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LINEAR REGULARITY FOR AN INFINITE SYSTEM FORMED BY
p-UNIFORMLY SUBSMOOTH SETS IN BANACH SPACES

Zhou Wei

Abstract. In this paper, we introduce and study p-uniform subsmoothness of a
collection of infinitely many closed sets in a Banach space. Using variational
analysis and techniques, we mainly study linear regularity for a collection of
infinitely many closed sets satisfying p-uniform subsmoothness. The necessary
or/and sufficient conditions on the linear regularity are obtained in this case. In
particular, we extend the characterizations of linear regularity for a collection
of infinitely many closed convex sets to the honconvex setting.

1. INTRODUCTION

R. A. Poliguin and R. T. Rockafellar [1] introduced and studied the concept
of prox-regularity for functions and sets in the finite-dimensional context. This
notion is an extension of convexity and has been extensively studied by many au-
thors (see [2, 3, 4] and references therein). Aussel, Daniilidis and Thibaut [5]
introduced and studied the notion of subsmoothness for a closed set which is an
extension of prox-regularity and smoothness, and established several interesting and
valuable properties for approximate convex functions and submonotone subdiffer-
ential mappings therein. Recently, the authors [6] introduced and considered the
uniform subsmoothness of infinitely-many closed subsets in Banach spaces, and
used it to study the interrelationship among linear regularity, property(G), CHIP and
strong CHIP. Motivated by [5] and [6], in this paper, we introduce and consider the
p-uniform subsmoothness for a collection of infinitely many closed sets in Banach
space setting.
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The concept of linear regularity is well-known in mathematical programming
since it plays an important role in metric regularity/subregularity, error bounds and
approximation theory. In particular, it is utilized to establish a linear convergence
rate of iterates generated by the cyclic projection algorithm for finding the projec-
tion from a point to the intersection of finitely many closed convex sets (see [7] and
references therein). In early 1970s, Jameson [8] presented a characterization for the
linear regularity of two closed convex cones. In terms of Jameson’s property(G),
Bauschke, Borwein and Li [9] provided a characterization of the linear regularity
for a finite system of closed convex cones. Recently, Ng and Yang [10] extended
the results in [9] to a finite collection of closed convex sets in a Banach space. Fur-
thermore Li, Ng and Pong [11] and Zheng and Ng [12] studied the linear regularity
for a collection of infinitely many closed convex sets in a Banach space, respec-
tively. In [12], Zheng and Ng introduced the notion of weak* p-sum for infinitely
many closed convex sets in dual spaces and generalized Jameson’s property(G) to
an infinite system of closed convex cones of a Banach space. Zheng and Ng con-
sidered the local linear regularity for the nonconvex setting in [13] where the case
of finitely many subsmooth sets was studied and several necessary and/or sufficient
conditions for the local linear regularity of this case were given. They further in
[14] introduced the notion of L-subsmoothness for locally Lipschizian functions and
studied metric regularity for this class of functions. Inspired by [6, 12, 13] and [14],
in this paper, we mainly study the case of infinitely many closed sets in nonconvex
setting, and provide some sufficient and/or necessary conditions for the local linear
regularity of a collection formed by infinitely many closed sets satisfying p-uniform
subsmoothness.

The paper is organized as follows. In Section 2, we recall some notions in
variational analysis and approximate projection theorems established recently in
[13], which will be of use in the proof of our main results. In Section 3, we introduce
and study a notion of p-uniform subsmoothness. Then, we provide necessary and/or
sufficient conditions for the p-local linear regularity of a collection of infinitely
many closed sets with the assumption of p-uniform subsmoothness.

2. PRELIMINARIES

Let X be a Banach space with topological dual X*, and (-,-) be the duality
pairing between X and X*. Let Bx and Bx- denote the closed unit balls of X
and X*, respectively. For a nonempty subset A of X, we denote 0 A the boundary
of A with respect to the norm topology.

