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THE FIRST INITIAL BOUNDARY VALUE PROBLEM FOR
HYPERBOLIC SYSTEMS IN INFINITE NONSMOOTH CYLINDERS

N. M. Hung, B. T. Kim and V. Obukhovskii*

Abstract. This paper is concerned with the first initial boundary value problem
for hyperbolic systems in infinite cylinders with the nonsmooth base. Some
results on the regularity of generalized solutions of this problem are given.

1. INTRODUCTION

The theory of general boundary-value problems for partial differential equations
and systems in smooth domains is nearly completely studied (see [1,3,11]). The
boundary value problems for partial differential equations and systems of various
classes in nonsmooth domains attract the attention of many researchers. These prob-
lems for elliptic equations and systems on domains containing conical points have
been investigated in the works [7,8,10]. The first initial boundary value problem for
parabolic systems in cylinders with the nonsmooth base was described in [5]. The
second initial boundary value problem in cylinders with the base containing conical
points has been dealt with for hyperbolic systems in [9] and for Schrodinger systems
in [6], in which the authors considered the existence, uniqueness and smoothness of
the generalized solution of the mentioned problems. Regularity of solutions to the
first initial boundary value problem for hyperbolic systems in nonsmooth cylinders
was considered in [4]. However, the results of the work [4] were obtained only in
the finite cylinders.

In this paper we are concerned with the first initial boundary value problem
for hyperbolic systems in infinite cylinders with the nonsmooth base. The aim of
the paper is to establish some results on the regularity of generalized solutions of
the problem. First, we study the regularity with respect to time variable of the
generalized solutions in the infinite cylinders with nonsmooth base. After that, we
can apply the results for elliptic boundary value problems to deal with the regularity
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with respect to spatial variables of the solutions in infinite cylinders with conical
points.

The paper is organized in the following way. In Section 2 we introduce some
notations and formulate our problem. The regularity with respect to time variable
is presented in Section 3. In the last section we give results on the regularity
with respect to both time and spatial variables of the generalized solutions in a
neighborhood of the conical point.

2. PRELIMINARIES

Let Ω be a bounded domain in Rn with the boundary ∂Ω. Denote Ω∞ =
Ω × (0,∞) and S∞ = ∂Ω× (0,∞).

Let L(x, t, D) be a differential operator of order 2m:

(2.1) L(x, t, D) ≡
m∑

|α|,|β|=0

Dα(aαβ(x, t)Dβ)

where aαβ ≡ aαβ(x, t) are s×s matrices of bounded measurable complex functions
in Ω∞; aαβ = (−1)|α|+|β|a∗βα, a

∗
βα are complex conjugate transportation matrices

of aαβ . Suppose that aαβ are continuous with respect to x ∈ Ω uniformly with
respect to t ∈ [0,∞) if |α| = |β| = m, and satisfy the inequality

(2.2)
∑

|α|,|β|=m

aαβ(x, t)ξαξβηη ≥ ν0|ξ|2m|η|2

for all ξ ∈ Rn\{0}, η ∈ Cs\{0} and (x, t) ∈ Ω∞, where ν0 = const > 0.
We use the following notation. For each multi-index α = (α1, ....αn) ∈ Nn,

|α| = α1 + .... + αn and Dαu =
∂|α|u

∂α1
x1 .....∂

αn
xn

= ux
α1
1 ...xαn

n
is the generalized

derivative up to order α with respect to x = (x1, ..., xn) ; utk = ∂ku/∂tk is the
generalized derivative up to order k with respect to t.

In this paper we use the usual functional spaces:
Hm(Ω) is the space of all functions u(x), x ∈ Ω, with the norm

‖u‖Hm(Ω) =
( l∑

|α|=0

∫
Ω

|Dαu|2dx
)1/2

.

o
Hm(Ω) is the completion of

o
C∞(Ω) in the norm of the space Hm(Ω).

