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EXISTENCE OF SOLUTIONS OF STRONG VECTOR EQUILIBRIUM
PROBLEMS

Q. H. Ansari, A. P. Farajzadeh and S. Schaible
Abstract. In this paper, we consider strong form of a vector equilibrium prob-
lem and establish some existence results for solutions of such a problem in the
setting of topological vector spaces. We provide several coercivity conditions
under which strong vector equilibrium problem has a solution. Our results
generalize and extend the results of Bianchi and Pini [10] to the topological
vector space setting.

1. INTRODUCTION

Let X be a Hasudorff topological vector space, K a nonempty convex subset
of X and f : K × K → R a real-valued bifunction. The equilibrium problem (in
short, EP) is to find x̄ ∈ K such that

(1) f(x̄, y) ≥ 0, ∀y ∈ K.

It is well known that EP is a unified model of several problems, namely, variational
inequality problem, complementarity problem, fixed point problem, saddle point
problem, Nash equilibrium problem, etc. For further details, we refer to [2, 6, 12,
14-16, 19] and the references therein.

Motivated by the pioneer work of Giannessi [17], many authors extended EP to
the vector case in different ways, see for example [1,3-5,7] and the eferences therein.

Let Y be a topological vector space with its zero element is denoted by 0, C a
closed convex pointed cone in Y and f : K × K → Y a vector-valued bifunction.
The weak vector equilibrium problem (in short, WVEP) is to find x̄ ∈ K such that

(2) f(x̄, y) /∈ −intC, ∀y ∈ K,

where intC �= ∅.
The strong vector equilibrium problem (in short, SVEP) is to find x̄ ∈ K such

that
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(3) f(x̄, y) ∈ C, ∀y ∈ K.

In most the papers appeared in the literature on the different aspects, WVEP
is considered and studied. It is worth to mention that by using the results related
to WVEP and SVEP, we can obtain the corresponding results for weak efficient
solutions and strong efficient solutions of a vector optimization problem. Only a
few papers have appeared on the existence of solutions of SVEP; See for example
[5, 16] and the references therein.

We also consider the following problem, termed as dual strong vector equilib-
rium problem (in short, DSVEP) is closely related to SVEP: Find x̄ ∈ K such that

(4) f(y, x̄) ∈ −C, ∀y ∈ K.

We denote by SK and SD
K the set of all solutions of SVEP and DSVEP, re-

spectively. Aussel and Hadisavvas [8] introduced the concept of local solutions of
variational inequalities. Bianchi and Pini [10] extended this concept of local solu-
tions to EP in the setting of reflexive Banach spaces. It is further studied in [2].
We extend this concept of local solutions for strong vector equilibrium problems in
the setting of topological vector spaces.

The sets of local solutions for SVEP and DSVEP are denoted by SK,loc and
SD

K,loc, respectively, and defined as follows:

SD
K,loc = {x ∈ K : there exists an open neighborhood V of x such that

f(y, x) ∈ −C, ∀y ∈ V ∩ K},

SK,loc = {x ∈ K : there exists an open neighborhood V of x such that

f(x, y) ∈ C, ∀y ∈ V ∩ K}.
Obviously, SD

K ⊆ SD
K,loc and SK ⊆ SK,loc.

The main motivation of this paper is to introduce several coercivity conditions
and to study the existence of solutions for SVEP under these coercivity conditions.
Our results generalize and extend the results in [2, 10] to the topological vector
space setting.

2. PRELIMINARIES AND BASIC RESULTS

The following concept of upper sign continuity is vector version of the the upper
sign continuity introduced by Bianchi and Pini [10] which extends the earlier notion
in the framework of variational inequalities in [18].

Definition 1. Let y ∈ K be any fixed element. A function x → f(x, y) is said
to be upper sign continuous if for every x ∈ K,

f(u, y) ∈ C, ∀u ∈ ]x, y[ ⇒ f(x, y) ∈ C,

where ]x, y[ denotes the open line segment joining x and y.
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If f is hemicontinuous, that is, the restriction of f to line segments in K is
continuous, then f is upper sign continuous. Even this fact is true when f is upper
hemicontinuous.