Let ¢ : X — R U {400} be a proper lower semicontinuous function. Let
x € dom(¢p) :={y € X : #(y) < +oo} and h € X. We denote the generalized
Rockafellar directional derivative of ¢ at = along the direction h by ¢°(x; k) which
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is defined by (see [15])

¢°(z;h) :=limlimsup inf P(z + tw) — ¢(Z)7
el0 ¢ wEh+eBx t

z—ax,t]0

where = % = means that z — z and ¢(z) — ¢(x). When ¢ is locally Lipschitzian
around z, ¢°(x; h) reduces to Clarke’s directional derivative; that is

¢°(x; h) = limsup Pz +th) = 6(2) )
’ z—x, t]0 13

Recall [16] that ¢ is regular at x if ¢ is Lipschitz around = and admits directional
derivatives ¢/(z; h) at « for all h € X with ¢'(x; h) = ¢°(x; h), where ¢/ (x; h) is
defined by

¢/($; h) — tl_l)%/:_ ¢($ + th]‘f) — ¢($) )

The Clarke subdifferential of ¢ at x is defined by
Ocp(x) :={a* € X*: (2", h) < ¢°(x;h) Vh € X},
and the Fréchet subdifferential of ¢ at x is defined by

A3 L * PR T ¢(y)—¢($)—<$*,y—$>
0o(z) == {x e X" hlrlriglf T > 0}.

Let A be a closed subset of X and a € A. The Clarke normal cone of A at q,
denoted by N.(A, a), is defined by

N.(A,a) :=0.04(a),

where 0,4 denotes the indicator function of A; that is 04(y) = 0 if y € A and
da(y) = +oo ify ¢ A. For e > 0, the set of e-normal to A at « is defined by

N.(A,a):={z" e X*: limsupw
a, ly—al

Yy—a

<e},

where y 4 4 means y — aand y € A. When e = 0, N.(A, a) is a convex cone
which is called the Fréchet normal cone of A at a and is denoted by N (A, a). It is
known (cf.[17, Corollary 1.96]) that N (A, u) N Bx- = dd(-, A)(u) for all u € A.
Hence z* € N(A,u) N Bx- if and only if for any ¢ > 0 there exists » > 0 such
that

(2.1) (*,x —u) <d(xz,A)+¢|lz —u| Yre Bu,r).
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When A is convex, one has
N(A,a) = N(A,a) ={z* € X*: (z*,x —a) <0 Ve A}.

Recall that a Banach space X is called an Asplund space if every continuous
convex function defined on an open convex subset D of X is Fréchet differentiable
at each point of a dense G subset of D. It is well known that X is an Asplund
space if and only if every separable subspace of X has a separable dual space
(cf.[18]). In particular, every reflexive Banach space is an Asplund space.

Recall that a closed set A in X is said to be subsmooth at a € A if for any
e > 0 there exists » > 0 such that

(" —u*,x —u) > —¢|lx — ul

whenever z,u € AN B(a,r), 2" € N.(A,z) N Bx+ and u* € N.(A,u) N Bx~.
It follows from [13] that if A is subsmooth at a, then A is Clarke regular at a;
that is

(2.2) subsmoothness of A at a = N.(A4,a) = N(4, a).

The following approximate projection results(recently established in [13]) will
be useful in the proofs of our main results.

Lemma 2.1. Let X be a Banach space (resp., an Asplund space) and A be
a closed nonempty subset of X. Let v € (0,1). Then for any = ¢ A there exist
a € 0A and a* € N (A, a)(resp., a* € N(A, a)) with ||a*|| = 1 such that

Y|z — al| < min {d(m, A),(a* x — a>}.
In Sections 3, we will need the following inequality.
Lemma 2.2. Let p € [1, +00). Then there exists M = M (p) > 0 such that
(2.3) (a+b)P < M(laP + [b]") Va,beR.
Taking M = 2? and by virtue of the trivial inequality a + b < 2max {]al, |b| },
the proof can be obtained.
3. p-LocaL LINEAR REGULARITY OF p-UNIFORMLY SUBSMOOTH SETS

In this section, we study p-local linear regularity of a collection of infinitely
many closed sets in Banach space X. Let I be an arbitrary nonempty index and
let p € [1,+00). Recall that IP(I) is a classic Banach space and its interesting and
important properties can be found in Day [19]. We denote

lﬁ_([) = {(ti)ief S lp(I) 1t > 0Vi e I}.

We first recall the notion of p-local linear regularity (cf.[12]).
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Definition 3.1. Let {4, : i € I} be a collection of closed sets in X. Assume
that A := (),c; A; is nonempty. Let p € [1,4+00). We say that the collection
{4; :i € I}is p-locally linearly regular at a € A if there exist 7,6 € (0, +00) such
that

3.1) d(x, A) < 7( 3 (d(x, A))¥ Va € B(a,d).
el
Note that (3.1) holds trivially if (>,c;(d(z, Ai))P)% = 400, SO We are inspired
to consider the general case and it is necessary to study the following concept
introduced in [12].

