X , Y be (real or complex) Banach spaces, and let D ⊆ X
be an open subset. Consider the general operator equation:

(2.6) f(x) = 0,

where f : D ⊆ X −→ Y is a nonlinear operator with continuous Fréchet derivative
f ′. Given x0 ∈ D and B0 ∈ L(Y,X), Moser’s method to find solutions of equation
(2.6) is defined as follows:{

xk+1 = xk −Bkf(xk)
Bk+1 = 2Bk − Bkf

′(xk)Bk
for each k = 0, 1, . . . .

The convergence rate of Moser’s method is (1 +
√

5)/2 = 1.61 · · · (see [24]).
However, quadratic convergence rate can be obtained when the sequence {Bk}
generated by

Bk+1 = 2Bk − Bkf
′(xk+1)Bk for each k = 0, 1, . . . .
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This is Ulm’s method introduced in [33] and has been further studied in [10, 13,
17, 19, 28, 29, 35]. R-quadratic convergence of Ulm’s method was established
in [10, 19, 35] under the classical assumption that the derivative f ′ is Lipschitz
continuous around the solution. Compared with Newton’s method, the advantage
of Moser’s method and Ulm’s method is that Jacobian equations are not required to
solve in each step. Motivated by Moser’s method and Ulm’s method, we propose
the following Ulm-like Cayley transform method for solving the IEP, which also
avoids solving the approximate Jacobian equations in each step.

Algorithm 3. Ulm-like Cayley transform method

1. Given c0 ∈ R
n and B0 ∈ R

n×n be such that

(2.7) ‖I − B0J(c0)‖ ≤ µ,

where µ is a positive constant. Compute the orthonormal eigenvectors
{qi(c0)}ni=1 of A(c0). Let P0 = [p0

1, . . . ,p
0
n] = [q1(c0), . . . , qn(c0)] and

J0 = J(c0). Compute the vector b0 by (2.1).

2. For k = 0, 1, . . . until convergence, do:

(a) Compute ck+1 by

(2.8) ck+1 = ck −Bk(Jkck − λ∗ + bk).

(b) Same as (c) in Algorithm 1.
(c) Same as (d) in Algorithm 1.
(d) Form the approximate Jacobian matrix Jk+1 and the vector bk+1 as

follows:
[Jk+1]ij = (pk+1

i )TAjpk+1
i for each i, j ∈ [1, n],

[bk+1]i = (pk+1
i )TA0pk+1

i for each i ∈ [1, n].

(e) Compute the matrix Bk+1 by

Bk+1 = 2Bk −BkJk+1Bk.

Remark 2.1. Note that (2.4) implies

(2.9) Pk+1 = Pk(I + 1
2Yk)(I − 1

2Yk)
−1 for each k = 0, 1, . . . .

Since P0 is an orthogonal matrix and {Yk} are skew-symmetric matrices, we see
that the matrices {Pk} generated by (2.4) must be orthogonal, i.e.,

PTk Pk = PkP
T
k = I for each k = 0, 1, . . . .
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To maintain the orthogonality of Pk, that would mean that (2.4) cannot be solved
inexactly. However, we will see in Section 3 that ‖Yk‖ converges to zero (see (3.7),
(3.8), (3.10) and (3.15)). Consequently, the matrix on the left-hand side of (2.4)
approaches the identity matrix in the limit. Therefore we can expect to solve (2.4)
accurately by iterative methods using just a few iterations.

Remark 2.2. The main difference of the Ulm-like Cayley transform method
and the inexact Cayley transform method is that the step of solving the approximate
Jacobian equation (2.2) in the inexact Cayley transform method is replaced by com-
puting the product of matrices, the operation cost of which is still O(n3), the same
as that of solving the Jacobian equation. However, computing the product of ma-
trices is simpler than solving equations. Therefore, the Ulm-like Cayley transform
method reduces significantly the difficulty of the problem. In particular, the parallel
computation techniques can be applied in the Ulm-like Cayley transform method to
improve the computational efficiency.

