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CONTROLLABILITY OF DAMPED SECOND-ORDER NEUTRAL
FUNCTIONAL DIFFERENTIAL SYSTEMS WITH IMPULSES

G. Arthi* and K. Balachandran

Abstract. In this paper, the Sadovskii fixed point theorem and the theory of
strongly continuous cosine families of operators are used to investigate the con-
trollability of damped second order neutral system with impulses. Examples
are provided to show the application of the result.

1. INTRODUCTION

The study of impulsive functional differential equations is linked to their utility in
simulating processes and phenomena subject to short-time perturbations during their
evolution. The perturbations are performed discretely and their duration is negligible
in comparison with the total duration of the processes. That is why the perturbations
are considered to take place instantaneously in the form of impulses. The theory of
impulsive systems provides a general framework for mathematical modeling of many
real world phenomena. Moreover, these impulsive phenomena can also be found
in fields such as information science, electronics, fed-batch culture infermentative
production, robotics and telecommunications (see [10, 21] and references therein).

In recent years, the study of impulsive control systems has received increasing
interest. Due to its importance several authors have investigated the controllability
of impulsive systems (see [18, 20, 28]).

This paper is mainly concerned with the study of controllability of damped
second order impulsive neutral system of the form

(1)
d
dt [x

′
(t) − p(t, x(t))] = Ax(t) +Gx

′
(t) + Bu(t) + f(t, x(t), x(h(t))),

t ∈ J = [0, b], t �= ti, i = 1, 2, . . . , n,
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(2) x(0) = ζ, x′(0) = η

(3) �x(ti) = Ii(x(ti)), i = 1, 2, . . . , n,

(4) �x′(ti) = Ĩi(x(ti)), i = 1, 2, . . . , n.

where A is the infinitesimal generator of a strongly continuous cosine family of
bounded linear operators (C(t))t∈R defined on a Banach space X . The control
function u(·) is given in L2(J, U), a Banach space of admissible control functions
with U as a Banach space and B : U → X as a bounded linear operator ; G
is a bounded linear operator on a Banach space X with D(G) ⊂ D(A) ; 0 <

t1 < . . . < tn < b are prefixed numbers ; f(·), p(·), h(·), Ii(·) and Ĩi(·) are
appropriate continuous functions and the jump �ξ(t) of the function ξ(·) at t defined
by �ξ(t) = ξ(t+)− ξ(t−).

Abstract neutral differential equations arise in many areas of applied mathemat-
ics. There are many contributions relative to this topic and we refer the readers to
[1, 4] and the monograph [27]. The study of abstract deterministic second-order
evolution equations governed by the generator of a strongly continuous cosine fam-
ily was initiated by Fattorini [6], and subsequently studied by Travis and Webb
[24, 25]. Models of abstract second order systems can be found in [13− 15]. Con-
cerning first and second order equations with damping were discussed in [3, 5, 7,
8, 11, 13, 22, 23, 26]. With the help of fixed point argument several authors have
investigated the problem of controllability of second order nonlinear systems with
and without impulses [2, 16 − 18, 20]. In this paper, we study the controllability
of second order nonlinear systems without imposing compactness condition on the
semigroup of cosine family and this fact is the main motivation for this paper.

2. PRELIMINARIES

In this section, we will briefly recall some basic definitions, notations, lemmas
and properties that will be used in the paper.

Throughout this paper, (X, ‖ · ‖) is a Banach space and A is the infinitesi-
mal generator of a strongly continuous cosine family of bounded linear operators
(C(t))t∈R on Banach space X . We denote by (S(t))t∈R the sine function associated
with (C(t))t∈R which is defined by

S(t)x =
∫ t

0
C(s)xds, for x ∈ X, t ∈ R.

Moreover, M and N are positive constants such that ‖C(t)‖ ≤M and ‖S(t)‖ ≤ N ,
for every t ∈ J .

In this work, [D(A)] is the space D(A) endowed with the graph norm ‖x‖A =
‖x‖+‖Ax‖, x ∈ D(A). E stands for the space of all vectors x ∈ X for which the
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function C(·)x is of class C1 on R. It was proved by Kisynski [9] that E endowed
with the norm ‖x‖E = ‖x‖ + sup

0≤t≤1
‖AS(t)x‖, x ∈ E, is a Banach space. The

operator valued function

F (t) =

[
C(t) S(t)

AS(t) C(t)

]

is a strongly continuous group of linear operators on the space E × X generated

by the operator A =
[

0 I

A 0

]
defined on D(A) × E . It follows that AS(t) :

E → X is a bounded linear operator and AS(t)x → 0, t → 0, for each x ∈ E .
Furthermore, if x : [0,∞) → X is a locally integrable function, then the function
y(t) =

∫ t
0 S(t − s)x(s)ds defines an E-valued continuous function. This is an

immediate consequence of the fact that∫ t

0
F (t− s)

[
0
x(s)

]
ds =

[ ∫ t

0
S(t− s)x(s)ds,

∫ t

0
C(t− s)x(s)ds

]T
defines an E ×X-valued continuous function.