Definition 2. A bifunction f : K × K → Y is said to be

(i) C-pseudomonotone if ∀x, y ∈ K,
f(x, y) ∈ Y \ (−C) ⇒ f(y, x) ∈ −C \ {0};

(ii) C-quasimonotone if ∀x, y ∈ K,
f(x, y) ∈ Y \ (−C) ⇒ f(y, x) ∈ −C;

(iii) C-properly quasimonotone if for any finite set {x1, . . . , xn} ⊆ K and for all
x ∈ co{x1, . . . , xn}, there exists i ∈ {1, 2, . . . , n} such that f(xi, x) ∈ −C,
where co{x1, . . . , xn} denotes the convex hull of {x1, . . . , xn}.

It is clear from the definition that C-pseudomonotonicity of f implies C-
quasimonotonicity. But in general there is no relationship between C-properly
quasimonotonicity and quasimonotonicity or pseudomonotonicity.

The following proposition is a vector version of Proposition 1 in [9]. It provides
a criteria for the C-proper quasimonotonicity of a bifunction.

Proposition 1. Let f : K × K → Y be a vector-valued bifunction such that
f(x, x) = 0 ∀x ∈ K. If one of the following conditions holds:

(i) the set {x ∈ K : f(x, y) ∈ Y \(−C)} is convex, or
(ii) the set {y : f(x, y) ∈ −C\{0}} is convex and f is C-pseudomonotone,

then, f is C-properly quasimonotone.

Proof. Suppose that (i) holds and assume contrary that f is not C-pseudo-
monotone. Then there exist a finite set {x1, . . . , xn} ⊆ K and x̃∈co{x1, x2, . . . , xn}
such that f(xi, x̃)∈Y \(−C), ∀i = 1, 2, . . . , n. Therefore, by (i) we have f(x̃, x̃) ∈
Y \(−C) and so in particular f(x̃, x̃) �= 0 which is a contradiction with the assump-
tion f(x, x) = 0, ∀x ∈ K. Hence f is C-properly quasimonotone.

Let (ii) be valid and on the contrary there exist a finite set {x1, . . . , xn} ⊆ K and
x̃ ∈ co{x1, x2, . . . , xn} such that f(xi, x̃) ∈ Y \(−C), ∀i = 1, 2, . . . , n. Because
f is C-pseudomonotone, we have f(x̃, xi) ∈ −C\{0} and so from (ii) we deduce
f(x̃, x̃) ∈ −C\{0} which is a contradiction of our assumption that f(x, x) = 0,
∀x ∈ K. Then f is C-properly quasimonotone.

Remark 1.
(a) For each fixed x ∈ K, if the mapping y 
→ f(x, y) is C-convex, that is,

(5) tf(x, y)+ (1− t)f(x, z)− f(x, ty + (1− t)z) ∈ C, ∀y, z ∈ K, ∀t ∈ [0, 1],
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then set {y : f(x, y) ∈ −C\{0}} is convex, ∀x ∈ K. Indeed, let λ ∈ ]0, 1[
and

f(x, yi) ∈ −C\{0}, ∀i = 1, 2,

and so since C is a pointed convex cone, we have

(6) λf(x, y1) + (1− λ)f(x, y2) ∈ −C\{0}.
From (5) and (6), we obtain

f(x, ty + (1− t)z) ∈ C\{0} + C ⊆ C\{0}.
(b) If Y \(−C) is convex and f is concave in the first variable, then (i) of

Proposition 1 holds. The proof is straight forward by using

Y \(−C) + C ⊆ Y \(−C).

The following lemma plays a key role in this section and it provides a relationship
between the solution sets SD

K,loc and SK . Furthermore it is a vector version of
Lemma 2.1 in [10] and moreover the strong condition quasiconvexity in the second
variable for f could omit. For extending the quasiconvexity for vector valued
functions we need our space be a topological vector space with a structure as a
lattice.