3. CONVERGENCE ANALYSIS

In this section, we carry on a convergence analysis of the Ulm-like Cayley
transform method. Let {λ∗i }ni=1 be given with λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n. Let c∗ be the
solution of the IEP and let Q∗ = [q1(c∗), . . . , qn(c∗)] be the orthogonal matrix of
the eigenvectors of A(c∗). Then the matrix Q∗ satisfies

(3.1) QT∗ A(c∗)Q∗ = ∧∗,

where ∧∗ = diag(λ∗1, . . . , λ
∗
n). As the standard assumption in [1, 4], we assume

that the given eigenvalues {λ∗i }ni=1 are distinct and that the Jacobian matrix J(c∗) is
nonsingular. Let ck be the kth iteration of the method, {λi(ck)}ni=1 and {qi(ck)}ni=1

be the eigenvalues and normalized eigenvectors of A(ck) respectively, i.e.,

A(ck)qi(ck) = λi(ck)qi(ck) and qi(ck)Tqj(ck) =
{

1, if i = j,
0, if i �= j.

Below, we prove that ifB0 approximates J(c0)−1 and the initial guess c0 is closed to
the solution c∗, then the sequence {ck} generated by the Ulm-like Cayley transform
method converges locally to c∗ with R-quadratic convergence. For this purpose,
we need the following four lemmas. The first and the third lemmas have been
presented in [4] and [12, Corollary 3.1] respectively; while the proof of the second
one is similar to that of [22, Lemma 3.2].

Lemma 3.1. Suppose that {λ∗
i }ni=1 are distinct. Then there exist positive num-

bers δ0 and ρ0 such that the following assertion holds for each c ∈ B(c ∗, δ0).

‖ qi(c) − qi(c∗) ‖≤ ρ0 ‖ c− c∗ ‖ for each i ∈ [1, n].
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Lemma 3.2. Let {ωi}ni=1 ⊂ R
n be unit vectors approximating q i(c∗). Let Jω

be the matrix defined by [Jω]ij = (ωi)TAjωi for each i, j ∈ [1, n] and let bω be
the vector defined by [bω]i = (ωi)TA0ωi for each i ∈ [1, n].Then

‖ Jωc∗ − λ∗ + bω ‖≤ 2n · max
i

|λ∗i | · max
i

‖ ωi − qi(c∗) ‖2 .

Lemma 3.3. There exist two positive numbers δ1 and ρ1 such that, for any
orthogonal matrix P with ‖P − Q∗‖ < δ1, the skew-symmetric matrix X defined
by eX = PTQ∗ satisfies

‖X‖ ≤ ρ1‖P −Q∗‖.
Let {Pk} be defined by (2.9). Define

(3.2) Ek := Pk −Q∗ for each k = 0, 1, . . . .

Then we have the following key lemma.

Lemma 3.4. Suppose that the given eigenvalues {λ ∗
i }ni=1 are distinct and the

Jacobian matrix J(c∗)is invertible. Then there exist positive numbers δ 2 and ρ2

such that, for any k = 0, 1, ..., if ‖ck+1 − c∗‖ ≤ δ2 and ‖Ek‖ ≤ δ2 then

(3.3) ‖Ek+1‖ ≤ ρ2(‖ck+1 − c∗‖ + ‖Ek‖2).

Proof. Let k = 1, 2, ... and consider the matrix Xk defined by eXk = PTk Q∗.
Since Pk is orthogonal, it follows from (3.1) that

(3.4) eXk ∧∗ e−Xk = PTk A(c∗)Pk.

Note that

(3.5) eX = I +X +O(‖X‖2) for each matrix X.

Combining this and (3.4), we have that

∧∗ +Xk ∧∗ −∧∗ Xk = PTk A(c∗)Pk +O(‖Xk‖2),

Let i, j = 1, ..., n with i �= j. Then the above equality implies that

[Xk]ij =
1

λ∗j − λ∗i
(pki )

TA(c∗)pkj +O(‖Xk‖2).

By the definition of Yk in (2.3), one has that

[Xk]ij − [Yk]ij =
1

λ∗j − λ∗i
(pki )

T (A(c∗) − A(ck+1))pkj +O(‖Xk‖2).
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As A(·) is Lipschitz continuous, it follows that

|[Xk]ij − [Yk]ij| = O(‖ck+1 − c∗‖ + ‖Xk‖2).

