GLOBAL EXISTENCE OF SOLUTION TO A NONLOCAL PARABOLIC PROBLEM MODELING LINEAR FRICTION WELDING

Jong-Shenq Guo, Yung-Jen Lin Guo* and Bei Hu

Abstract

We study a nonlocal parabolic problem airing in the modeling of linear friction welding. Using some a priori estimates, we derive the global in time existence of solution of this nonlocal problem.

1. Introduction

In this paper, we study the following nonlocal parabolic problem:

$$
\begin{cases}u_{t}=u_{x x}-g(t) u^{-p}(x, t), & 0<x<1, t>0 \tag{1.1}\\ u_{x}(0, t)=0, \quad u(1, t)=1, & t>0 \\ u(x, 0)=u_{0}(x), & 0 \leq x \leq 1\end{cases}
$$

where $\lambda>0, p>1, u_{0}(x)$ is a smooth function such that $0<u_{0}(x) \leq 1$ for all $x \in[0,1], u_{0}^{\prime}(x)>0$ for all $x \in(0,1], u_{0}^{\prime}(0)=0, u_{0}(1)=1$, and

$$
g(t):=\lambda\left(\int_{0}^{1} u^{-p}(x, t) d x\right)^{-1-1 / p}
$$

Under the above assumption it is clear that $u_{x}(x, t)>0$ for $x \in(0,1]$. Also, it is clear that the solution exists and is unique as long as $u(0, t)$ remains positive. Assuming $[0, T)$ is the maximal existence interval, then either $\liminf _{t \rightarrow T-} u(0, t)=$ 0 , or $T=\infty$.

Received October 5, 2010, accepted November 6, 2010.

Communicated by Jen-Chih Yao.
2010 Mathematics Subject Classification: Primary 35K20; Secondary 35K55.
Key words and phrases: Linear friction welding, Nonlocal, Global existence.
The second author was partially supported by the National Science Council of the Republic of China under the grant NSC 98-2115-M-003-008.
*Corresponding author.

The problem (1.1) arises in the study of linear friction welding for a hard material. The physical model is given by

$$
\begin{align*}
& u_{t}=u_{x x}-\left(\int_{0}^{\infty} u^{-p}(x, t) d x\right)^{-1-1 / p} u^{-p}, \quad 0<x<\infty, t>0 \tag{1.2}\\
& u_{x}(0, t)=0, \quad u_{x}(\infty, t)=1, \quad t>0 \tag{1.3}\\
& u(x, 0)=u_{0}(x), \quad x \geq 0 \tag{1.4}
\end{align*}
$$

In the physical model, the parameter p is close to 4 (cf. [6] and references therein). For some related works on nonlocal parabolic problems, we also refer the reader to [1-6].

In order to understand the model (1.2)-(1.4), it is proposed in [6] the following approximated problem:

$$
\begin{align*}
& u_{t}=u_{x x}-\left(\int_{0}^{K} u^{-p}(x, t) d x\right)^{-1-1 / p} u^{-p}, \quad 0<x<K, t>0 \tag{1.5}\\
& u_{x}(0, t)=0, \quad u(K, t)=K, \quad t>0 \tag{1.6}\\
& u(x, 0)=u_{0}(x), \quad 0 \leq x \leq K \tag{1.7}
\end{align*}
$$

where K is any positive constant. Then, by a suitable re-scaling, (1.5)-(1.7) is reduced to the problem (1.1) with $\lambda:=\lambda(K):=K^{1-1 / p}$.

The steady states of (1.1) has been studied in [5]. The main purpose of this paper is to answer the question raised in [5], namely, whether the solution of (1.1) exists globally (in time). In [6], numerical simulations indicate that the solution of (1.1) exists globally. The main purpose of this paper is to prove this result rigorously as follows.

Theorem 1. The solution of (1.1) exists for all time $0<t<\infty$, and there exists a positive constant c_{2} such that $c_{2} \leq u(x, t) \leq 1$ for all $0 \leq x \leq 1,0<t<\infty$.

The details of proof of Theorem 1 is given in the next section.

2. Proof of Main Theorem

The proof of Theorem 1 is divided into the following lemmas. In this section, we shall let u be the solution of (1.1) with the maximal existence time interval $[0, T)$ for some $T \leq \infty$.