Lemma 1. Let K be a nonempty convex subset of X and f : K ×K → Y be
a vector-valued bifunction such that the following conditions hold:

(i) f(x, x) ∈ C ∀x ∈ K;
(ii) For each fixed y ∈ K, the mapping x 
→ f(x, y) is upper sign continuous;
(iii) If f(x, y) ∈ Y \C and f(x, z) ∈ −C, then f(x, u) ∈ Y \C, ∀u ∈ ]y, z[.

Then, SD
K,loc ⊆ SK .

Proof. Let z ∈ SD
K,loc. In order to show that z ∈ SK , we assume contrary that

there exists y ∈ K such that

(7) f(z, y) ∈ Y \C.

From the definition of SD
K,loc, there exists an open neighborhood V of z such

that f(v, z) ∈ −C for all v ∈ K ∩ V . Since V − z is a neighborhood of 0,
there exists t0 ∈ ]0, 1[ such that t(y − z) ∈ V − z for all 0 < t ≤ t0. Let
ȳ = z + t0(y − z) and yt = (1− t)z + tȳ ∈ [z, ȳ] for t ∈ [0, 1]. Then yt ∈ K ∩ V ,
since yt = (1−t)z+tz+t t0(y−z) = z+t t0(y−z) and t t0(y−z) ∈ V −z. Hence
(7) implies that f(yt, z) ∈ −C and by condition (i), f(z, z) = 0. Now we will
show that f(u, ȳ) ∈ C, ∀u ∈ ]z, ȳ[. Indeed, if f(u, ȳ) ∈ Y \C for some u ∈ ]z, ȳ[,
then as f(u, z) ∈ −C, we deduce from (iii) that f(u, v) ∈ Y \C, ∀v ∈]z, ȳ[ and in
particular f(u, u) = 0 ∈ Y \C. Hence 0 /∈ C which contradicts the fact that 0 ∈ C
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since C is a pointed cone. Therefore, f(u, ȳ) ∈ C for all u ∈ ]z, ȳ[. Thus by (ii),
we have

(8) f(z, ȳ) ∈ C.

Since f(z, z) = 0 and f(z, y) ∈ Y \C, it follows from (iii) that f(z, y) ∈ Y \C
which contradicts (8).

The next example shows that condition (iii) of Lemma 1 is essential.

Example 1. Let X = Y = R, K = [−1, 1], C = [0,∞) and f : [−1, 1] ×
[−1, 1] → R be defined as

f(x, y) =
{

0 if (x, y) ∈ {0} × [−1
2 , 1

2

]
or x = y,

−1 otherwise.

It is clear that f(x, x) = 0, ∀x ∈ K and if f(u, y) ≥ 0, ∀u ∈ ]x, y[, then u = 0,
∀u ∈ ]x, y[, which is impossible. This shows that the mapping x → f(x, y) is
upper sign continuous for each fixed y ∈ K. Since f

(
1
4 , 1

3

)
< 0 and f

(
3
4 , 1

3

)
< 0,

we can easily see that f
(
u, 1

3

)
< 0 does not hold ∀u ∈ ]14 , 3

4 [, for example, take
u = 1

3 ∈] 14 , 3
4 [ and so the example does not fulfill the condition (iii) of Lemma 1.

Moreover, the result in Lemma 1 is not true for this example, since x0 = 0 ∈ S[−1
2

, 1
2 ]

and SK = ∅.

The following illustration say us it is possible that S D
K,loc be singleton while SK

an uncountable set.

Example 2. Let X = R, K = [0, 1], C = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0},

Y = R
2, and f : K → R

2 be defined by f(x, y) = (x, y).

It is easy to verify that f satisfies all the assumptions of Lemma 1 and SD
K,loc =

{0}, SK = K.

Remark 2.

(a) If f is C-convex in the second variable, then condition (iii) of Lemma 1 holds.

To see this, let f(x, y) ∈ Y \C and f(x, z) ∈ −C. Since Y \C and −C
are cone, we have tf(x, u) ∈ Y \C and (1 − t)f(x, z) ∈ −C and also from
(Y \C) − C ⊆ Y \C, we get

(9) tf(x, u) + (1− t)f(x, z) ∈ Y \C.