Consequently,

(3.6) ‖Xk − Yk‖ ≤ ‖Xk − Yk‖F = O(‖ck+1 − c∗‖ + ‖Xk‖2)

and so ‖Yk‖ = O(‖ck+1 − c∗‖ + ‖Xk‖). Let C > 0 be such that

(3.7) ‖Yk‖ ≤ C(‖ck+1 − c∗‖ + ‖Xk‖).

Take 0 < δ2 < min
{
δ1,

1
(1+ρ1)C

}
, where δ1 and ρ1 are the positive numbers

determined by Lemma 3.3. Assume that ‖ck+1 − c∗‖ < δ2 and ‖Ek‖ < δ2. Then
‖Ek‖ < δ1 and Lemma 3.3 is applicable to getting

(3.8) ‖Xk‖ ≤ ρ1‖Ek‖.

Thus (3.7) entails that

‖Yk‖ ≤ C(‖ck+1 − c∗‖ + ρ1‖Ek‖) ≤ C(1 + ρ1)δ2 ≤ 1.

Consequently

(3.9)
∥∥∥(
I − 1

2Yk
)−1

∥∥∥ ≤ 1
1 − 1

2‖Yk‖
≤ 2.

Below we will show that there exists ρ2 > 0 such that (3.3) holds. Granting this,
the proof is complete. To this end, we note by (3.2) and (2.9) that

Ek+1 = Pk[(I+1
2Yk)(I−1

2Yk)
−1−eXk ] = Pk[(I+1

2Yk)−eXk(I−1
2Yk)](I−1

2Yk)
−1.

Applying (3.5), one has

Ek+1 = Pk[(I + 1
2Yk) − (I +Xk + O(‖Xk‖2))(I − 1

2Yk)](I − 1
2Yk)

−1

= Pk[Yk −Xk + 1
2XkYk + O(‖Xk‖2)](I − 1

2Yk)
−1.

Since Pk is orthogonal, it follows that

‖Ek+1‖ ≤ [‖Yk −Xk‖ +O(‖Xk‖ · ‖Yk‖+ ‖Xk‖2)
] ‖(I − 1

2Yk)
−1‖.

Thus (3.3) is seen to hold by (3.6)-(3.9).

Now we present the main result of this paper which shows that the Ulm-like
Cayley transform method converges with R-quadratic convergence.
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Theorem 3.1. Suppose that {λ∗
i }ni=1 are distinct and that the Jacobian matrix

J(c∗) is invertible. Then there exist τ ∈ (0, 1], δ ∈ (0, τ) and µ ∈ [0, δ] such
that, for each c0 ∈ B(c∗, δ) and B0 ∈ R

n×n satisfying (2.7), the sequence {ck}
generated by Algorithm 3 with initial point c 0 converges to c∗. Moreover, the
following estimates hold for each k = 0, 1, . . . .

(3.10) ‖ck − c∗‖ ≤ τ

(
δ

τ

)2k

,

(3.11) ‖I −BkJk‖ ≤ τ

(
δ

τ

)2k

.

Proof. Let δ0, ρ0 ∈ (0,+∞) be the constants determined by Lemma 3.1 such
that H1‖J(c∗)−1‖δ0 < 1 where

H1 := 2n2ρ0 · max
j

‖Aj‖.

Let δ2 ∈ (0, δ1] and ρ2 ∈ (0,+∞) be the constants determined by Lemma 3.4.
Moreover, we write for simplicity,

ρ̄ =
‖J(c∗)−1‖

1−H1‖J(c∗)−1‖δ0 and H2 = 4n2ρ2
0ρ̄ · max

i
|λ∗i |.

Set

(3.12) τ = min
{

1
1 +H2

,

√
nρ0

ρ2(1 +H2 + nρ2
0)
,

1
(1 + 4ρ̄H1)2

}
.

Clearly

(3.13) τ ≤ 1.

Take δ and µ such that

0 < δ < min
{
δ0, δ2, τ,

δ2√
nρ0

,
1
ρ̄H1

}
and 0 ≤ µ ≤ δ.