Hm
β (Ω) is the space of all functions u(x) satisfying

‖u‖2
Hm

β (Ω) =
∑
|α|≤l

∫
Ω

r2(β+|α|−l)|Dαu|2dx <∞.
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Hm,k(e−γt,Ω∞) is the space of all functions u(x, t), (x, t) ∈ Ω∞, with the
norm

‖u‖Hm,k(e−γt,Ω∞) =
( ∫

Ω∞

( l∑
|α|=0

|Dαu|2 +
k∑

j=1

|utj |2
)
e−2γtdxdt

)1/2
.

o

Hm,k(e−γt,Ω∞) is the closure in Hm,k(e−γt,Ω∞) of the set consisting of
all infinitely differentiable in Ω∞ functions which belong to Hm,k(e−γt,Ω∞) and
vanish near S∞.

Hm,k
β (e−γt,Ω∞) is the space of all functions u(x, t) satisfying

‖u‖2
H

m,k
β (e−γt,Ω∞)

=
∫

Ω∞

( l∑
|α|=0

r2(β+|α|−l)|Dαu|2 +
k∑

j=1

|utj |2
)
e−2γtdxdt <∞.

Hm
β (e−γt,Ω∞) is the space of all functions u(x, t) with the norm

‖u‖Hm
β (e−γt,Ω∞) =

( ∫
Ω∞

( l∑
|α|+j=0

r2(β+|α|−l)|Dαutj |2
)
e−2γtdxdt

)1/2
.

Let X be a Banach space. Denote by L∞(0,∞;X) the space consisting of all
measurable functions u(x, ·) : (0,∞) → X, t �→ u(x, t) satisfying

‖u‖L∞(0,∞;X) = ess sup
t>0

‖u(x, t)‖X <∞.

We consider the following problem in the infinite cylinder Ω∞:

(2.3) (−1)m−1L(x, t, D)u− utt = f(x, t),

(2.4) u|t=0 = 0, ut|t=0 = 0,

(2.5)
∂ju

∂νj

∣∣∣
S∞

= 0; j = 0, ...(m− 1),

where ν is the outer unit normal to S∞.
The function u(x, t) is called a generalized solution of problem (2.3)− (2.5) in

the space Hm,1(e−γt,Ω∞) if u(x, t) ∈
o

Hm,1(e−γt,Ω∞), u(x, 0) = 0 and for each
T > 0 the equality

(2.6)

(−1)m−1

∫
Ω∞

( m∑
|α|,|β|=0

(−1)αaαβD
βuDαϕ

)
dxdt+

∫
Ω∞

utϕtdxdt

=
∫

Ω∞

f ϕdxdt
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holds for all test functions ϕ ∈
o

Hm,k(e−γt,Ω∞), where ϕ(x, t) = 0 for t ∈ [T,∞).
By the same argument as in [4, p. 105-106] we can prove the following lemma.

Lemma 2.1. Assume that u(x, t) is a generalized solution of problem (2.3)−
(2.5) in the space Hm,1(e−γt,Ω∞) and utt, f(x, t) ∈ L∞(0,∞;L2(Ω)). Then for
almost all t ∈ (0,∞) :

(2.7) (−1)m−1

∫
Ω

( m∑
|α|,|β|=0

(−1)αaαβD
βuDαχ

)
dx =

∫
Ω

(utt + f)χdx

holds for all functions χ = χ(x) ∈
o
Hm(Ω).

For convenience, in the rest of this paper we use the notation:

(2.8) B(u, u)(t) =
m∑

|α|,|β|=0

(−1)|α|
∫
Ω

aαβD
βuDαudx.

For almost all t ∈ (0,∞) the function x �−→ u(x, t) belongs to
o
Hm(Ω). On the

other hand, since the principal coefficients aαβ are continuous in x ∈ Ω uniformly
with respect to t ∈ [0,∞) if |α| = |β| = m and the constant ν0 is independent of
t, by repeating the proof of the Garding inequality [3, p. 44] we have the following
assertion.