Now by (8), (9) and (Y \C) − C ⊆ Y \C, we obtain
f(x, ty + (1− t)z) ∈ Y \C, ∀t ∈ [0, 1].

This shows that condition (iii) of Lemma 1 holds.
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(b) Lemma 1 improves and extends Lemma 2.4 in [19] and Lemma 2.1 in [10]
to vector-valued bifunctions.

(c) If for all x, y ∈ K, f(x, y) ∈ Y \(−C\{0}) implies f(y, x) ∈ −C, then
SK ⊆ SD

K . Therefore, under this assumption, we have SD
K = SD

K,loc =
SK . Thus, if Y = R and C = [0,∞), we deduce Proposition 2.5 in [19].
Moreover, if f is C− quasimonotone and f(x, y) = 0 implies f(y, x) = 0,
then SK ⊆ SD

K . Hence we obtain the quasimonotone version of Proposition
2.5 in [19] for the vector case.

Throughout the paper, for a nonempty set A, we denote by 2A (respectively,
F (A)) the family of all (respectively, nonempty finite) subsets of A. If A is a
nonempty subset of a topological space, A and int A denote the closure and interior
of A, respectively.

Let K be a convex subset of a vector space X . Then a mapping F : K → 2X

is called a KKM mapping if for each nonempty finite subset A of K, coA ⊆ F (A),
where coA denotes the convex hull of A and F (A) =

⋃{F (x) : x ∈ A}.
The following lemma will be used in the sequel which is a special case of

Fan-KKM principle [13].

Lemma 2. Let X be a nonempty subset of a topological vector space E and
F : X → 2E be a KKM mapping with closed values. Assume that there exists a
nonempty compact convex subset B of X such that

⋂
x∈B

F (x) is compact. Then
⋂

x∈X

F (x) �= ∅.

We establish the following existence result for a solution of DSVEP.

Theorem 1. Let f : K × K → Y be a bifunction with f(x, x) = 0, ∀x ∈ K.
Assume that the following conditions hold:

(i) For each A ∈ F(K) and ∀x ∈ coA, there exists y ∈ A such that f(y, x) ∈
−C;

(ii) For all x ∈ K, the set {y ∈ K : f(x, y) ∈ −C} is closed in K;
(iii) There exist a nonempty compact subset D and a nonempty compact convex

subset B of K such that ∀y ∈ K\D, there exists x ∈ B such that f(x, y) ∈
Y \ − C.

Then, the solution set SD
K of DSVEP is nonempty and compact.

Proof. For each x ∈ K, define Γ : K → 2K as

Γ(x) = {y ∈ K : f(x, y) ∈ −C}.
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Then, Γ is a KKM mapping. Indeed, let A ∈ F(K) and x ∈ coA. Then by (i), there
is y ∈ A such that f(y, x) ∈ −C and so x ∈ Γ(y). This shows that x ∈ coA\A.
From f(x, x) = 0, we have x ∈ Γ(x). Consequently, coA ⊆ ∪x∈AΓ(x). So Γ is a
KKM mapping. It is obvious that the solution set SD

K equals to the set
⋂

x∈K Γ(x).
Since Γ is a KKM mapping and B is compact and convex then by Lemma 2 we
deduce that

⋂
x∈B Γ(x) is nonempty and by (ii) and (iii) it is a closed subset of D

and so is compact. Now Lemma 2 entails
SK =

⋂
x∈K

Γ(x) �= ∅.

Furthermore the following inclusions
SK =

⋂
x∈K

Γ(x) ⊆
⋂

x∈K

Γ(x) ⊆
⋂
x∈B

Γ(x) ⊂ D

and (ii) imply that SK is a compact subset of K .
The following lemma provides a relationship among C-quasimonotonicity, C-

properly quasimonotone and SD
K,loc. Also it is a vector version of Lemma 4.2 of

[10] without assuming f is quasiconvex in the second variable.