Then, one has by the definition of ρ̄ that

δ <
1

ρ̄H1
=

1 −H1‖J(c∗)−1‖δ0
H1‖J(c∗)−1‖ <

1
H1‖J(c∗)−1‖ .

Thus for any matrix A,

(3.14) ‖A− J(c∗)‖ ≤ H1δ =⇒ A−1 exists and ‖A−1‖ ≤ ρ̄.

Below we shall show that τ, δ and µ are as desired. To do this, let k = 0, 1, . . .
and consider the following conditions:
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(3.15) ‖Ek‖ ≤ √
nρ0τ

(
δ

τ

)2k

;

(3.16) ‖Jk − J(c∗)‖ ≤ H1τ

(
δ

τ

)2k

and ‖J−1
k ‖ ≤ ρ̄;

(3.17) ‖Bk‖ ≤ 2ρ̄ and ‖ck+1 − c∗‖ ≤ (1 +H2)τ2

(
δ

τ

)2k+1

.

Then we have the following implications:

(3.18) (3.15) =⇒ (3.16)

and

(3.19) [(3.15) + (3.10) + (3.11)] =⇒ (3.17).

To prove the first implication, we suppose that (3.15) holds. Note that

(3.20) ‖pki −qi(c∗)‖≤‖Pk−Q∗‖=‖Ek‖≤
√
nρ0τ

(
δ

τ

)2k

for each i ∈ [1, n].

Then, for any i, j ∈ [1, n],

| [Jk]ij − [J(c∗)]ij | = | [pki − qi(c∗)]TAjpki − qi(c∗)TAj [qi(c∗) − pki ] |
≤ 2 ‖ Aj ‖ · ‖ pki − qi(c∗) ‖

≤ 2
√
nρ0 ‖ Aj‖τ

(
δ

τ

)2k

,

which together with the definition of H1 gives

‖Jk − J(c∗)‖ ≤ ‖Jk − J(c∗)‖F ≤ 2n
3
2 ρ0 · max

j
‖Aj‖τ

(
δ

τ

)2k

≤ H1τ

(
δ

τ

)2k

.

Thus, the first inequality of (3.16) is proved; while the second inequality follows
from (3.14) because ‖Jk − J(c∗)‖ ≤ H1δ (noting that δ < τ ). Therefore, the
implication (3.18) is proved.

To verify the second implication, suppose that (3.15), (3.10) and (3.11) hold.
Then (3.16) holds by implication (3.18) and so ‖J−1

k ‖ ≤ ρ̄. Furthermore,

‖BkJk‖ ≤ 1 + ‖I −BkJk‖ ≤ 1 + τ

(
δ

τ

)2k

.

Therefore,
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(3.21) ‖Bk‖ ≤ ‖BkJk‖ · ‖J−1
k ‖ ≤

[
1 + τ

(
δ

τ

)2k
]
ρ̄ ≤ (1 + τ)ρ̄ ≤ 2ρ̄

(noting that τ ≤ 1 by (3.13)). As for the estimate of ‖ck+1 − c∗‖, we note by (2.8)
that

(3.22)
ck+1 − c∗ = ck − c∗ −BkJkck +Bkλ

∗ −Bkbk

= (I −BkJk)(ck − c∗) −Bk(Jkc∗ − λ∗ + bk).

Since max
i

‖pki − qi(c∗)‖ ≤ √
nρ0τ

(
δ

τ

)2k

by (3.20), it follows from Lemma 3.2

that

(3.23)
‖Jkc∗ − λ∗ + bk‖ ≤ 2n ·max

i
|λ∗i | · max

i
‖pki − qi(c∗)‖2

≤ 2n2ρ2
0 ·max

i
|λ∗i |τ2

(
δ

τ

)2k+1

.

By (3.10), (3.11) and using (3.21), (3.23), we conclude from (3.22) that

‖ck+1 − c∗‖ ≤ ‖I − BkJk‖ · ‖ck − c∗‖ + ‖Bk‖ · ‖Jkc∗ − λ∗ + bk‖

≤ τ2

(
δ

τ

)2k+1

+ 4n2ρ2
0ρ̄ · max

i
|λ∗i |τ2

(
δ

τ

)2k+1

= (1 +H2)τ2

(
δ

τ

)2k+1

,

where the equality holds because of the definition of H2. This together with (3.21)
completes the proof of the second implication.