The existence of solutions for the second order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), σ ≤ t ≤ µ,(5)

x(0) = z, x′(0) = w,(6)

where h : [σ, µ] → X is an integrable function, has been discussed in [24]. Similarly
the existence of solutions of semilinear second order abstract Cauchy problems has
been treated in [25]. We only mention here that the function x : [σ, µ] → X given
by

x(t) = C(t− σ)z + S(t− σ)w+
∫ t

σ
S(t− s)h(s)ds, σ ≤ t ≤ µ,(7)

is called a mild solution of (5)-(6) and that when z ∈ E , x(·) is continuously
differentiable and

x′(t) = AS(t− σ)z + C(t− σ)w+
∫ t

σ
C(t− s)h(s)ds, σ ≤ t ≤ µ.(8)

For additional details on the cosine function theory, we refer the reader to [6,
24, 25].

The terminology and notations are those generally used in functional analysis.
In particular, for Banach spaces (Z, ‖·‖Z), (W, ‖·‖W ), the notation L(Z,W ) stands
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for the Banach space of bounded linear operators from Z into W and we abbreviate
to L(Z) whenever Z = W . Moreover Br(x : Z) denotes the closed ball with center
at x and radius r > 0 in Z and we write simply Br when no confusion arises.

The following lemma is crucial in the proof of our main theorem.

Lemma 2.1. ([16, Lemma 3.1]). Assume that (Hf1), (Hf2), (W ) hold. Then
the operator

Ny(t) =
∫ t

0
S(t− s)[f(s, y(s)) + (Buy)(s)]ds, t ∈ [0, b],

is completely continuous.

The key tool in our approach is following fixed-point theorem.

Lemma 2.2. ([19, Sadovskii’s Fixed Point Theorem]). Let F be a condensing
operator on a Banach space X . If F (D) ⊂ D for a convex, closed and bounded
set D of X , then F has a fixed point in D.

Definition 2.3. The system (1) − (4) is said to be controllable on the interval
J , if for every ζ ∈ D(A), η ∈ E and x1 ∈ X , there exists a control u ∈ L2(J, U)
such that the mild solution x(t) of (1)− (4) satisfies x(b) = x1.

3. CONTROLLABILITY RESULTS

In this section, we state and prove our main results. We begin by studying the
following abstract damped second order neutral system.

3.1. Neutral Systems
This section is concerned with the result on controllability of damped second

order abstract Cauchy problem of the form

(9)
d

dt
[x

′
(t) − p(t, x(t))] = Ax(t) +Gx

′
(t) +Bu(t) + f(t, x(t), x(h(t))),

t ∈ J = [0, b],

(10) x(0) = ζ, x′(0) = η

where A,B,G, f, h and p are defined as in equations (1)− (4). Let C = C([0, b] :
X) and C1 = C1([0, b] : X) be the Banach space of continuous X valued functions
on J and is endowed with the supremum norm.

If x(·) is a solution of (9)-(10), then from (7), we adopt the following concept
of mild solution,

(11)
x(t) = C(t)ζ + S(t)[η − p(0, ζ)] +

∫ t

0
C(t− s)p(s, x(s))ds

+
∫ t

0
S(t− s)

[
Gx

′
(s) +Bu(s) + f(s, x(s), x(h(s)))

]
ds, t ∈ J.
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The above expression is equivalent to the following definition.

Definition 3.1. A function x ∈ C is said to be a mild solution of (9)-(10) if

x(t) = (C(t) − S(t)G)ζ + S(t)[η− p(0, ζ)]

+
∫ t

0

C(t− s)
[
p(s, x(s)) +Gx(s)

]
ds

+
∫ t

0

S(t− s)
[
Bu(s) + f(s, x(s), x(h(s)))

]
ds, t ∈ J.

We shall need the following assumptions :

(H1) The function f : J ×X2 → X satisfies the following conditions :

(i) f(t, ·, ·) : X ×X → X is continuous a.e. t ∈ J . For every x, y ∈ X ,
the function f(·, x, y) : J → X is strongly measurable.

(ii) For each t ∈ J , the function f(t, ·, ·) : X × X → X is completely
continuous.