Lemma 3. Let f : K × K → Y be C-quasimonotone bifunction. If for each
x ∈ K, the set {y ∈ K : f(x, y) ∈ −C} is closed in K and convex, then either f

is C-properly quasimonotone or S D
K,loc �= ∅.

Proof. If f is not C-properly quasimonotone then there exist a finite set
{x1, . . . , xn} ⊆ K and x̄ ∈ co{x1, x2, . . . , xn} such that f(xi, x̄) ∈ Y \(−C),
∀i = 1, 2, . . . , n. Since the set Ai = {y ∈ K : f(xi, y) ∈ −C} is closed in K,
∀i = 1, 2, . . . , n and x̄ �∈ ⋃n

i=1 Ai, there exists an open neighborhood V of x̄ such
that

f(xi, y) ∈ Y \(−C), ∀y ∈ K ∩ V, i = 1, 2, . . . , n,

and so by C-quasimonotonicity of f we have

f(y, xi) ∈ −C, ∀i = 1, 2, . . . , n and y ∈ K ∩ V,

and so by our assumption, that is, the set {y ∈ K : f(x, y) ∈ −C} is convex,
∀x ∈ K, we get

f(y, x̄) ∈ −C, ∀y ∈ K ∩ V.

Therefore, x̄ ∈ SD
K,loc.

Now we establish the following existence results for a solution of SVEP with
or without C-quasimonotonicity assumption.

Proposition 2. Let f : K×K → Y be a C-quasimonotone bifunction satisfying
the conditions of Lemmas 1 and 3 and condition (iii) of Theorem 1. Then S K �= ∅.

Proof. If f is C-properly quasimonotone, then the result deduces from Theorem
1 through Lemma 1. Otherwise, we obtain the result from Lemmas 3 and 1.
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Proposition 3. Let K be a nonempty convex subset of X . Assume that f :
K × K → Y satisfies condition (iii) of Lemma 1. Let x0 ∈ K be a local solution
of SVEP in a neighborhood V of x 0. If there exists ȳ ∈ K ∩ int V such that
f(x0, ȳ) ∈ −C, then x0 ∈ SK .

Proof. Assume on contrary that there exists z ∈ K such that f(x0, z) ∈ Y \C.
Then, by condition (iii) of Lemma 1, note that f(x0, ȳ) ∈ −C, we have

f(x0, u) ∈ Y \C, ∀u ∈ ]ȳ, z[,

and so this is a contradiction by using ȳ ∈ K ∩ intV and x0 is a local solution of
SVEP in the neighborhood V of x0. This completes the proof.

3. EXISTENCE RESULTS FOR SVEP IN LOCALLY BOUNDED TOPOLOGICAL

VECTOR SPACES

Recall the following definition of a locally bounded topological vector space.
A topological vector space X is said to be locally bounded if there is a bounded

neighborhood of 0, (see [20, pp. 156]).
Trivially, every normed space is locally bounded. A known example of locally

bounded topological vector space is Lp for 0 < p < 1 which is not normable (see
[20]).

Throughout this section, we assume that X is a real Hausdorff locally bounded
topological vector space, K is a nonempty unbounded convex subset of X and
f : K × K → Y is a vector-valued bifunction.

Condition C. There exists an open bounded neighborhood V of 0 such that

∀x ∈ K\V , ∃y ∈ K ∩ V satisfying f(x, y) ∈ Y \C.

This coercivity condition was considered in [2] for the scalar-valued bifunctions
which extends the coercivity condition considered in [10] in the setting of reflexive
Banach spaces.

The next result extends Proposition 4.1 in [2] and Proposition 2.2 in [10] and
it provides a necessary condition for boundedness of the solution set of SVEP.

Proposition 4. Let f : K × K → Y be a vector-valued bifunction such the
following conditions hold:

(i) f(x, x) = 0, ∀x ∈ K;
(ii) For each fixed y ∈ K, the set {x ∈ K : f(x, y) ∈ C} is convex;
(iii) If f(x, y) ∈ Y \C and f(x, z) ∈ −C, then f(x, u) ∈ Y \C, ∀u ∈ ]y, z[.