Below we will show that (3.10), (3.11) and (3.15) hold for each k ≥ 0. We will
proceed by mathematical induction. Clearly, (3.10) and (3.11) for k = 0 are trivial
by assumptions (noting that µ ≤ δ). Moreover, by Lemma 3.1,

‖E0‖ ≤ ‖E0‖F ≤ √
n · max

i
‖qi(c0) − qi(c∗)‖ ≤ √

nρ0‖c0 − c∗‖ ≤ √
nρ0δ.

Thus (3.15) is true for k = 0.
Now assume that (3.10), (3.11) and (3.15) hold for all k ≤ m − 1. Then,

recalling that δ ≤ τ and δ ≤ δ2√
nρ0

, one has that

‖Em−1‖ ≤ √
nρ0τ

(
δ

τ

)2m−1

≤ √
nρ0δ ≤ δ2

Moreover, by implication (3.19) (with k = m− 1), one has

(3.24) ‖Bm−1‖ ≤ 2ρ̄.

Hence
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‖cm − c∗‖ ≤ (1 +H2)τ2

(
δ

τ

)2m

< δ < δ2,

Applying Lemma 3.4, we obtain

‖Em‖ ≤ ρ2(‖cm − c∗‖ + ‖Em−1‖2)

≤ ρ2(1 +H2 + nρ2
0)τ

2

(
δ

τ

)2m

≤ √
nρ0τ

(
δ

τ

)2m

,

where the last inequality holds because of (3.12). Thus (3.10) and (3.15) are seen
to hold for k = m. To show that (3.11) holds for k = m, using implication (3.18)
(with k = m− 1, m), one gets that

‖Jm−1 − J(c∗)‖ ≤ H1τ

(
δ

τ

)2m−1

and ‖Jm − J(c∗)‖ ≤ H1τ

(
δ

τ

)2m

.

Hence

(3.25) ‖Jm − Jm−1‖ ≤ ‖Jm − J(c∗)‖+ ‖Jm−1 − J(c∗)‖ ≤ 2H1τ

(
δ

τ

)2m−1

.

Recalling that Bk = 2Bk−1 −Bk−1JkBk−1 for each k = 1, 2, . . ., we have

I −BmJm = (I −Bm−1Jm)2 = (I −Bm−1Jm−1 −Bm−1(Jm − Jm−1))2.

Then by (3.24), (3.25) and using the inductional assumption (3.11) (with k = m−1),
we have that

‖I − BmJm‖ ≤ (‖I −Bm−1Jm−1‖ + ‖Bm−1‖ · ‖Jm − Jm−1‖)2

≤
[
τ

(
δ

τ

)2m−1

+ 4ρ̄H1τ

(
δ

τ

)2m−1
]2

= (1 + 4ρ̄H1)2τ2

(
δ

τ

)2m

.

Note by (3.12) that τ(1 + 4ρ̄H1)2 ≤ 1. It follows that

‖I − BmJm‖ ≤ τ

(
δ

τ

)2m

,

that is (3.11) holds for k = m and completes the proof.
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4. NUMERICAL EXPERIMENTS

In this section, we illustrate the convergence performance of the Ulm-like Cayley
transform method on two examples. For comparison, the inexact Cayley transform
method [1] is also tested. Our aim is to show that the outer iteration number required
for convergence of the Ulm-like Cayley transform method is comparable to that of the
inexact Cayley transform method [1] with large β. In the first example, we consider
the inverse Toeplitz eigenvalue problem which was considered in [1, 4, 27, 32].

Example 4.1. We use Toeplitz matrices as our {Ai}ni=1 in (1.1):

A1 =I, A2=




0 1 0 · · · 0
1 0 1

. . . ...
0 1

. . . . . . 0
... . . . . . . 0 1
0 · · · 0 1 0



, . . . , An=




0 0 · · · 0 1
0

. . . . . . · · · 0
... . . . . . . . . . ...
0 · · · . . . . . . 0
1 0 · · · 0 0



.