(iii) There is a function m ∈ L1(J, [0,∞)) and non-decreasing function
W ∈ C([0,∞); (0,∞)) such that, for all t ∈ J and every φ, ψ ∈ X ,

‖f(t, φ, ψ)‖ ≤ m(t)W (‖φ‖ + ‖ψ‖)
(iv) For every positive constant l, there exists an wl ∈ L1(J) such that

sup
‖φ‖,‖ψ‖≤l

‖f(t, φ, ψ)‖ ≤ wl(t), for a.a. t ∈ J.

(H2) B is a continuous operator from U to X and the linear operator
W : L2(J, U) → X , defined by

Wu =
∫ b

0

S(b− s)Bu(s)ds,

has a bounded invertible operatorW−1 which takes values in L2(J, U)/kerW
such that ‖B‖ ≤M1 and ‖W−1‖ ≤M2, for some positive constantsM1,M2.

(H3) The function h : J → J is continuous and h(t) ≤ t for every t ∈ J .

(H4) The function p : J × X → X is completely continuous and there exists a
constant Lp > 0 such that

‖p(t, φ1)− p(t, φ2)‖ ≤ Lp‖φ1 − φ2‖, (t, φi) ∈ J ×X, i = 1, 2.

(H5) There exist positive constants k1, k2 such that ‖p(t, φ)‖ ≤ k1‖φ‖ + k2, for
every (t, φ) ∈ J ×X .
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Theorem 3.2. Assume that conditions (H1) − (H5) are satisfied. Then the
system (9)-(10) is controllable on J provided that

(1 + bNM1M2)
[
bM(Lp + ‖G‖) +N lim

l→∞
inf

W (2l)
l

∫ b

0
m(s)ds

]
< 1.

Proof. Consider the space Z = {x ∈ C = C([0, b] : X)} endowed with the
uniform convergence topology. Using the hypothesis (H2), for an arbitrary function
x(·), define the control

u(t) = W−1

[
x1 − (C(b) − S(b)G)ζ − S(b)[η− p(0, ζ)]

−
∫ b

0
C(b− s)

[
p(s, x(s)) +Gx(s)

]
ds

−
∫ b

0
S(b− s)f(s, x(s), x(h(s)))ds

]
(t).

Using this control, we shall show that the operator Φ : Z → Z defined by

(Φx)(t) = (C(t) − S(t)G)ζ + S(t)[η − p(0, ζ)] +
∫ t

0

C(t− s)

[
p(s, x(s)) +Gx(s)

]
ds+

∫ t

0
S(t− s)f(s, x(s), x(h(s)))ds

+
∫ t

0
S(t− ξ)BW−1

[
x1 − (C(b)− S(b)G)ζ − S(b)[η− p(0, ζ)]

−
∫ b

0
C(b− s)

[
p(s, x(s)) +Gx(s)

]
ds

−
∫ b

0
S(b− s)f(s, x(s), x(h(s)))ds

]
(ξ)dξ, t ∈ J,

has a fixed point x(·). This fixed point is then a mild solution of the system (9)-(10).
Clearly (Φx)(b) = x1 which means that the control u steers the system from the
initial state ζ to x1 in time b, provided we can obtain a fixed point of the operator
Φ which implies that the system is controllable. From the assumptions, it is easy to
see that Φ is well defined and continuous.

Next we affirm that there exists l > 0 such that Φ(Bl(0, Z)) ⊆ Bl(0, Z). If we
assume that this assertion is false, then for each l > 0, we can choose xl ∈ Bl(0, Z)
and tl ∈ J such that ‖Φxl(tl)‖ > l. Consequently,

l < ‖Φxl(tl)‖
≤ (M +N‖G‖)‖ζ‖+N

[‖η‖+ ‖p(0, ζ)‖] +M‖G‖
∫ tl

0

‖xl(s)‖ds
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+M
∫ tl

0

[
‖p(s, xl(s)) − p(s, 0)‖+ ‖p(s, 0)‖

]
ds

+N
∫ tl

0
m(s)W (‖xl(s)‖+ ‖xl(h(s))‖)ds+NM1M2

∫ tl

0

[
‖x1‖

+(M +N‖G‖)‖ζ‖+N
[‖η‖+ ‖p(0, ζ)‖] +M‖G‖

∫ b

0

‖xl(s)‖ds

+M
∫ b

0

[
‖p(s, xl(s))− p(s, 0)‖+ ‖p(s, 0)‖

]
ds

+N
∫ b

0

m(s)W (‖xl(s)‖ + ‖xl(h(s))‖)ds
]
dξ,

which implies that

l ≤ (M +N‖G‖)‖ζ‖+N
[‖η‖+ ‖p(0, ζ)‖] + bM‖G‖l+ bM

[
Lpl + ‖p(s, 0)‖]