Lemma 2.1. There exist positive constants η and C^{*}, independent of T, such that

$$
\begin{equation*}
g(t)<C^{*} u^{p+\eta}(0, t) \quad \text { for } 0<t<T \tag{2.1}
\end{equation*}
$$

Proof. Since $p>1$, we can choose $\alpha \in(0,1)$ such that

$$
\begin{equation*}
\frac{p+1}{(1+\alpha) p}<1 . \tag{2.2}
\end{equation*}
$$

We take

$$
\eta=1-\frac{p+1}{(1+\alpha) p} .
$$

By parabolic estimates, for any $T_{1}<T$,

$$
\begin{equation*}
\|u\|_{C^{1+\alpha,(1+\alpha) / 2}\left([0,1] \times\left[0, T_{1}\right]\right)} \leq C_{\alpha} \sup _{0 \leq x \leq 1,0 \leq t \leq T_{1}} g(t) u^{-p}(x, t), \tag{2.3}
\end{equation*}
$$

where the constant C_{α} is independent of T_{1} and T. In view of (2.2), we can choose C^{*} to be large enough so that

$$
\lambda \cdot 2^{1+1 / p}\left[\frac{C_{\alpha} C^{*}}{1+\alpha}\right]^{\frac{p+1}{(1+\alpha) p}}<C^{*}, \quad g(0)<C^{*} u_{0}^{p+\eta}(0)
$$

With our choice of $C^{*},(2.1)$ is clearly valid for $t=0$. If (2.1) is not valid, then there must be a $T_{1}<T$ such that

$$
\begin{equation*}
g(t)<C^{*} u^{p+\eta}(0, t) \quad \text { for } 0<t<T_{1}, \quad g\left(T_{1}\right)=C^{*} u^{p+\eta}\left(0, T_{1}\right) \tag{2.4}
\end{equation*}
$$

Using this in (2.3) we find that

$$
\|u\|_{C^{1+\alpha,(1+\alpha) / 2}\left([0,1] \times\left[0, T_{1}\right]\right)} \leq C_{\alpha} C^{*} .
$$

In particular,

$$
0 \leq u_{x}(x, t)=u_{x}(x, t)-u_{x}(x, 0) \leq C_{\alpha} C^{*} x^{\alpha}, \quad 0 \leq x \leq 1,0 \leq t \leq T_{1}
$$

It follows that, for $0 \leq x \leq 1,0 \leq t \leq T_{1}$,

$$
u(x, t) \leq u(0, t)+\frac{C_{\alpha} C^{*}}{1+\alpha} x^{1+\alpha} \leq 2 u(0, t) \quad \text { for } 0 \leq x \leq \bar{x}:=\left[\frac{(1+\alpha) u(0, t)}{C_{\alpha} C^{*}}\right]^{1 /(1+\alpha)} .
$$

Thus, for $0 \leq t \leq T_{1}$,

$$
\int_{0}^{1} u^{-p}(x, t) d x \geq \int_{0}^{\bar{x}} 2^{-p} u^{-p}(0, t) d x=2^{-p}\left[\frac{(1+\alpha)}{C_{\alpha} C^{*}}\right]^{1 /(1+\alpha)}[u(0, t)]^{-p+1 /(1+\alpha)}
$$

which implies that, for $0 \leq t \leq T_{1}$,

$$
g(t) \leq \lambda 2^{1+1 / p}\left[\frac{C_{\alpha} C^{*}}{(1+\alpha)}\right]^{(p+1) /[p(1+\alpha)]} u^{p+\eta}(0, t)<C^{*} u^{p+\eta}(0, t)
$$

This is a contradiction to (2.4). Hence the lemma follows.

Lemma 2.2. There exists a positive constant c_{0}, independent of T, such that

$$
\begin{equation*}
u(0, t)<1-c_{0} \quad \text { for } \quad 0 \leq t<T \tag{2.5}
\end{equation*}
$$

Proof. We take positive constants c_{1} and c_{2} such that

$$
u_{0}(0)<c_{1}<c_{2}<1
$$

In view of (2.3), if $u\left(0, t_{1}\right)=c_{1}$ and $u\left(0, t_{2}\right) \geq c_{2}$, then

$$
\begin{equation*}
\left|t_{1}-t_{2}\right| \geq \gamma:=\left[\frac{c_{2}-c_{1}}{C_{\alpha} C^{*}}\right]^{2 /(1+\alpha)} \tag{2.6}
\end{equation*}
$$

Let φ be the solution of

$$
\begin{cases}\varphi_{t}=\varphi_{x x}-\lambda c_{1}^{p+1}, & 0<x<1, t>0 \\ \varphi_{x}(0, t)=0, \quad \varphi(1, t)=1, & t>0 \\ \varphi(x, 0) \equiv 1, & 0 \leq x \leq 1\end{cases}
$$

We then take c_{0} such that

$$
0<c_{0}<\min \left(1-c_{2}, \inf _{\gamma<t<\infty}\{1-\varphi(0, t)\}\right)
$$

It is clear that (2.5) is true for small t. If (2.5) is not always true, then there exists t_{1} and t_{2} such that

$$
u\left(0, t_{1}\right)=c_{1}, \quad c_{1}<u(0, t)<1-c_{0} \quad \text { for } t_{1}<t<t_{2}, \quad u\left(0, t_{2}\right)=1-c_{0}
$$