Lemma 2.2. Assume that coefficients of the operator L(x,D,t) satisfy condition
(2.2) and aαβ are continuous in x ∈ Ω uniformly with respect to t ∈ [0,∞) if
|α| = |β| = m. Then there exist two constants µ0 > 0, λ0 ≥ 0 such that

(2.9) (−1)mB(u, u)(t) ≥ µ0‖u‖2
Hm(Ω) − λ0‖u‖2

L2(Ω)

for all functions u = u(x, t) ∈
o

Hm,1(e−γt,Ω∞).

3. REGULARITY WITH RESPECT TO TIME VARIABLE

In this section we investigate the regularity with respect to time variable of
generalized solutions of problem (2.3)-(2.5). It is shown that the regularity depends
on the coefficients and the right-hand side of the problem.

Denote by m∗ the number of multi-indexes which have order not exceeding m
and µ = const > 0. For a non-negative integer s we use the notation:

γs =
m∗µ(2s+ 1) +

√
(m∗µ(2s+ 1))2 + 8µ0λ2

0

4µ0
.

Let γ∗0 be a number such that γ∗
0 > γ0. We have the following assertion.
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Theorem 3.1. Assume that problem (2.3)-(2.5) has exactly one genenalized
solution u(x, t) in the space Hm,1(e−γ∗

0 t,Ω∞) and the following conditions are
fulfilled:

(i) sup
(x,t)∈Ω∞

∣∣∣∂kaαβ

∂tk

∣∣∣ ≤ µ; 1 ≤ |α|, |β| ≤ m, 0 ≤ k ≤ h+ 1,

(ii) ftk ∈ L∞(0,∞;L2(Ω)), 0 ≤ k ≤ h,

(iii) ftk(x, 0) = 0, 0 ≤ k ≤ h− 1.

Then for every γ > max{γh, γ
∗
0}, the function u(x, t) has derivatives with respect

to t up to order h belonging to the space
o

Hm,1(e−γt,Ω∞). Moreover, the funtion
u(x, t) satisfies the inequality

(3.1) ‖uth‖2
Hm,1(e−γt,Ω∞) ≤ C

h∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f .

Proof. We shall use the Galerkin’s approximate method to prove the theorem.
Let {ψk} ⊂

o
C∞(Ω) be an orthogonal system in L2(Ω) such that its linear closure

in Hm(Ω) coincides with
o
Hm(Ω). For each natural number N , we consider the

function

uN (x, t) =
N∑

k=1

cNk (t)ψk(x),

where cNk (t) are the solutions of the system of ordinary differential equations:

(3.2) (−1)m

∫
Ω

( m∑
|α|,|β|=0

(−1)|α|aαβD
βuNDαψl

)
dx+

∫
Ω

uN
ttψldx=−

∫
Ω

fψldx,

l = 1, 2, . . . , N with the initial conditions

(3.3) cNk (0) =
d

dt
cNk (0) = 0.

Since (3.2) is a linear ordinary differential system with initial condition (3.3), it
has the unique solution cN

k . Moreover, for each T > 0 we have ds+2cNk /dt
s+2 ∈

L2(0, T ). Therefore, from identity (3.2) we have

(3.4)

(−1)m

∫
Ω

∂s

∂ts

( m∑
|α|,|β|=0

(−1)|α|aαβD
βuNDαψl

)
dx+

∫
Ω

uN
ts+2ψldx

=−
∫
Ω

ftsψldx,
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l = 1, 2, . . . , N . Multiplying (3.4) by ds+1cNk /dt
s+1, taking the sum with respect

to l and integrating the obtained equality with respect to t on (0, T ), we get∫
ΩT