+NW (2l)
∫ b

0
m(s)ds+ bNM1M2

[
‖x1‖+ (M +N‖G‖)‖ζ‖+N

[‖η‖
+‖p(0, ζ)‖] + bM‖G‖l+ bM

[
Lpl + ‖p(s, 0)‖] +NW (2l)

∫ b

0
m(s)ds

]

and hence

1 ≤ (1 + bNM1M2)
[
bM(Lp + ‖G‖) +N lim

l→∞
inf

W (2l)
l

∫ b

0
m(s)ds

]
which is absurd.

Let l > 0 be such that Φ(Bl(0, Z)) ⊂ Bl(0, Z). In order to prove that Φ
is a condensing map on Bl(0, Z) into Bl(0, Z). We introduce the decomposition
Φ = Φ1 + Φ2 where

Φ1x(t) = (C(t) − S(t)G)ζ + S(t)[η − p(0, ζ)]

+
∫ t

0
C(t− s)

[
p(s, x(s)) +Gx(s)

]
ds,

Φ2x(t) =
∫ t

0
S(t− s)[f(s, x(s), x(h(s)))+Bu(s)]ds.

Now

‖Bu(s)‖ ≤ M1M2

[
‖x1‖ + (M +N‖G‖)‖ζ‖+N

[‖η‖+ k1‖ζ‖+ k2

]

+M
∫ b

0

[
‖G‖‖x(s)‖+ k1‖x(s)‖+ k2

]
ds+N

∫ b

0
wl(s)ds

]
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≤ M1M2

[
‖x1‖ + (M +N‖G‖)‖ζ‖+N

[‖η‖+ k1‖ζ‖ + k2

]

+bM
[
l(‖G‖+ k1) + k2

]
+N

∫ b

0
wl(s)ds

]
= Co

Here we can apply the same technique that is used in Lemma 2.1. From the
hypothesis (H1), (H2) and (H3), we infer that Φ2(·) is completely continuous on
Bl(0, Z). Moreover, for x1, x2 ∈ Bl(0, Z), we see that

‖Φ1x1 − Φ1x2‖ ≤
[
bM(Lp + ‖G‖)

]
‖x1 − x2‖,

which shows that Φ1 is a contraction and Φ(·) is a condensing map on Bl(0, Z).
Now, from Lemma 2.2, the operator Φ has a fixed point in Z. This means that

any fixed point of Φ is a mild solution of the problem (9)-(10). Thus the system
(9)-(10) is controllable on J .

3.2. Impulsive Neutral Systems

In this section, we study impulsive control problems for damped second-order
systems. Such problems arise naturally from a wide variety of applications, such as
spacecraft maneuver[12], mathematical in epidemiology, automatic control systems
and inspection process in operation research. It is the purpose of this section to
establish controllability conditions for nonlinear damped system with impulses.

Now we consider some additional concepts and notations concerning impul-
sive differential equations. In what follows we put t0 = 0, tn+1 = b and we
denote PC([µ, τ ];X) = {φ : [µ, τ ] → X : φ(·) is continuous at t �= ti, φ(t−i ) =
φ(ti) and φ(t+i ) exists for all i = 1, 2, . . . , n}. In this paper, the notation PC stands
for the space formed by all functions φ ∈ PC([0, b];X). The norm ‖ · ‖PC of
the space PC is defined by ‖φ‖PC = sup

s∈I
‖φ(s)‖. It is clear that (PC, ‖ · ‖PC)

is a Banach space. Similarly, PC1 will be the space of the functions φ(·) ∈ PC
such that φ(·) is continuously differentiable on J\ {ti : i = 1, . . . , n} and the lateral
derivatives φ′

R(t) = lim
s→0+

φ(t+s)−φ(t+)
s , φ

′
L(t) = lim

s→0−
φ(t+s)−φ(t−)

s are continuous

functions on [ti, ti+1) and (ti, ti+1] respectively. Next, for φ ∈ PC1 we represent
by φ′

(t) the left derivative at t ∈ (0, b] and by φ′
(0) the right derivative at zero.

For φ ∈ PC we denote by φ̃i, i = 0, 1, . . . , n, the unique continuous function
φ̃i ∈ C([ti, ti+1];X) such that

φ̃i (t) =

{
φ(t), for t ∈ (ti, ti+1],

φ(t+i ), for t = ti.
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We consider the damped second-order neutral functional differential equation
with impulses of the form (1) − (4). Motivated from the expression (11), let us
begin by introducing the following definition.