Definition 3.2. We say that d(-, A;);er is of type P if (d(x, A;))icr € IP(1) for
each z € X.

In order to study p-local linear regularity for the collection of closed sets, we in-
troduce a new notion of p-uniform subsmoothness which is inspired by the definition
of subsmoothness ([cf. [4, 6, 7, 13 and references therein]).

Definition 3.3. Let {A, : i € I} be a collection of closed sets in X. Suppose
that A := (,; A; is nonempty. We say that
(i) the collection {A; : i € I} is p-uniformly subsmooth at a € A, if for any ¢ > 0
there exist 0 > 0 and (w;)ies € (P(I) with >, ; |w;[P < 1 such that whenever
i€l a; € Ain B(a,0) and a} € N.(A;,a;) N Bx=, one has

(3.2) (a7, — a;) < |wile||lx — a;|| Yo e A;N B(a,d);
(ii) the collection {A; : i € I} is p-uniformly subsmooth on A, if {4; :i e I} is
p-uniformly subsmooth at each a € A.

It is easy to verify from the definition that the collection {4; : i € I} is p-
uniformly subsmooth on A if each A; is closed and convex.

The following proposition gives a characterization for the notion of p-uniform
subsmoothness.

Proposition 3.1. Let X be a Banach space and {A; : ¢ € I} be a collection
of closed subsets in X. Suppose that A := [),; A; is nonempty. Then {4; : i €
I} is p-uniformly subsmooth at « € A if and only if for any e > 0 there exist
d > 0 and (w;)ier € Byp(py such that whenever i € I, a; € A; N B(a, ) and
a’ € Nc(A;i, a;) N Bx~, one has

(3:3) (a2 — ;) < d(z, 4) + |wilelle — al| Yo € Bla,9).

Proof. Note that d(x, A;) = 0 for all = € A;; so the sufficiency part follows
from that (3.3) implies (3.2). Conversely, suppose that {A; : i € I} is p-uniformly
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subsmooth at a. Letany ¢ € (0, +00). Then there exist 6 > 0 and (w;)ic1 € By
such that whenever i € I, a; € A; N B(a,0) and a; € N.(A;,a;) N Bx~, one has

1

(3.4) (af,z —a;) < “‘;“5 |l — ail| Vz € B(a,26) N A;.

Fix i € I, and let z € B(a,9), a; € A; N B(a,d) and a} € N.(A;, a;) N Bx-.
Noting that d(z, A;) < || — al| < d, one can take a sequence {u,} C A;N B(zx,J)
such that ||z — u,|| — d(z, A;). Since ||u, — a|| < ||un — || + ||z — al| < 26, it
follows from (3.4) that

(07, @ — a;) = (ai, 2 = un) + (a7, up — a;)

|wie
<z = unll + == llun = ail
|wile
—(lun — || + ||z — a;)|]

2
Taking limits as n — oo, one has

(aj,x —a;) < d(z,A;) + Jwile

1

(d(z, Ai) + [l = aill) < d(z, Ai) + |wilellz — aif-
This shows that the necessity part holds. The proof is completed. ]

Let {C; : i € J} be a family of subsets of X containing the origin. The set
>~ C; is defined by

icJ

Y

icJ

{Zz‘eJoai ca; € C;, 0 # Jy C J being ﬁnite} if J#0
{0} if J=1

Proposition 3.2. Let X be a Banach space, {A; : i € I} be a collection of
closed subsets in X, a € A := (,c;4; and p,q € (1,+00) with %+% = 1.
Suppose that {A; : i € I} is p-uniformly subsmooth at a and that d(-, A ;);cs is of
type 1. Then for any p = (u;)icr € 15.(1) with ||u|| < 1, one has

S 1i(No(Asya) 0 By v co((>d, A %) (a).