If the solution set SK of SVEP is nonempty and bounded, then Condition C holds.
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Proof. Suppose that the Condition C does not hold. Let V be an arbitrary open
bounded, balanced, neighborhood of 0 and x0 ∈ SK . Consider positive integer n0

such that x0 ∈ n0V . Let n > n0 and Wn = V + V + · · ·+ V︸ ︷︷ ︸
n

. Since Condition C

is not true and Wn is bounded, there exists xn ∈ K \ Wn such that

(10) f(xn, y) ∈ C, ∀y ∈ K ∩ Wn.

Since (n − 1)V ⊆ Wn and xn /∈ Wn, we have

(11) t0 = sup{t ∈ [0, 1] : x0 + t(xn − x0) ∈ (n − 1)V } < 1.

Therefore, for all positive number t′ with t0 + t′ < 1, we deduce that

(12) zn = x0 + (t0 + t′)(xn − x0) /∈ (n − 1)V.

We claim that zn ∈ Wn ∩ K. Indeed, we can choose small positive number t such
that t(xn−x0) ∈ V and t < 2(1−t0). By (11), there exists t1 such that t0− t

2 < t1
and

zn = x0 + (t1 + t)(xn − x0) ∈ (n − 1)V + V ⊆ Wn.

Since x0 ∈ SK , the convexity of the set {x ∈ K : f(x, y) ∈ C} and (10) imply
that

(13) f(zn, y) ∈ C, ∀y ∈ K ∩ Wn.

By (13) and Proposition 3, we obtain zn ∈ SK . Hence, the sequence {zn} is
unbounded, which contradicts the boundedness of SK .

Now we establish necessary and sufficient conditions for non-emptiness of the
solution set of SVEP.

Theorem 2. Let f : K × K → Y be a C-pseudomonotone bifunction such
that the following conditions hold:

(i) For all x ∈ K, f(x, x) = 0;
(ii) For all y ∈ K, the mapping x 
→ f(x, y) is upper sign continuous;
(iii) For each x ∈ K, the set {y ∈ K : f(x, y) ∈ −C} is convex and closed in

K;
(iv) If f(x, y) ∈ Y \C and f(x, z) ∈ −C, then f(x, u) ∈ Y \C, ∀u ∈ ]y, z[.

If SK is nonempty and bounded, then Condition C holds. Moreover, if Condition
C holds with bounded open neighborhood V and f |co(K ∩ W ), the restriction of
f to co(K ∩ W ), satisfies conditions (i) and (iii) of Theorem 1 for every bounded
neighborhood W with int W ⊇ V . Then, SK is nonempty compact and convex.
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Proof. Suppose that the Condition C does not hold. Let V be a bounded open
balanced neighborhood of 0, x0 ∈ SK and n0 positive integer such that x0 ∈ n0V .
Let n > n0 and Wn = V + V + · · ·+ V︸ ︷︷ ︸

n

. Since Condition C does not hold and

Wn is a bounded neighborhood of 0, there exists xn ∈ K \ Wn such that

(14) f(xn, y) ∈ C, ∀y ∈ K ∩ Wn.

Since C is pointed, we have C ∩ (−C\{0}) = ∅ and therefore

(15) f(xn, y) /∈ −C\{0}, ∀y ∈ K ∩ Wn.

The C-pseudomonotonicity of f implies that

(16) f(y, xn) ∈ −C, ∀y ∈ K ∩ Wn.

Since f is C-psudomonotone and x0 ∈ SK , we have

(17) f(y, x0) ∈ −C, ∀y ∈ K.

Since (n − 1)V ⊆ Wn and xn /∈ Wn, we have

t0 = sup{t ∈ [0, 1] : x0 + t(xn − x0) ∈ (n − 1)V } < 1.

Therefore, for all positive number t′ such that t0 + t′ < 1, we deduce

zn = x0 + (t0 + t′)(xn − x0) /∈ (n − 1)V.