Definition 3.3. A function x ∈ PC is said to be a mild solution of (1)− (4), if

x(t) = C(t)ζ + S(t)
[
η − p(0, ζ)

]
+

∫ t

0

C(t− s)p(s, x(s))ds

+
j−1∑
i=0

[
S(t− ti+1)Gx(t−i+1)− S(t− ti)Gx(t+i )

] − S(t− tj)Gx(t+j )

+
∫ t

0
C(t− s)Gx(s)ds+

∫ t

0
S(t− s)[Bu(s) + f(s, x(s), x(h(s)))]ds

+
∑
ti<t

C(t− ti)Ii(x(ti)) +
∑
ti<t

S(t− ti)Ĩi(x(ti)),

for all t ∈ [tj, tj+1] and every j = 0, . . . , n.

Furthermore we assume the following conditions :

(H6) There are positive constants Ki, Li such that

‖Ii(φ1) − Ii(φ2)‖ ≤ Ki‖φ1 − φ2‖, φj ∈ X, j = 1, 2, i = 1, 2, · · · , n,
‖Ĩi(φ1) − Ĩi(φ2)‖ ≤ Li‖φ1 − φ2‖, φj ∈ X, j = 1, 2, i = 1, 2, · · · , n.

(H7) The maps Ii, Ĩi : X → X, i = 1, 2, · · · , n are completely continuous and
there exist continuous non-decreasing functions µi, σi : [0,∞) → (0,∞),
i = 1, 2, · · · , n, such that

‖Ii(φ)‖ ≤ µi(‖φ‖)
‖Ĩi(φ)‖ ≤ σi(‖φ‖), φ ∈ X.

Theorem 3.4. If the assumptions (H1) − (H7) are satisfied, then the system
(1)− (4) is controllable on J provided that

(1 + bNM1M2)
[
bMLp + (3N + bM)‖G‖

+N lim
l→∞

inf
W (2l)
l

∫ b

0
m(s)ds+

n∑
i=1

(MKi +NLi)
]
< 1.

Proof. Consider the space Y = {x ∈ PC = PC([0, b] : X)} endowed with
the uniform convergence topology. Using the assumption (H2), for an arbitrary
function x(·), define the control
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u(t) = W−1

[
x1 −C(b)ζ − S(b)

[
η − p(0, ζ)

]− ∫ b

0
C(b− s)p(s, x(s))ds

+S(b− tj)Gx(t+j )−
j−1∑
i=0

[
S(b− ti+1)Gx(t−i+1) − S(b− ti)Gx(t+i )

]

−
∫ b

0
C(b− s)Gx(s)ds−

∫ b

0
S(b− s)f(s, x(s), x(h(s)))ds

−
n∑
i=1

C(b− ti)Ii(x(ti))−
n∑
i=1

S(b− ti)Ĩi(x(ti))

]
(t).

Using this control we shall show that the operator Φ : PC → PC defined by

(Φx)(t)

= C(t)ζ + S(t)
[
η − p(0, ζ)

]
+

∫ t

0

C(t− s)p(s, x(s))ds

+
j−1∑
i=0

[
S(t− ti+1)Gx(t−i+1) − S(t− ti)Gx(t+i )

] − S(t− tj)Gx(t+j )

+
∫ t

0
C(t− s)Gx(s)ds+

∫ t

0
S(t− s)f(s, x(s), x(h(s)))ds

+
∫ t

0
S(t− ξ)BW−1

[
x1 −C(b)ζ − S(b)

[
η − p(0, ζ)

]

−
∫ b

0

C(b− s)p(s, x(s))ds+ S(b− tj)Gx(t+j )

−
j−1∑
i=0

[
S(b− ti+1)Gx(t−i+1) − S(b− ti)Gx(t+i )

]

−
∫ b

0

C(b− s)Gx(s)ds−
∫ b

0

S(b− s)f(s, x(s), x(h(s)))ds

−
n∑
i=1

C(b− ti)Ii(x(ti)) −
n∑
i=1

S(b− ti)Ĩi(x(ti))