el el

Proof. Letz* be an arbitrary pointin >, ; ui(N.(A;, a) N BX*)“U* and take a

generalized sequence {x}} C >, ; pi(Ne(A;, a) N Bx+) such that zy Y, 2*. Then,
for each k, there exist a finite subset I, C I, 23(j) € N¢(Aj,a) N Bx«(j € Ij)

such that
oh =Y pwk(j)
Jely



Linear Regularity for p-Uniformly Subsmooth Sets 341

Since {A; : i € I'} is p-uniformly subsmooth, for each £ > 0 there exist § > 0 and
(wi)ier € Bip(py such that (3.3) holds. Thus, for any » € B(a,d), by (3.3) and
Holder inequality, one has

xkvx_a' ZMJ xk w_a’ Zuj(d(vaj)+‘wj‘€”x_a’”)

jeI Jely
A 1
< (Zuﬁ)q((Zdw,Aapﬁ+€!!w—aH(Z‘wf"’)”)
el icl el
< Zde ) +ellz—a
el

(thanks to [|lu|l < 1 and (w;)icr € Bi(p)). By passing to the limits, one has

(x*,x —a) <deA ) + ||z — a|

el

D=

for all x € B(a,d). This implies that z* € 5<(Zi61 d(-, A;)P) )(a). The proof
is completed. ]

Using the results presented in Section 2, we will provide necessary or/and suf-
ficient conditions for p-local linear regularity under the assumption of p-uniform

subsmoothness. First, we need to establish the following lemmas which are of some
independent interests and inspired by [12, Lemma 3.1 and Lemma 3.2].

Lemma 3.1. Let {A; : i € I'} be a collection of closed sets of a Banach space

X such that A := [, A; is nonempty. Let a € A and p,q € (1,+00) with
% + % = 1. Suppose that {A4; : i € I} is p-uniformly subsmooth at a and that
d(-, A;)ier is of type IP. Let ¢ : X — RU {+oo} be defined by

(Zde ) Ve € X.

el

Then

h) = <Zdj’1i(a; h)p>% Vh € X.

el
Proof.  We first show that d(-, A;) is regular at a for each i € I; that is
(3.5) dy,(a;h) = dy,(a;h) Vh e X,

where d5 (a; h) and d'y (a; h) denote the Clarke’s directional derivative and the
dlrectlonal derivative of d( A;) at a along the direction h, respectively.
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Let h € X and ¢ € (0,4+00). Since (4;);er is p-uniformly subsmooth at a,
for each e > 0 there exist 6; € (0, +o0) and (w;)ier € By(y) such that whenever
iel, a; € AiN B(a,61) and a] € No(A;,a;) N Bx~, one has

(3.6) (a7, z —a;) < d(z, A;) + |wilella — a;]| Vz € Bla,d1).

Fix i € I and take ¢ > 0 sufficiently small such that a +th € B(a, d1). Noting that
0.d(-, A;)(a) C N.(A;,a) N Bx«(cf. [15, Proposition 2.4.2]), it follows from (3.6)
and [15, Proposition 2.1.1] that

d(a+ th, A;)

@) dylah) < =

+¢l|h||, Yt > 0 small enough

(thanks to d(x, A;) = 0). Taking limits as ¢ — 0™, one has

d(a+th, A,
(3.8) &5 (a; b) < liming XOF A,

t—0+ t
On the other hand, from the definition of Clarke’s directional derivative, one has

. d(a + th, Az)
lim sup ——=
t—0+ t

This and (3.8) imply that d5, (a; h) = d's (a; h).

% %

Next, we show that for each h € X, one has

S =

(39) ¢ash) = (D (d5, (@ )")"
el

Let h € X and e € (0,3). By Proposition 3.1, there exist & > 0 and (w;);es €

Byp(ry such that whenever i € I, a; € A; N B(a, d2) and aj € Ne(A;, a;) N B+,

one has

|wi]

(3.10) (a7, y—a;) < d(y, A;) + 5

ellz —ail| Vy € B(a,d2).

Take 03 € (0, %) such that 33| |h|| € (0, %). Lett € (0,d3]. We denote a+th by z.
Fix i € I and we consider that z; € B(a, d3||h||) \ 4;. Then d(z, A;) < ||z —a| <
S3||hl. Let v € (max{dfsztﬂ’,ﬁ‘i),g}, 1). By Lemma 2.1, there exist z € d4; and
z* € N.(4;, z) with ||z*|| = 1 such that

(311) 7”275_2H <m1n{<2*7zt_z>7d(zt7‘42)}

Thus,

Iz = all <[z = 2l + [l = af| <

d(z 7Ai
%MthH < by



Linear Regularity for p-Uniformly Subsmooth Sets 343

Note that

03 —t

2 = (%(a + d3h) + a and a+ dsh € B(a, d2).