By using (16) and (17), we obtain

f(y, zn) ∈ −C, ∀y ∈ Wn ∩ K,

as the set {y ∈ K : f(x, y) ∈ −C} is convex. Consequently, zn ∈ SD
K,loc.

Therefore, by Lemma 1, we have zn ∈ SK . Hence, the sequence {zn} is unbounded,
which contradicts the boundedness of SK .

Conversely, let Condition C hold with an open neighborhood V and W be an
open bounded balanced neighborhood of 0 containing V . By our assumptions, the
mapping f |co(K∩W ) satisfies all the conditions of Theorem 1. Then, by Theorem
1 there exists x̄ ∈ Sco(K∩W ). If x̄ is an element of W , then by Proposition 3
x̄ ∈ SK . Otherwise, by Condition C, there exists y ∈ V such that f(x̄, y) ∈ Y \C.
Since f(x̄, x̄) = 0 ∈ −C, by condition (iv), we have, f(x̄, u) ∈ Y \C for all
u ∈ ]x̄, y[ which contradicts with x̄ ∈ Sco(K∩W ). Therefore, x̄ ∈ SK .

Now we show that SK is a compact subset of K . To see this, let xα ∈ SK

and xα → x. Then, f(xα, y) ∈ C for all y ∈ K and all α. Since C is pointed,
we have by f(xα, y) ∈ Y \(C\{0}), ∀y ∈ K and ∀α. The C-pseudomonotonicity
of f implies that f(y, xα) ∈ −C, ∀y ∈ K and ∀α. Since xα → x and the set
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{y ∈ K : f(x, y) ∈ −C} is closed for all x ∈ K in K, we get f(y, x) ∈ C

for all y ∈ K. This means that x ∈ SD
K and by Lemma 1, we have x ∈ SK

as SD
K ⊆ SD

K,loc. Consequently, SK is closed in K . It follows from condition
(iii) of Theorem 1 that SK is a subset of the compact subset D of K. Moreover,
C-pseudomonotonicity of f and convexity of the set {y ∈ K : f(x, y) ∈ −C},
∀x ∈ K imply that SK is convex.

Remark 3. Theorem 2 is the vector version of Theorem 4.1 in [2] which
extends Theorem 3.7 in [14].

Condition C entails the boundedness of the solution set but the following coer-
civity condition allows that the solution set to be unbounded.

Condition 1. There exists an open bounded neighborhood V of 0 such that ∀x ∈
K\V and for all W ∈ B with W ⊇ V containing x, there exists y ∈ int W ∩ K

satisfying f(x, y) ∈ −C, where B is a base at 0 consists of neighborhoods of 0 for
topological vector space X .

Theorem 3. Let f : K × K → Y be a C-pseudomonotone bifunction such
that f(x, x) = 0, ∀x ∈ K. If SK is nonempty, then Condition C1 holds. Moreover,
if f satisfies conditions (ii) and (iii) of Lemma 1, Condition C1 with bounded open
neighborhood V of 0, and conditions (i)-(iii) of Theorem 1 hold for f |co(K ∩ W )
and for every W ∈ B with int W ⊇ V , then SK is nonempty.

Proof. Suppose that x0 ∈ SK . Then f(x0, y) ∈ C for all y ∈ K . Since C is
pointed, we have f(x0, y) ∈ Y \(−C\{0}), ∀y ∈ K . The C-pseudomonotonicity
of f implies that f(y, x0) ∈ −C, ∀y ∈ K . Then, Condition C1 trivially holds for
y = x0 and for every x ∈ K\V , where V is an arbitrary bounded open neighborhood
of 0 such that x0 ∈ V.

To see the converse, let W ∈ B. By Theorem 1 there exists x̄ ∈ Sco(K∩W ).
In the case that x̄ ∈ V , by our assumption V ⊂ intW and Proposition 3, we
obtain x̄ ∈ SK . If x �∈ V , by Condition C1, there exist y ∈ intW ∩ K such that
f(x̄, y) ∈ −C. Proposition 3 implies that x̄ ∈ SK .