Thus A(c) is a symmetric Toeplitz matrix with the first column equal to c.

All our tests were done in Matlab. In [27], very large inverse Toeplitz eigenvalue
problem were solved on parallel architectures. Here we consider three problem
sizes: n = 100, 200, and 300. For each value of n, we constructed ten n-by-n
test problems. For each test problem, we first generate c∗ randomly. Then we
compute the eigenvalues {λ∗i }ni=1 of A(c∗) as the prescribed eigenvalues. Since
both algorithms are locally convergent, the initial guess c0 is formed by chopping
the components of c∗ to four decimal places for n = 100 and five decimal places for
n = 200, 300. For both algorithms, the stopping tolerance for the outer (Newton)
iterations is 10−10.

Linear systems (2.4) and (2.5) are all solved iteratively by the QMR method (cf.
[1, 4, 11]) using the Matlab-provided QMR function. At the (k+1)th iteration, we
use vkj as the initial guess of the inverse power equation (2.4), and ck as the initial
guess of the approximate Jacobian equation (2.5). The stopping tolerance for the
system (2.5) is given as in the equation. We also set the maximum number of itera-
tions allowed to 400 for all inner iterations. To speed up the convergence, we use the
Matlab-provided Modified ILU (MILU) preconditioner: LUINC(A, [drop-tolerance,
1, 1, 1]) which is one of the most versatile pre-conditioners for unstructured matrices
[1, 8, 16]. The drop tolerance we use here is 0.05 for all the three problem sizes.

For n = 100, 200, and 300, the convergence performances of Algorithms 2
and 3 are illustrated in Table 1, where “ite.” represents the averaged total numbers
of outer iterations on ten test problems. Note by (2.7) that B0 is an approximation
to J(c0)−1. Here, we take B0 = J(c0)−1 for the Ulm-like Cayley transform



An Ulm-like Cayley Transform Method for IEP 381

method. Since the inexact Cayley transform method converges with convergence
rate β, we present its convergence performances with large β. From this table,
we can see that for n = 100, 200, and 300, the outer iteration numbers of the
Ulm-like Cayley transform method are comparable to that of the inexact Cayley
transform method. However, it should be noted that, by computing approximations
to the inverse of Jacobian matrices, the Ulm-like Cayley transform method avoids
solving the approximate Jacobian equation in each outer iteration. This will be
very attractive when the approximate Jacobian equation (2.5) is difficult to solve.
Moreover, when the size n is large, we can obtain the sequence {Bk} by parallel
computation which can further improve the computational efficiency.

To further illustrate the convergence performance of the Ulm-like Cayley trans-
form method, Table 2 gives the averaged values of ‖ck − c∗‖ and the averaged
total numbers of outer iterations of the Ulm-like Cayley transform method with
different µ. “ite.” is the same as in Table 1. From Table 2, we can see that, for
the Ulm-like Cayley transform method, the convergence performance in the case of
B0 ≈ J(c0)−1 is comparable to that in the case of B0 = J(c0)−1.

Below we consider an example of non-Toeplitz matrices, where the matrices
{Jk} are large though both the inexact Cayley transform method and the Ulm-like
Cayley transform method converge.

Example 4.2. Given B = I + V V T , where

V =




1 −1 −3 −5 −6
1 1 −2 −5 −17
1 −1 −1 5 18
1 1 1 2 0
1 −1 2 0 1
1 1 3 0 −1

2.5 .2 .3 .5 .6
2 −.2 .3 .5 .8




8×5

Define the matrices {Ak} from B as follows:

Ak = bkkeke
T
k +

k−1∑
j=1

bkj(ekeTj + eje
T
k ) for each k = 1, 2, . . . , 8,

where ek is the kth column of the identity matrix. Now suppose that

c∗ = (1.043890381645, 1.065644751834, 1.091344270553, 1.023155499528,

0.997448154933, 0.991139967277, 1.094291990723, 0.996548791312)T.