3 3
By (3.10), one has

. t 53—t .
Yz — 2| < (2 ,zt—z>:5—<z ,(a+ 03h) — z) + 35 (z",a— 2)
3 3
t |t b5 —t
< —d(a+ d3h, 4;) + Jw ‘5(—Ha+ dsh — z|| + 2 lla —z||)
03 2 03
t t 03—t w;
< gd(a + d3h, A;) + \wi\eg 353 Is||h|| + | 5 ‘«stt — 2z
t
< —d(a+03h, Aj) + |wilte|[h|| + el|z — =]|.

03
This implies that

t
(v —e)d(z, A;) < 5—d(x + d3h, A;) + |wilte| ]|
3

Taking limits as v — 1, one has

d(a + th, Az) < 1 d(a + d3h, Az)
t ~1-—c¢ 03

2
5—d(a + d3h, Az) + Q\wz\eHhH
3

9
+ =il

IN

By using Lemma 2.2, there exists M = M (p) > 0 such that for any ¢ € (0, &3],
one has

3 (M)p <M <(53)pz (d(a+ a3, Ai))p+(2eHhH)pZ\wz‘\p>

iel 3 er iel
< o0
since (d(-, A;))ier is of type IP and >, ; |w;|P < 1. This and (3.5) imply that
: d(a+th, A)\" o 1 \P
(A 5 (o)
el el

Hence

S =

&(a:h) = Tim 2O _ (Z (d‘;li(x;h))p>

t—0+ t
- icl

(thanks to ¢(a) = 0). The proof is completed. [ ]
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Let P and @ be metric spaces. Recall that a set-valued mapping F : P — 2€
is lower semicontinuous if, for any =y € P,yo € F(x¢) and any neighborhood V'
of yo, there exists a neighborhood U of x( such that V. N F(z) # () for each z € U.
It is clear that F' : P — 2% is lower semicontinuous if and only if, for each y € Q,
the real-valued function x — d(y, F'(z)) is upper semicontinuous(see [20]).

Proposition 3.3. Let X be a Banach space, I be a metric space and let {4, :
i € I} be a collection of closed sets of X. Suppose that A := ;. A; is nonempty,
i — A; is lower semicontinuous and that {A; : < € I} is p-uniformly subsmooth at
a € A. Then, for each h € X, i — d (a; h) is upper semicontinuous.

Proof.  Since {4; : i € I} is p-uniformly subsmooth at a, (3.5) holds; that is
d%,(a;h) = d'y (a;h) Vh € X.

Let h € X. It suffices to show that for any i, — ig € I, one has

liin sup d;lik (a;h) < d;lio (a; h).
Lete € (0,1). By Proposition 3.1, there exist & € (0,¢) and (w;)ics € By (1 such
that (3.10) holds whenever i € I, a; € A; N B(a, d2) and a} € N.(A;, a;) N Bx-+.
Take 03 € (0,%) such that d3||h|| € (0,%). Lett € (0,85]. Fix iy € I and
consider a + th € B(a, d3]|h||)\A;,. By the computation in the proof of Lemma
3.1, one has

d(a + th, Alk) < 1 d(a + d3h, Azk)
t “1-—¢ 03

9
+ =yl

Noting that ¢ — A; is lower semicontinuous, by [20, Corollary 1.4.17], i — d(a +
dsh, A;) is upper semicontinuous. Then, for any & large enough, one has

d(a + d3h, Azk) < d(a + d3h, Aio) + 5%
This implies that for any & large enough,

d(a + th, Azk) 1 d(a + d3h, Aio)

t S1—<€( 53

(3
+03) + :HhH

Taking limits as e — 0, we have

lim sup d;lik (a;h) < d;lio (a; h).
k—oo
The proof is completed. ]

Next, we give several definitions with respect to weak*- summable family. Read-
ers are invited to see [7] for more details.
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Definition 3.4. Let {«} : ¢ € I} be a family of elementsand {A; : ¢ € I} be a
collection of subsets in X*. We say that

(i) {zF : i € I} is weak*-summable if there exists z* € X™* such that for all

h € X, one has
(@, h) = (2}, h).
iel
We denote it by z* = Y7 ; x7.
(it) {A; -4 € I} isweak*-summable if {«} : i € I} is weak*-summable whenever
{afiel} C X*withzf € A;(Vi e I).
We denote by > 7, A; the set {Z;‘gw;‘ caf € Aji € I}.