(
uN

ts+2uN
ts+1 +

m∑
|α|,|β|=0

(−1)m+|α|(aαβD
βuN )tsDαuN

ts+1

)
dxdt

= −
∫

ΩT

ftsu
N
ts+1dxdt,

where ΩT = Ω × (0, T ). Adding this equality to its complex conjugate we obtain

(3.5)

∫
ΩT

∂

∂t

(
uN

ts+1uN
ts+1

)
dxdt

+2Re
∫

ΩT

m∑
|α|,|β|=0

(−1)m+|α| ∂s

∂ts

(
aαβD

βuN
)
DαuN

ts+1dxdt

= −2Re
∫

ΩT

ftsu
N
ts+1dxdt

By using the hypothesis (iv) and condition (3.3) we can see easily that DpuN
tk

(x, 0) = 0 with 0 ≤ k ≤ s, 0 ≤ |p| ≤ m. Therefore, for the first term of inequality
(3.5) we have

(3.6)
∫

ΩT

∂

∂t

(
uN

ts+1uN
ts+1

)
dxdt = ‖uN

ts+1(x, T )‖2
L2(Ω).

Denoting
(
k

s

)
=

s!
k!(s− k)!

and noting that aαβ = (−1)|α|+|β|a∗βα, we obtain

for the second term of inequality (3.5) :

(3.7)

2Re
∫

ΩT

m∑
|α|,|β|=0

(−1)m+|α| ∂s

∂ts
(aαβD

βuN)DαuN
ts+1dxdt

= 2Re
∫

ΩT

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂

∂t

(∂kaαβ

∂tk
DβuN

ts−kDαuN
ts

)
dxdt

− 2Re
∫

ΩT

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂k+1aαβ

∂tk+1
DβuN

ts−kDαuN
tsdxdt

− 2Re
∫

ΩT

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂kaαβ

∂tk
DβuN

ts−k+1DαuN
tsdxdt

− Re
∫

ΩT

m∑
|α|,|β|=0

(−1)m+|α|∂aαβ

∂t
DβuN

tsD
αuN

tsdxdt
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+
∫ T

0

(−1)m ∂

∂t
B(uN

ts , u
N
ts )(t)dt.

Since DpuN
tk

(x, 0) = 0, 0 ≤ k ≤ s, 0 ≤ |p| ≤ m, by applying the integration by
parts, from (3.7) we obtain

(3.8)

2Re
∫

ΩT

m∑
|α|,|β|=0

(−1)m+|α| ∂s

∂ts
(aαβD

βuN )DαuN
ts+1dxdt

= (−1)mB(uN
ts , u

N
ts)(T )

+ 2Re
∫
Ω

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂kaαβ

∂tk
DβuN

ts−kDαuN
ts

∣∣∣
t=T

dx

− 2Re
∫

ΩT

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂k+1aαβ

∂tk+1
DβuN

ts−kDαuN
tsdxdt

− 2Re
∫

ΩT

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂kaαβ

∂tk
DβuN

ts−k+1DαuN
tsdxdt

− Re
∫

ΩT

m∑
|α|,|β|=0

(−1)m+|α|∂aαβ

∂t
DβuN

tsD
αuN

tsdxdt.

Since
2Re

∫
ΩT

λ0u
N
tsu

N
ts+1dxdt = λ0‖uN

ts (x, T )‖2
L2(Ω),

from (3.5), (3.6) and (3.8) we obtain

(3.9)

‖uN
ts+1(x, T )‖2

L2(Ω) + (−1)mB(uN
ts , u

N
ts )(T ) + λ0‖uN

ts (x, T )‖2
L2(Ω)

= −2Re
∫
Ω

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂kaαβ

∂tk
DβuN

ts−kDαuN
ts

∣∣∣
t=T

dx

+ 2Re
∫

ΩT

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂k+1aαβ

∂tk+1
DβuN

ts−kDαuN
tsdxdt

+ 2Re
∫

ΩT

m∑
|α|,|β|=0

s∑
k=1

(−1)m+|α|
(
k

s

)
∂kaαβ

∂tk
DβuN

ts−k+1DαuN
tsdxdt

+ Re
∫

ΩT

m∑
|α|,|β|=0

(−1)m+|α|∂aαβ

∂t
DβuN

tsD
αuN

tsdxdt

+ 2Re
∫

ΩT

λ0u
N
tsu

N
ts+1dxdt− 2Re

∫
ΩT

ftsuN
ts+1dxdt.