]
(ξ)dξ

+
∑
ti<t

C(t−ti)Ii(x(ti))+
∑
ti<t

S(t− ti)Ĩi(x(ti)), t ∈ [tj , tj+1], j = 0, . . . , n,

has a fixed point x(·). This fixed point is then a mild solution of the system (1)−(4).
Clearly (Φx)(b) = x1 which means that the control u steers the system from the
initial state ζ to x1 in time b, provided we can obtain a fixed point of the operator
Φ which implies that the system is controllable. From the assumptions, it is easy to
see that Φ is well defined and continuous.
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Next we claim that there exists l > 0 such that Φ(Bl(0,PC)) ⊆ Bl(0,PC).
If this property is false, then for every l > 0, there exist xl ∈ Bl(0,PC), j =
{0, . . . , n} and tl ∈ [tj , tj+1] such that ‖Φxl(tl)‖ > l. Consequently,

l < ‖Φxl(tl)‖
≤ M‖ζ‖ +N

[‖η‖+ ‖p(0, ζ)‖] +M

∫ tl

0

[
‖p(s, xl(s))− p(s, 0)‖

+‖p(s, 0)‖
]
ds+N‖G‖

j−1∑
i=0

[
‖xl(t−i+1)‖+‖xl(t+i )‖

]
+N‖G‖‖xl(t+j )‖

+M‖G‖
∫ tl

0
‖xl(s)‖ds+N

∫ tl

0
m(s)W (‖xl(s)‖+‖xl(h(s))‖)ds+NM1M2

∫ tl

0

[
‖x1‖+M‖ζ‖+N

[‖η‖+‖p(0, ζ)‖] +M

∫ b

0

[
‖p(s, xl(s))− p(s, 0)‖

+‖p(s, 0)‖
]
ds +N‖G‖

j−1∑
i=0

[
‖xl(t−i+1)‖+ ‖xl(t+i )‖

]
+N‖G‖‖xl(t+j )‖

+M‖G‖
∫ b

0
‖xl(s)‖ds+N

∫ b

0
m(s)W (‖xl(s)‖ + ‖xl(h(s))‖)ds

+M
n∑
i=1

[
‖Ii(xl(ti)) − Ii(0)‖+ ‖Ii(0)‖

]
+N

n∑
i=1

[
‖Ĩi(xl(ti)) − Ĩi(0)‖

+‖Ĩi(0)‖
]]
dξ +M

n∑
i=1

[
‖Ii(xl(ti))− Ii(0)‖+ ‖Ii(0)‖

]

+N
n∑
i=1

[
‖Ĩi(xl(ti)) − Ĩi(0)‖+ ‖Ĩi(0)‖

]
,

which implies that

l ≤ M‖ζ‖+N
[‖η‖+ ‖p(0, ζ)‖]+ bM

[
Lpl + ‖p(s, 0)‖]

+3N‖G‖l+ bM‖G‖l+NW (2l)
∫ b

0
m(s)ds+ bNM1M2

[
‖x1‖

+M‖ζ‖ +N
[‖η‖+ ‖p(0, ζ)‖] + bM

[
Lpl+ ‖p(s, 0)‖]+ 3N‖G‖l

+bM‖G‖l+NW (2l)
∫ b

0
m(s)ds+

n∑
i=1

[
(MKi +NLi)l+M‖Ii(0)‖

+N‖Ĩi(0)‖
]]

+
n∑
i=1

[
(MKi +NLi)l+M‖Ii(0)‖+N‖Ĩi(0)‖

]
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and hence

1 ≤ (1 + bNM1M2)
[
bMLp + (3N + bM)‖G‖

+N lim
l→∞

inf
W (2l)
l

∫ b

0

m(s)ds+
n∑
i=1

(MKi +NLi)
]

which contradicts our assumption.
Let l > 0 be such that Φ(Bl(0,PC)) ⊂ Bl(0,PC). In order to prove that Φ is

a condensing map on Bl(0,PC) into Bl(0,PC). We introduce the decomposition
Φ = Φ1 + Φ2 where

Φ1x(t) = C(t)ζ + S(t)
[
η − p(0, ζ)

]
+

∫ t

0
C(t− s)p(s, x(s))ds

+
j−1∑
i=0

[
S(t− ti+1)Gx(t−i+1) − S(t− ti)Gx(t+i )

]

−S(t− tj)Gx(t+j ) +
∫ t

0
C(t− s)Gx(s)ds

+
∑
ti<t

C(t− ti)Ii(x(ti)) +
∑
ti<t

S(t− ti)Ĩi(x(ti)),

Φ2x(t) =
∫ t

0
S(t− s)[f(s, x(s), x(h(s)))+Bu(s)]ds.

Now

‖Bu(s)‖ ≤ M1M2

[
‖x1‖ +M‖ζ‖ +N

[‖η‖+ k1‖ζ‖ + k2

]