Note that we always have

$$
g(t) u^{-p}(x, t) \geq g(t) \geq \lambda u^{p+1}(0, t)>\lambda c_{1}^{p+1} \quad \text { for } t_{1}<t \leq t_{2}
$$

so that, by comparison principle,

$$
u(x, t) \leq \varphi\left(x, t-t_{1}\right) \quad \text { for } t_{1}<t \leq t_{2}
$$

In particular, recalling (2.6) $\left(t_{2}-t_{1} \geq \gamma\right)$ and the definition of c_{0}, we conclude

$$
u\left(0, t_{2}\right) \leq \varphi\left(0, t_{2}-t_{1}\right)<1-c_{0}
$$

which is a contradiction.
Lemma 2.3. There exists a positive constant c_{0}^{*}, independent of T, such that

$$
\begin{equation*}
u_{x}(x, t) \geq c_{0}^{*} x \quad \text { for } 0 \leq x \leq 1,0 \leq t<T \tag{2.7}
\end{equation*}
$$

Proof. We take $c_{0}^{*}=c_{0}$ in (2.5) so that (2.5) holds. Take a smaller c_{0}^{*} if necessary so that $1-c_{0}^{*}+c_{0}^{*} x \geq u_{0}(x)$. Then the comparison principle implies that

$$
u(x, t) \leq 1-c_{0}^{*}+c_{0}^{*} x \quad \text { for } 0<t<T .
$$

In particular, this implies that

$$
u_{x}(1, t) \geq c_{0}^{*} \quad \text { for } 0<t<T .
$$

Take a smaller c_{0}^{*} if necessary so that $u_{0}^{\prime}(x) \geq c_{0}^{*} x$. Differentiate the equation for u with respect to x and apply comparison principle, we derive (2.7).

Lemma 2.4. There exists a positive constant \bar{c}_{0}, independent of T, such that

$$
u(0, t)>\bar{c}_{0} \quad \text { for } 0 \leq t<T
$$

Proof. Let c_{0}^{*} be given by the above lemma. Take \bar{c}_{0} and \bar{c}_{1} such that

$$
C^{*} c_{1}^{\eta}<c_{0}^{*}, \quad \bar{c}_{0}<\bar{c}_{1}<u_{0}(0) .
$$

If the conclusion is not true, then there exist $t_{2}>t_{1}>0$ such that

$$
u\left(0, t_{1}\right)=\bar{c}_{1}, \quad \bar{c}_{0}<u(0, t)<\bar{c}_{1} \quad \text { for } t_{1}<t<t_{2}, \quad u\left(0, t_{2}\right)=\bar{c}_{0} .
$$

Using Lemma 2.1 we find that

$$
g(t) u^{-p}(x, t) \leq C^{*} u^{\eta}(0, t)<c_{0}^{*} \quad \text { for } 0<x<1, t_{1}<t<t_{2} .
$$

Using Lemma 2.3 we find that

$$
u\left(x, t_{1}\right) \geq \bar{c}_{1}+\frac{c_{0}^{*}}{2} x^{2}
$$

Therefore by comparison principle

$$
u(x, t) \geq \bar{c}_{1}+\frac{c_{0}^{*}}{2} x^{2} \quad \text { for } 0<x<1, t_{1}<t<t_{2}
$$

which implies that $u\left(0, t_{2}\right) \geq \bar{c}_{1}>\bar{c}_{0}$, which is a contradiction.
Combining these lemmas, we conclude the proof of Theorem 1.

References

1. K. Deng, Dynamical behavior of solutions of a semilinear heat equation with nonlocal singularity, SIAM J. Math. Anal., 26 (1995), 98-111.
2. K. Deng, M. K. Kwong, and H. A. Levine, The influence of nonlocal nonlinearities on the long time behavior of solutions of Burgers' equation, Quart. Appl. Math., $\mathbf{5 0}$ (1992), 173-200.
3. J.-S. Guo, Quenching behavior for the solution of a nonlocal semilinear heat equation, Differential and Integral Equations, 13 (2000), 1139-1148.
4. J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in microelectro mechanical system, Quart. Appl. Math., 67 (2009), 725-734.
5. Y.-J. Guo, nonlocal parabolic problem arising in linear friction welding, A Osaka J. Math., 47 (2010), 33-40.
6. N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and C. Voong, Behaviour of a non-local equation modelling linear friction welding, IMA J. Appl. Math., 72 (2007), 597-616.

Jong-Shenq Guo
Department of Mathematics
Tamkang University
Tamsui, Taipei 25137, Taiwan
E-mail: jsguo@mail.tku.edu.tw
Yung-Jen Lin Guo
Department of Mathematics
National Taiwan Normal University
Taipei 11677, Taiwan
E-mail: yjguo@math.ntnu.edu.tw
Bei Hu
Department of Mathematics
University of Notre Dame
Notre Dame, Indiana 46556
U.S.A.

E-mail: b1hu@nd.edu