2562 N. M. Hung, B. T. Kim and V. Obukhovskii

We have

(3.10)

(I) ≡ 2Re
∫
Ω

∑
|α|=|β|=0

1≤|α|,|β|≤m

s∑
k=1

(−1)m+|α|+1

(
k

s

)
∂kaαβ

∂tk
DβuN

ts−kDαuN
ts

∣∣∣
t=T

dx

≤ ε1‖uN
ts(x, T )‖2

Hm(Ω) + C(ε1)
s−1∑
k=0

‖uN
( x, T )tk‖2

Hm(Ω),

(II) ≡ Re
∫

ΩT

∑
|α|=|β|=0

1≤|α|,|β|≤m

(−1)m+|α| ∂aαβ

∂t
DβuN

tsDαuN
tsdxdt

≤ m∗µ
∫ T

0

‖uN
ts‖2

Hm(Ω)dt,

(III) ≡ 2Re
∫
ΩT

∑
|α|=|β|=0

1≤|α|,|β|≤m

s∑
k=1

(−1)m+|α|
(
k

s

)
∂k+1aαβ

∂tk+1
DβuN

ts−kDαuN
tsdxdt

+ 2Re
∫
ΩT

∑
|α|=|β|=0

1≤|α|,|β|≤m

s∑
k=1

(−1)m+|α|
(
k

s

)
∂kaαβ

∂tk
DβuN

ts−k+1DαuN
tsdxdt

≤ 2m∗µs
∫ T

0

‖uN
ts‖2

Hm(Ω)dt+
ε2
2

∫ T

0

‖uN
ts‖2

Hm(Ω)dt

+C(ε2)
s−1∑
k=0

∫ T

0

‖uN
tk‖2

Hm(Ω)dt

(IV) ≡ λ0‖uN
ts(x, T )‖2

L2(Ω) − 2Re
∫

ΩT

ftsuN
ts+1dxdt.

≤ (δλ0)2
∫ T

0

‖uN
ts‖2

Hm(Ω)dt+
2
δ2

∫ T

0

‖uN
ts+1‖2

L2(Ω)dt+δ
2

∫ T

0

‖fts‖2
L2(Ω)dt.

where C(ε1) > 0 depends on ε1, and C(ε2) > 0 depends on ε2. Using the Cauchy
inequality and Lemma 2.2, from (3.10) we get

(3.11)

‖uN
ts+1(x, T )‖2

L2(Ω) + (µ0 − ε1)‖uN
ts (x, T )‖2

Hm(Ω)

≤ 2
δ2

∫ T

0
‖uN

ts+1‖2
L2(Ω)dt + (m∗µ(2s + 1)

+ (δλ0)2 + ε2)
∫ T

0
‖uN

ts‖2
Hm(Ω)dt

+ δ2
∫ T

0
‖fts‖2

L2(Ω)dt

+C(ε1)
s−1∑
k=0

‖uN
tk‖2

Hm(Ω) +C(ε2)
s−1∑
k=0

∫ T

0
‖uN

tk‖2
Hm(Ω)dt

≤ 2
δ2

∫ T

0

(
‖uN

ts+1‖2
L2(Ω) +

(m∗µ(2s+ 1+(δλ0)2+ε2)δ2

2
‖uN

ts‖2
Hm(Ω)

)
dt
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+ δ2
∫ T

0
‖fts‖2

L2(Ω)dt+C(ε1)
s−1∑
k=0

‖uN
tk(x, T )‖2

Hm(Ω)

+C(ε2)
s−1∑
k=0

∫ T

0
‖uN

tk‖2
Hm(Ω)dt.