+M
∫ b

0
(k1‖x(s)‖ + k2) ds+N‖G‖‖x(t+j )‖

+N‖G‖
j−1∑
i=0

[
‖x(t−i+1)‖ + ‖x(t+i )‖

]
+M‖G‖

∫ b

0
‖x(s)‖ds

+N
∫ b

0

wl(s)ds+M
n∑
i=1

µi‖x(ti)‖+N
n∑
i=1

σi‖x(ti)‖
]

≤ M1M2

[
‖x1‖ +M‖ζ‖ +N

[‖η‖+ k1‖ζ‖ + k2

]
+bM (k1l+ k2) + (3N + bM)‖G‖l

+N
∫ b

0
wl(s)ds+

n∑
i=1

l(Mµi +Nσi)

]
= C̃o.
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Here we can apply the same technique that is used in Lemma 2.1. From the
hypothesis (H1), (H2) and (H3), we infer that Φ2(·) is completely continuous on
Bl(0,PC). Moreover, for x, z ∈ Bl(0,PC), we see that

‖Φ1x− Φ1z‖PC ≤
[
bMLp + (3N + bM)‖G‖+

n∑
i=1

(MKi +NLi)
]
‖x− z‖PC,

which shows that Φ1 is a contraction and Φ(·) is a condensing map on Bl(0,PC).
Now, from Lemma 2.2, Φ has a fixed point in PC. This means that any fixed

point of Φ is a mild solution of the problem (1) − (4). This completes the proof.

Corollary 3.5. If all conditions of Theorem 3.4 hold except that (H6) and (H7)
replaced by the following one,
(C1) : there exist positive constants ai, bi, ci, di and constants θi, δi ∈ (0, 1), i =
1, 2, . . . , n such that for each φ ∈ X ,

‖Ii(φ)‖ ≤ ai + bi(‖φ‖)θi, i = 1, 2, . . . , n,

and

‖Ĩi(φ)‖ ≤ ci + di(‖φ‖)δi, i = 1, 2, . . . , n,

then the system (1)− (4) is controllable provided that

(1 + bNM1M2)
[
bMLp + (3N + bM)‖G‖+N lim

l→∞
inf

W (2l)
l

∫ b

0
m(s)ds

]
< 1.

4. EXAMPLES

In this section, we apply some of the results established in this paper. Let
X = L2([0, π]) and letA be an operator defined by Aw = w

′′ with domainD(A) ={
w ∈ H2(0, π) : w(0) = w(π) = 0

}
. It is well known that A is the infinitesimal

generator of a strongly continuous cosine function (C(t))t∈R on X . Moreover,
A has a discrete spectrum with eigenvalues of the form −n2, n ∈ N, and the
corresponding normalized eigenfunctions given by en(ξ) := ( 2

π )(
1
2
)sin(nξ). Also

the following properties hold :
(a) The set of functions {en : n ∈ N} forms an orthonormal basis of X .
(b) If w ∈ D(A), then Aw =

∑∞
n=1 −n2 < w, en > en.

(c) For w ∈ X,C(t)w =
∑∞

n=1 cos(nt) < w, en > en. The associated sine
family is given by S(t)w =

∑∞
n=1

sin(nt)
n < w, en > en, w ∈ X .

(d) If Ψ is the group of translations on X defined by Ψ(t)x(ξ) = x̃(ξ + t),
where x̃(·) is the extension of x(·) with period 2π, then C(t) = 1

2 [Ψ(t) +
Ψ(−t)] ; A = B2 where B is the infinitesimal generator of Ψ and E ={
x ∈ H1(0, π) : x(0) = x(π) = 0

}
, see [6] for more details.
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4.1. Second-order nonlinear system

Consider the following damped second order neutral differential equation with
control µ̂(t, ·)

(12)

∂

∂t

[
∂

∂t
u(t, ξ)− P (t, ξ, u(t, ξ))

]
=

∂2

∂ξ2
u(t, ξ) + α

∂

∂t
u(t, ξ)

+
∫ ξ

0
β(s)

∂

∂t
u(t, s)ds+ µ̂(t, ξ) + F (t, ξ, u(t, ξ), u(h(t), ξ)),

for t ∈ J = [0, b], ξ ∈ [0, π], subject to the initial conditions

u(t, 0) = u(t, π) = 0, t ∈ J,

u(0, ξ) = u0(ξ), ut(0, ξ) = u1(ξ), 0 ≤ ξ ≤ π, t ∈ J.

We have to show that there exists a control µ̂ which steers (12) from any
specified initial state to the final state in a Banach space X .