If (tiA;)ier is weak*-summable for each (¢;)ic; € I (I) with >, ;17 =1, we
define >°7_,(4;) as

(312) ZTEI(AZ) = U Z:eltiAi'

(t)ier€lf (1), 3 tP=1
ic1

The following lemma provides a characterization for Clarke’s subdifferential of
¢ defined in Lemma 3.1. We will give its proof which goes along the way as [12,
Lemma 3.2] with a minor modification for the sake of completeness.

Lemma 3.2. Let {A; : i € I} be a collection of closed sets of a Banach space
X such that A := [, A; is nonempty. Let a € A and p,q € (1,+00) with
% + % = 1. Suppose that {A4; : i € I} is p-uniformly subsmooth at a and that
d(-, A;)ier is of type [P. Let ¢ be as in Lemma 3.1. Suppose that ¢ is regular at a.
Then
(3.13) dedla) =Y "

iEI(N(Ai7 a) N B)(*).
Proof.  Since ¢ is regular at a, ¢ is locally Lipschitzian around a and
¢°(a;h) = ¢'(a; h) Vh € X.

We denote d(z, A;) by f;(z) for each i € I. We claim that

(3.14) det(a) =Y (0:fi(a)).

We will divide it into three steps to prove (3.14):

Step 1. We show that 7, (9.fi(a)) is well defined.
Applying the proof of Lemma 3.1 and by virtue of [15, Proposition 2.1.2], one

has
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fila;h) >0 and f7(a;h) = max{(x*, h):xz* € ﬁcfi(a)}.

Hence, for any subset J C I, any (4;)ier € I9(I) with >, ;] =1, any €
O.fi(a)(i € I), and any h € X, by Holder inequality,

(B15) Y tilef by < Y iffah) < (YU @HI)T < 60 h),

i€ icJ icJ
(the last inequality is from Lemma 3.1).

Step 2. We prove that > 7, (0. fi(a)) is convex and weak* closed.

It is not hard to verify that >~%_;(0.fi(a)) is convex. It remains to show that it

is weak* closed. To do this, let z* € }°7_,(d.fi(a)) . Then there exist a direct set
A and nets (t;(k))ren, (27 (k))rea(i € I) such that ¢;(k) > 0, . (t:(k))? = 1,
zf (k) € O.fi(a), and

*

(3.16) Z:elti(k)x;‘(k) s

Define g, := (t;(k))icr(Vk € A). Noting that {gx }xea is a net in the unit ball of
19(T), without loss of generality(considering subnet if necessary), we can assume
that g;, weak*-converges to some (\;)icr € 19.(1) and Y, A = 1. Let I :=
{i € I:X\; > 0}. Then I't is at most countable. Noting that liinti(k) =X=0

for each i € I\I™, it follows from (3.15) that

*

Ziel\ﬁ_ti(k)xi (k) — 0.
This and (3.16) imply that

*

(3.17) Z;Hti(k)x;‘(k) gns

Without loss of generality we can assume I+ to be the set N of natural numbers.
Noting that 0. f;(a) is weak* compact and {x}(k)}rea C O.fi(a) for each i € N,
there exists a subnet A; C A such that {z}(k)}rer, Weak*-converges to some
ai € O.f1(a). Thus there exists a subnet Ao C A; such that {z3(k)}ren, Weak*-
converges to some @ € J.f2(a),- - -. By this way, there must exist a subnet A,,; C
A, such that {z7 | (k) }ren, ., Weak*-converges to some a; ; € Ocfni1(a), -+,
and so on. We claim that

(3.18) o = Z:eN)\ia;‘.

To see this, let h € X and £ > 0. By (3.15), there exists ng € N such that

max { ( i o)) ( i (£ (e =R))?) } <e.

S =
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Then, for any n > ng, any (t)ien € I9(N) with 3>, t! = 1 and any z} €
O.fi(a)(i € N), by (3.15), one has

< max {( YU @), (D1 (as —h)]p)%} <e.

i=ng i=ng

o0

> tilaih)

i=n+1

S =

Noting that {t;(k)},_, converges to \; and {z}(k)},_, weak*-converges to a;
for 1 < ¢ <mn, it follows from (3.17) that

n

Z<)‘ia">;7 h> - <II,'*, h>
i=1
This shows that (3.18) holds. Hence =* = Y i . Aiaj € > (9 fi(a)). This

implies that -7, (9. fi(a)) is weak* closed.