Then,



382 Weiping Shen and Chong Li

Table 1: Convergence performances of Algorithms 2 and 3
n k Algorithm 2 Algorithm 3

β=1.5 β=1.6 β=1.8 β=2
0 5.2699e − 4 5.2699e − 4 5.2699e − 4 5.2699e − 4 5.2699e − 4

1 4.4550e − 6 4.4558e − 6 4.4424e − 6 4.4393e − 6 4.4405e − 6

2 1.4358e − 8 1.4377e − 8 1.4389e − 8 1.4386e − 8 3.4099e − 8

3 4.2053e − 13 4.1859e − 13 4.2816e − 13 4.3118e − 13 1.9025e − 11

4 0.0000 0.0000 0.0000 0.0000 0.0000

100

ite. 3.0 3.0 3.0 3.0 3.0

0 7.8370e − 5 7.8370e − 5 7.8370e − 5 7.8370e − 5 7.8370e − 5

1 3.2570e − 7 3.2622e − 7 3.2588e − 7 3.2591e − 7 3.2590e − 7

2 8.8251e − 10 8.8469e − 10 8.8385e − 10 8.8373e − 10 2.5966e − 9

3 1.5325e − 14 1.6391e − 14 1.4518e − 14 1.6375e − 14 3.6458e − 13

4 0.0000 0.0000 0.0000 0.0000 0.0000

200

ite. 3.0 3.0 3.0 3.0 3.0

0 9.0310e − 5 9.0310e − 5 9.0310e − 5 9.0310e − 5 9.0310e − 5

1 4.6435e − 7 4.5768e − 7 4.5765e − 7 4.5768e − 7 4.5769e − 7

2 8.5937e − 10 8.5906e − 10 8.5818e − 6 8.5827e − 10 2.1156e − 9

3 3.6959e − 14 3.7737e − 14 3.8281e − 14 3.6711e − 14 2.5052e − 12

4 0.0000 0.0000 0.0000 0.0000 0.0000

300

ite. 3.0 3.0 3.0 3.0 3.0

Table 2: Convergence performances of Algorithm 3 with different µ
n k µ = 1e − 1 µ = 1e − 2 µ = 1e − 3 µ = 1e − 4 µ = 0

0 5.2699e − 4 5.2699e − 4 5.2699e − 4 5.2699e − 4 5.2699e − 4

1 5.2220e − 5 6.3180e − 6 4.3839e − 6 4.4320e − 6 4.4405e − 6

2 5.4890e − 7 3.1382e − 8 3.3495e − 8 3.4035e − 8 3.4099e − 8

3 1.4570e − 10 1.330035e − 11 1.8233e − 11 1.8936e − 11 1.9025e − 11

4 4.9600e − 15 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 0.0000

100

ite. 3.8 3.0 3.0 3.0 3.0

0 7.8370e − 5 7.8370e − 5 7.8370e − 5 7.8370e − 5 7.8370e − 5

1 7.8225e − 6 8.2955e − 7 3.2999e − 7 3.2542e − 7 3.2590e − 7

2 7.8654e − 8 2.2786e − 9 2.5538e − 9 2.5922e − 9 2.5966e − 9

3 1.4053e − 11 3.0477e − 13 3.5299e − 13 3.6297e − 13 3.6458e − 13

4 0.0000 0.0000 0.0000 0.0000 0.0000

200

ite. 3.0 3.0 3.0 3.0 3.0

0 9.0310e − 5 9.0310e − 5 9.0310e − 5 9.0310e − 5 9.0310e − 5

1 8.9605e − 6 9.2954e − 7 4.4864e − 7 4.5598e − 7 4.5769e − 7

2 8.9243e − 8 2.2761e − 9 2.1114e − 9 2.1149e − 9 2.1156e − 9

3 2.4742e − 11 2.4436e − 12 2.5055e − 12 2.5053e − 12 2.5052e − 12

4 0.0000 0.0000 0.0000 0.0000 0.0000

300

ite. 3.0 3.0 3.0 3.0 3.0
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λ∗ = (−1.292714668049, 0.754908489475, 1.294574985726, 2.361040489862,

8.801548359777, 17.222889574448, 35.134256281335, 783.036252731297)T .