We find a solution δ2 from the equation:

(m∗µ(2s+ 1) + (δλ0)2 + ε2)δ2

2
= µ0 − ε1,

where 0 < ε1 < µ0 and ε2 > 0. We get

λ2
0δ

4 + (m∗µ(2s+ 1) + ε2)δ2 − 2(µ0 − ε1) = 0.

Denote by δ∗ the positive solution of this equation, we obtain

δ2∗ =




2(µ0−ε1)
m∗µ(2s+1)+ε2

if λ0=0,

−(m∗µ(2s+ 1)+ε2)+
√

(m∗µ(2s + 1)+ε2)2+8(µ0 − ε1)λ2
0

2λ2
0

if λ0 
=0..

Therefore, we have

2
δ2∗

=
(m∗µ(2s+ 1) + (δλ0)2 + ε2)

µ0 − ε1

=
m∗µ(2s + 1) + ε2 +

√
(m∗µ(2s + 1) + ε2)2 + 8(µ0 − ε1)λ2

0

2(µ0 − ε1)

We consider the function of variables ε1 and ε2:

γs(ε1, ε2)=
1

δ2∗(ε)
=
m∗µ(2s+1)+ε2+

√
(m∗µ(2s+1)+ε2)2+8(µ0−ε1)λ2

0

4(µ0−ε1)
with 0 < ε1 < µ0 and ε2 > 0 . Rewrite this equation in the form:

γs(ε1, ε2) =
m∗µ(2s+ 1) + ε2

4(µ0 − ε1)
+

√
(m∗µ(2s + 1) + ε2)2

16(µ0 − ε1)2
+

λ2
0

2(µ0 − ε1)
.

It is easy to check that
∂γs

∂ε1
> 0 with ∀ε1 ∈ (0, µ0) and

∂γs

∂ε2
> 0 with ∀ε2 > 0.

Put

γs = γs(ε1 = 0, ε2 = 0) =
1

δ2(0)
=
m∗µ(2s+ 1) +

√
(m∗µ(2s+ 1))2 + 8µ0λ

2
0

4µ0
.

Take s = h. Since γ > γh (see Theorem 3.1), there exist two constants
ε1, ε2 : 0 < ε1 < µ0, ε2 > 0 such that γ = γh(ε1, 2ε2). Denote γ∗ = γh(ε1, ε2).
We have
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(3.12) γ = γh(ε1, 2ε2) > γh(ε1, ε2) = γ∗.

From this fact and inequality (3.11) it follows that

(3.13)

‖uN
th+1(x, T )‖2

L2(Ω) + (µ0 − ε1)‖uN
th(x, T )‖2

Hm(Ω)

≤ 2γ∗
T∫

0

(
‖uN

th+1(x, t)‖2
L2(Ω) + (µ0 − ε1)‖uN

th(x, t)‖2
Hm(Ω)

)
dt

+ Ch(ε1, ε2)
( h−1∑

k=0

‖uN
tk(x, t)‖2

Hm(Ω)

+
h−1∑
k=0

T∫
0

‖uN
tk(x, t)‖2

Hm(Ω)dt +
∫

ΩT

|fth |2dxdt
)

≤ 2γ∗
T∫

0

(
‖uN

th+1(x, t)‖2
L2(Ω) + (µ0 − ε1)‖uN

th(x, t)‖2
Hm(Ω)

)
dt

+ Ch(ε1, ε2)
{ h−1∑

k=0

[
‖uN

tk(x, T )‖2
Hm(Ω)

+

T∫
0

‖uN
tk(x, t)‖2

Hm(Ω)dt
]

+ T‖fts‖2
L∞(0,∞;L2(Ω))

}
.

where Ch(ε1, ε2) > 0 depends on ε1 and ε2.
Let l be a non-negative integer and l ≤ h − 1. We now use the induction to

show that

(3.14)

l∑
k=0

[
‖uN

tk(x, T )‖2
Hm(Ω) +

T∫
0

‖uN
tk(x, t)‖2

Hm(Ω)dt
]

≤ C∗
l (ε1, ε2)e2Tγl(ε1,ε2)

l∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where ε1, ε2 are the constants as in (3.13), Cs(ε1, ε2) > 0 depends on ε1, ε2 and
γl(ε1, ε2) is the constant as in (3.12).