<eVn > ng.

Step 3. We prove that ( Y, [f(a; -)]P)% is the support function of the weak*

closed set 7 (Ocfi(a)).
Granting this, it follows from Step 2, Lemma 3.1 and [15, Proposition 2.1.4]

that -7/ (0.fi(a)) = Oc¢(a) since ¢°(a;-) is the support function of the weak*
closed convex set 0.¢(a).
Let h € X. By (3.15), one has

1) sw{@n e Y @)} < (Sl@ny)’
iel

On the other hand, since f; is Lipschitz, it follows from [15, Proposition 2.1.2] that
for each i € I, there exists z} € 0. f;(a) such that

(27, h) = [ (a;h).

Noting that 19(1) is reflexive and (f7(a;h)),., € I°(I) = (19(I))", by James’s
Theorem(cf.[21]), there exists (t;)icr € I9.(I) with 3, ;¢! =1 such that

(Sl mP)? = St h) = (37 nzt.h).

i€l el

S =

Thus (>, 1f7(a; -)]P)% is the support function of Y~%_ /(9. fi(a)).
Next, we prove that

(3.20) d.fi(a) = N(As,a) N Bx- Viel

Fix ¢ € I. Since A; is subsmooth at a, it follows from (2.2) that N.(A;,a) =
N(A;,a). Hence
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Ocfi(a) C Nu(A;,a) N Bx- = N(A;,a) N By« = 0f;(a) C O.f;(a).

This implies that
8cfi(a) = N(AZ, a) N Bxx.
Hence (3.13) holds by (3.14) and (3.20). The proof is completed. ]
For convenience to state the main results in this section, we need some notations.

Let {K; : ¢ € I} be a collection of weak* closed subsets of X* and p € [1, +00).
We define the weak* p-sum of (K;);cr by

p— Zz‘elKi = {Zielx;‘ raf € Ki(Vie D), |ai|lP < +oo} ,

el
provided that for any (z);c; with =7 € K; (i € I) and ), [|2}[|? < +oo there

exists z* € X* such that z* = 7, x7.
Let p € (1,400) and 7 > 0. We call that (K;);c has property (G, 1), if

* D
(n— ZieIKi) N Bx~ C TZieI(Ki N Bx-).
If each K is a cone, it is easy to verify that
* P
(3.21) (G, 7)p = (p— ZieIKi) N Bx- C (0, T]Ziel(m N Bx+).

Under the suitable assumptions, some necessary or/and sufficient conditions for
p-locally linear regularity can be obtained through the following theorems.

Theorem 3.1. Let {4; : i € I} be a collection of closed sets of a Banach
space X such that A := [,.; A; is nonempty. Let a € A and p, q € (1, +00) with
% + % = 1. Suppose that {A; : i € I} is p-uniformly subsmooth on A and that
d(-, A;)ier is of type [P. We consider the following statements :

(i) there exist 71, 6; > 0 such that N.(A,z) = ¢->/.; Nc(A;, ) and the
collection (N (A;, x))icr has property (G, 1), for all z € 9AN B(a, 61);

(ii) the collection {A; : ¢ € I} is p-locally linearly regular at a € A, that is,
there exist 7, r > 0 such that

1
d(z, A) < 7(Y _d(x, A)P)? V€ Bla,r);
el
(iii) there exist 7, § > 0 such that N (A, z) = ¢-Y_1; N(A;, z) and the collection
(N(Aj, x))ics has property (G,7), for all z € AN B(a,d).
Then, (i) implies (ii). Furthermore, we suppose that (>, ;d(, Ai)P)% is
regular at all x € A close to a. Then (ii) implies (iii).

el
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Proof. (i)=(ii): Let € € (0, 4+00) such that 7ie < 1. By Proposition 3.1, there
exist 93 € (0,d1) and (w;)ier € Byp(ry such that whenever i € 1, a; € A;NB(a,d2)
and a € N.(A;,a;) N Bx~, one has
(3.22) (aj,x — a;) < d(z, A;) + |wilel|z — a;|| Yz € B(a,ds).