In this example, the initial point c0 is chosen by

c0 =
floor(φ× 10ψ · c∗)

φ× 10ψ
.

We consider the following four cases: (a)φ = 5 and ψ = 1; (b)φ = 3 and ψ = 2;
(c)φ = 1 and ψ = 2; (d)φ = 1 and ψ = 3. Here we take B0 = J(c0)−1 for
the Ulm-like Cayley transform method. For both algorithms, the stopping tolerance
for the outer (Newton) iterations is 10−10. Table 3 displays the error of ‖ck − c∗‖
and the condition numbers κ2(Jk) of Jk for the above four initial points c0, where
“ite.” represents the number of outer iterations. We see from Table 3 that the outer
iteration numbers of the Ulm-like Cayley transform method are comparable to that
of the inexact Cayley transform method.

Table 3: ‖ck − c∗‖, ite. and κ2(Jk) of Algorithms 2 and 3
ini. k Algorithm 2 Algorithm 3

‖ck − c∗‖ κ2(Jk) ‖ck − c∗‖ κ2(Jk)

β = 1.5 β = 1.6 β = 1.8 β = 2.0

0 3.3050e − 2 3.3050e − 2 3.3050e − 2 3.3050e − 2 1.4249e + 3 3.3050e − 2 1.4249e + 3

1 2.7831e − 3 2.7831e − 3 2.7831e − 3 2.7831e − 3 1.5447e + 3 2.7831e − 3 1.5447e + 3

2 7.0600e − 5 7.0600e − 5 7.0600e − 5 7.0600e − 5 1.5092e + 3 4.0232e − 5 1.5095e + 3

(a) 3 1.8498e − 8 1.8497e − 8 1.8497e − 8 1.8497e − 8 1.5098e + 3 1.5346e − 8 1.5098e + 3

4 3.0000e − 14 3.0000e − 14 3.0000e − 14 3.0000e − 14 4.0000e − 14

ite. 4 4 4 4 4

0 5.5304e − 3 5.5304e − 3 5.5304e − 3 5.5304e − 3 1.6134e + 3 5.5304e − 3 1.63e + 1

1 4.6484e − 4 4.6484e − 4 4.6484e − 4 4.6485e − 4 1.5064e + 3 4.6485e − 4 1.5064e + 3

(b) 2 4.8975e − 7 4.8975e − 7 4.8976e − 7 4.8976e − 7 1.5098e + 3 2.7488e − 6 1.5098e + 3

3 1.3300e − 12 1.3300e − 12 1.3000e − 12 1.3200e − 12 9.5070e − 11

ite. 3 3 3 3 3

0 1.3298e − 2 1.3298e − 2 1.3298e − 2 1.3298e − 2 1.7820e + 3 1.3298e − 2 1.7820e + 3

1 8.8146e − 4 8.8146e − 4 8.8146e − 4 8.8146e − 4 1.5214e + 3 8.97e − 1 1.5214e + 3

2 9.0149e − 6 9.0149e − 6 9.0149e − 6 9.0149e − 6 1.5098e + 3 1.11e − 1 1.5099e + 3

(c) 3 2.5774e − 10 2.5765e − 10 2.5765e − 10 2.5766e − 10 1.5098e + 3 3.98e − 3 1.5098e + 3

4 3.0000e − 14 3.0000e − 14 3.0000e − 14 6.0000e − 14 3.0000e − 14

ite. 4 4 4 4 4

0 1.3993e − 3 1.3993e − 3 1.3993e − 3 1.3993e − 3 1.5123e + 3 1.3993e − 3 1.5123e + 3

1 4.9801e − 6 4.9801e − 6 4.9817e − 6 4.9817e − 6 1.5099e + 3 4.9817e − 6 1.5099e + 3

(d) 2 1.7109e − 10 1.7109e − 10 1.7154e − 10 1.7154e − 10 1.5098e + 3 3.5644e − 10 1.5098e + 3

3 5.0000e − 14 5.0000e − 14 4.0000e − 14 4.0000e − 14 4.0000e − 14

ite. 3 3 3 3 3
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