From (3.5) with s = 0 we have

(3.15)

∫
ΩT

∂

∂t

(
uN

t u
N
t

)
dxdt+ 2Re

∫
ΩT

m∑
|α|,|β|=0

(−1)m+|α|aαβD
βuNDαuN

t dxdt

= −2Re
∫

ΩT

fuN
t dxdt

In the same way as while the proof of inequality (3.11), from (3.15) we obtain
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(3.16)

‖uN
t ‖2

L2(Ω) + µ0‖uN‖2
Hm(Ω)

≤ (m∗µ+ (δλ0)2)

T∫
0

‖uN‖2
Hm(Ω)dt+

2
δ2

T∫
0

‖uN
t ‖2

L2(Ω)dt

+ δ2
T∫

0

‖f‖2
L2(Ω))

≤ 2
δ2

T∫
0

(
‖uN

t ‖2
L2(Ω) +

(m∗µ+ (δλ0)2)δ2

2
‖uN‖2

Hm(Ω)

)
dt

+ δ2
T∫

0

‖f‖2
L2(Ω)).

Choosing δ2 such that
(m∗µ+ (δλ0)2)δ2

2
= µ0, we get

δ2 =




2µ0

m∗µ
if λ0 = 0,

−m∗µ+
√

(m∗µ)2 + 8µ0λ
2
0

2λ2
0

if λ0 
= 0.

Put
JN (t) = ‖uN(x, t)‖2

L2(Ω) + µ0‖uN(x, t)‖2
Hm(Ω).

From (3.16) we obtain

JN(T ) ≤ m∗µ+
√

(m∗µ)2 + 8µ0λ
2
0

2µ2
0

∫ T

0
JN (t)dt+ δ2

T∫
0

‖f‖2
L2(Ω))

≤ m∗µ+
√

(m∗µ+8µ0λ
2
0

2µ2
0

∫ T

0
JN (t)dt+CT‖f‖2

L∞(0,∞;L2(Ω)), C=const.

From this estimate and from the Gronwall- Bellman inequality, we obtain

‖uN
t (x, T )‖2

L2(Ω) + µ0‖uN(x, T )‖2
Hm(Ω)

≤ C0 exp
{(m∗µ+

√
(m∗µ+ 8µ0λ

2
0

2µ2
0

)
T

}
‖f‖2

L∞(0,∞;L2(Ω)),

where C0 = const > 0, i.e.,

(3.17) ‖uN
t (x, T )‖2

L2(Ω) + µ0‖uN(x, T )‖2
Hm(Ω) ≤ C0e

2Tγ0‖f‖2
L∞(0,∞;L2(Ω)),

Since
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2γ0(ε1, ε2) =
m∗µ+ ε2 +

√
(m∗µ+ ε2)2 + 8(µ0 − ε1)λ2

0

2(µ0 − ε1)2
> 2γ0,

we have

(3.18) ‖uN
t (x, T )‖2

L2(Ω)+µ0‖uN(x, T )‖2
Hm(Ω)≤C0e

2Tγ0(ε1,ε2)‖f‖2
L∞(0,∞;L2(Ω))

From this inequality and by the arbitrariness of T , we obtain

(3.19)

T∫
0

‖uN (x, t)‖2
Hm(Ω)dt ≤

C0

µ0
e2Tγ0(ε1,ε2)‖f‖2

L∞(0,∞;L2(Ω)).