Here α is prefixed real number. In the sequel h ∈ C([0, b], [0, b]), h(t) ≤ t for
every t ∈ J, β ∈ L2([0, π]) and the following conditions hold :

(a) The function F satisfies the following conditions :
(i) F (t, ξ, ·) : R

2 → R is continuous a.e. (t, ξ) ∈ R × [0, π].
(ii) For every w1, w2 ∈ R, the function F (·, w1, w2) : R × [0, π] → R is

strongly measurable.
(iii) There exists a continuous function ΥF (·) : R × [0, π] → [0,∞+) such

that

|F (t, ξ, w1, w2)| ≤ ΥF (t, ξ)(|w1| + |w2|), wi ∈ R, t ∈ R, ξ ∈ [0, π].

(b) The function P satisfies the following conditions :

(i) P (t, ξ, ·) : R → R is continuous a.e. (t, ξ) ∈ R × [0, π].
(ii) For every w ∈ R, the function P (·, w) : R × [0, π] → R is strongly

measurable.
(iii) There exists a continuous function ΥP (·) : R × [0, π] → [0,∞+) such

that, for every wi ∈ R, i = 1, 2, (t, ξ) ∈ R × [0, π],

|P (t, ξ, w1) − P (t, ξ, w2)| ≤ ΥP (t, ξ)|w1 −w2|.

Assume that the bounded linear operator B : U ⊂ J → X is defined by

(Bu)(t)(ξ) = µ̂(t, ξ), ξ ∈ [0, π].
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Define the operators G : X → X, f : J ×X2 → X and p : J ×X → X by

Gx(ξ) = αx(ξ) +
∫ ξ

0
β(s)x(s)ds,

f(t, x, y)(ξ) = F (t, ξ, x(ξ), y(ξ)),

p(t, x)(ξ) = P (t, ξ, x(ξ)).

Further, the linear operator W is given by

(Wu)(ξ) =
∞∑
n=1

∫ π

0

1
n

sin ns(µ̂(s, ξ), en)ends, ξ ∈ [0, π].

Assume that this operator has a bounded inverse operator W−1 in L2(J, U)/kerW .
Moreover the functions f, p and G are bounded linear operators with ‖G‖L(X) ≤
|α|+‖β‖L2(0,b), ‖f(t, x, y)(θ)‖ ≤ sup

θ∈[0,π]

ΥF (t, θ)(‖x‖+‖y‖), for all t ∈ J, x, y ∈
X . It is easy to see that p(·) satisfies the assumption ‖p(t, ψ1) − p(t, ψ2)‖ ≤
Lp‖ψ1 − ψ2‖, t ∈ J, ψ1, ψ2 ∈ X and that Lp = sup

ξ∈[0,π]
ΥP (s, ξ); s ∈ J . Now the

equation (12) can be written in the abstract form (9)-(10). so that an application of
Theorem 3.2. yields the controllability on J.

4.2. Second-order impulsive system

Consider the following second order impulsive Cauchy problem with control
µ̂(t, ·)

(13)

∂

∂t

[
∂

∂t
u(t, ξ)− P (t, ξ, u(t, ξ))

]
=

∂2

∂ξ2
u(t, ξ) + α

∂

∂t
u(t, ξ)

+
∫ ξ

0
β(s)

∂

∂t
u(t, s)ds+ µ̂(t, ξ) + F (t, ξ, u(t, ξ), u(h(t), ξ)),

for t ∈ J = [0, b], ξ ∈ [0, π], subject to the initial conditions
u(t, 0) = u(t, π) = 0, t ∈ J,

u(0, ξ) = u0(ξ), ut(0, ξ) = u1(ξ), 0 ≤ ξ ≤ π, t ∈ J,

�u(ti, ·)(ξ) = αiu(ti, ξ), ξ ∈ [0, π],

�∂u(ti, ·)
∂t

(ξ) = βiu(ti, ξ), ξ ∈ [0, π],

where 0 < t1 < t2 < . . . < b, αi, βi, i = 1, . . . , n, are prefixed real numbers and
the functions h, α, β are as defined in Example 4.1. Assume that the condition
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(a) and (b) of the previous example hold. Define the functions G, f, p, B

and W as in Example 4.1 and the maps Ii, Ĩi : X → X, i = 1, . . . , n, by
Ii(x)(ξ) = αix(ξ), Ĩi(x)(ξ) = βix(ξ), the system (13) can be modelled as (1)−(4).
Moreover the functions Ii and Ĩi are bounded linear operators on X , ‖Ii‖L(X) ≤ αi
and ‖Ĩi‖L(X) ≤ βi for every i = 1, . . . , n. Thus by Theorem 3.4, the second order
impulsive system (1) − (4) is controllable.
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