We deal with the C-quasimonotone bifunctions and establish the following ex-
istence results for a solution of SVEP in the presence of Conditions C and C1,
respectively. The first theorem is a vector version of Theorem 4.1 in [10].

Theorem 4. Let f : K ×K → Y be a C-quasimonotone bifunction satisfying
the conditions of Lemma 1 and for each x ∈ K , the set {y ∈ K : f(x, y) ∈ −C}
is closed and convex. If the set SK is bounded and SD

K nonempty, then Condition
C holds. Moreover, if f satisfies in Condition C with an open bounded balanced
neighborhood V of 0, and the condition (iii) of Theorem 1 for f |co(K ∩W ) holds
for every W ∈ B with int W ⊇ V . Then, SK is nonempty.
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Proof. There exists an integer n0 > 1 such that the set SK is a subset of
K ∩ (n0 − 1)V , where V is a bounded open balanced neighborhood of 0. Assume
that the Condition C does not hold. Then, for every n > n0, there exists xn ∈
K\K ∩ Wn such that

(18) f(xn, y) ∈ C, ∀y ∈ K ∩ Wn.

where Wn = V + V + · · ·+ V︸ ︷︷ ︸
n

.

We show that f(xn, y) ∈ C\{0} whenever y ∈ K ∩ Wn. Indeed, assume
that f(xn, y) = 0 for all y. By (18), f(xn, y) ∈ C. Let z ∈ K\Wn such that
f(xn, z) ∈ Y \C. From assumption (iii) of Lemma 1, we obtain

f(xn, (1− t)y + tz)) ∈ Y \C, ∀t ∈ ]0, 1[.

Using (1 − t)y + tz → y if t → 0+ and y ∈ K ∩ Wn, there exists t (small
enough) such that (1− t)y + tz ∈ Wn, which is a contradiction of (18). Therefore,
f(xn, y) ∈ C\{0}, ∀y ∈ K ∩ Wn. Since P is pointed, f(xn, y) ∈ Y \ − C,
∀y ∈ K ∩ Wn. Thus by C-quasimonotonicity of f we have,

(19) f(y, xn) ∈ −C, ∀y ∈ K ∩ Wn.

Let x0 be a point in SD
K . It follows from x0 ∈ (n − 1)V and xn ∈ K\Wn (for n

sufficiently large) that there exists a positive number t ∈ ]0, 1[ such that

zn = (1− t)xn + tx0 /∈ (n − 1)V, ∀zn ∈ Wn ∩ K.

From (18), x0 ∈ SD
K and the convexity of the set {y ∈ K : f(x, y) ∈ −C}, we

have

(20) f(y, zn) ∈ −C, ∀y ∈ K ∩ Wn.

Hence, zn ∈ SD
K,loc and so by Lemma 1, zn ∈ SK . Therefore, the sequence {zn}

is unbounded which contradicts the boundedness of SK .
For the second part, if f is C−properly quasimonotone, we get the result arguing

as in proof of the converse part of Theorem 2. If f is not properly quasimonotone,
from Lemma 3, SD

K,loc �= ∅ and so by Lemma 1, SK �= ∅.

The following theorem is vector version of Theorem 4.4 in [2] and Theorem 4.2
of [10].

Theorem 5. Let f : K × K → Y be a C-quasimonotone bifunction. If S D
K is

nonempty, then the Condition C1 holds. Conversely, if f satisfies the conditions of
Lemmas 1, 3 and Condition C1 for a bounded neighborhood V of 0 and moreover
condition (iii) of Theorem 1 for f |co(K∩W ) holds for every bounded neighborhood
W with int W ⊇ V , then SK is nonempty.
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Proof. We only prove the converse part. For this, if f is C-properly quasi-
monotone, we get SK �= ∅, by arguing as in Theorem 3. If f is not C-properly
quasimonotone, then form Lemma 3, we have SD

K,loc �= ∅ and so by Lemma 1,
SK �= ∅.
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