Let 7 := % and = € B(a,r)\A. Then d(z, A) < ||z —a| < r. Letany v €
(max{ dwd) 7€}, 1). By Lemma 2.1, there exist z € A and z* € N.(A, z) with

r

||z*|| = 1 such that

(3.23) vllz — z|| < min {d(m, A), (" x — z>}
Noting that

|z —al|l < |lz —z| + ||z —al < + 17 < 2r =89,

d(z, A)
Y

there exist (t;);cr € 19(I) with Y-, ;¢! < 1 and x} € Nc(A4;,2) N Bx=(i € I)
such that 2* = 71 37, ;7. It follows from (3.22), (3.23), Holder inequality and
Minkowski inequality that

o=zl <7 tilaf,z—2) <m Y ti(d(z, Ai) + |wilel|z — 2]))

i€l el
1 1

< (32)" (X (s A) + lwilellz - 20)")”

el el . .
< 71<Z (d(z, Ai))P> s Tl(Z \wﬂp) "l — z|le

i€l i€l

1

< 71<Z (d(av7 Ai))p> "+ re|lx — 2|

el

This and d(z, A) < ||z — z|| imply that

A, A) < — (S (d(x, A7) 7

— T1E
v 1 el

Taking limits as v — 1, one has

.
—~
=
=
INA
—_
LS
;j [
Q)
i
/N
.
—~
=
=
N
S ]
N——
D=
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(ii)= (iii): Let ¢(z) := (X Ze] A;)P)». Choose o € (0,r) such that ¢ is

regular at each z € 8Am B(a, Take 5 = 2. Letz € B(a,d) N 0A and z* €

N(A, z)NBx~ = 8d(-, A) (). Then forany e > 0 there exists r; € (0,0 —|lz—al|)
such that

IQ =

(3.24) (¥, z—z) <d(z,A)+ Te||z — z|| Vze€ B(z,r1).
Noting that B(z,r1) C B(a,d) C B(a, o), by (ii), one has

(%, z —z) <TP(2) + Tel|z —z|| Vze Blx,r).
This implies that 2* € 70¢(x) C T8.¢(x)(thanks to ¢(z) = 0). Hence
(3.25) N(A,z)N Bx- C 10.0(x).

Next, we show that

Ocp(x) = (N (AZ z) N Bx~)
(3.26) N zeI g Vx e dAN B(a,d).

N(A,2) = 4 Yles N(Aua) (
Granting this, it follows from (3.21) and (3.25) that (iii) holds. Letxz € 9ANB(a, 9).
It follows from Lemmas 3.1 and 3.2 that

(3.27) Oeip(z) = ZjeI(N(Ai, )N Bx-).

Thus, we only need to show that N (A, z) = ¢- Z:‘EI ( i T).

To do this, let z* € N(A,z)\{0}. Then & € N(A,2) N Bx-. It follows
from (3.25) and (3.27) that there exist (Z)Zg e l+( ) with >°..,;t7 = 1 and
x} € N(A;,z) N Bx-(i € I) such that

*
vt = i |2t - ai

q
S Hm ) -] < eS8 < oo

i€l el

Note that

Th|s implies that =* € ¢->"7; N(A;,z) and consequently N(A,z) = ¢- doiel
N(A;, x) since the trivial inclusion N(A,z) D ¢- el N(A;, z) holds. n
Theorem 3.2. Suppose that X is an Asplund space. Let {4, : i € I} be a
collection of closed sets in X such that A := (,c; A; is nonempty. Let a € A
and p,q € (1,400) with % + % — 1. Suppose that {A; : i € I} is p-uniformly

subsmooth on A , d(-, A;)cy is of type (P and that (>, d(-, Ai)P)% is regular at

all x € 0A close to a. Then the following statements are equivalent:
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(i) there exist 71,8, > 0 such that N(A, z) = ¢-3.% , N(4;, x) and the collec-

el
tion (N (A;, x))ics has property (G, 1), for all 2 € AN B(a, §);

(ii) the collection {A; : ¢ € I} is p-locally linearly regular at a € A, that is,

there exist 7, § > 0 such that

d(z, A) < (Y d(z, A)P)¥ Yz € B(a,d).
el

Combining the proof of Theorem 3.1 with the Asplund space version of Lemma
2.1, one can obtain the proof Theorem 3.2 which will be omitted.
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