From (3.18), (3.19) it follows that

‖uN(x, T )‖2
Hm(Ω) +

T∫
0

‖uN(x, t)‖2
Hm(Ω)dt ≤ C∗

0e
2Tγ0(ε1,ε2)‖f‖2

L∞(0,∞;L2(Ω)).

Therefore, inequality (3.14) holds for l = 0.
Assume that (3.14) holds for all j ≤ l−1. From inequality (3.13) with s = j+1

we have

‖uN
tj+2(x, T )‖2

L2(Ω) + (µ0 − ε1)‖uN
tj+1(x, T )‖2

Hm(Ω)

≤ 2γj+1(ε1, ε2)

T∫
0

(
‖uN

tj+2(x, t)‖2
L2(Ω) + (µ0 − ε1)‖uN

tj+1(x, t)‖2
Hm(Ω)

)
dt

+Cj+1(ε1, ε2)
( j∑

k=0

‖uN
tk(x, T )‖2

Hm(Ω)

+
j∑

k=0

T∫
0

‖uN
tk(x, t)‖2

Hm(Ω)dt+ T‖ftj+1‖2
L∞(0,∞;L2(Ω))

)
,

where Cj+1(ε1, ε2) > 0 depends on ε1, ε2. From this inequality and by using the
induction on j we obtain

‖uN
tj+2(x, T )‖2

L2(Ω) + (µ0 − ε1)‖uN
tj+1(x, T )‖2

Hm(Ω)

≤ 2γj+1(ε1, ε2)

T∫
0

(
‖uN

tj+2(x, t)‖2
L2(Ω) + (µ0 − ε1)‖uN

tj+1(x, t)‖2
Hm(Ω)

)
dt

+Cj+1(ε1, ε2)
(
C∗

j (ε1, ε2)e2Tγj(ε1,ε2)
j∑

k=0

‖ftk‖2
L∞(0,∞;L2(Ω))

+ T‖ftj+1‖2
L∞(0,∞;L2(Ω))

)
,
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By the Gronwall- Bellman inequality we get

‖uN
tj+2(x, T )‖2

L2(Ω) + (µ0 − ε1)‖uN
tj+1(x, T )‖2

Hm(Ω)

≤ Cj,j+1(ε1, ε2)e2Tγj+1(ε1,ε2)
j+1∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where Cj,j+1(ε1, ε2) > 0 depends on ε1, ε2. Hence

‖uN
tj+1(x, T )‖2

Hm(Ω) ≤
Cj,j+1(ε1, ε2)
µ0 − ε1

e2Tγj+1(ε1,ε2)
j+1∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)).

In the same way as in the proof of inequality (3.19) we have∫ T

0
‖uN

tj+1(x, t)‖2
Hm(Ω)dt

≤ Cj,j+1(ε1, ε2)
2(µ0 − ε1)γj+1(ε1, ε2)

e2Tγj+1(ε1,ε2)
j+1∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)).

From these inequalities and by the induction hypothesis, we get

j+1∑
k=0

[
‖uN

tk(x, T )‖2
Hm(Ω) +

∫ T

0

‖uN
tk(x, t)‖2

Hm(Ω)dt
]

≤ C∗
j+1(ε1, ε2)e

2Tγj+1(ε1,ε2)
j+1∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)).

Therefore, (3.14) holds for all j ≤ l and the proof of (3.14) is completed.
Now we return to inequality (3.13). By using (3.14), from (3.13) we have

(3.20)

‖uN
th+1(x, T )‖2

L2(Ω) + (µ0 − ε1)‖uN
th(x, T )‖2

Hm(Ω)

≤ 2γ∗
T∫

0

(
‖uN

th+1(x, t)‖2
L2(Ω) + (µ0 − ε1)‖uN

th(x, t)‖2
Hm(Ω)

)
dt

+ Ch(ε1, ε2)
(
C∗

h−1(ε1, ε2)e
2Tγh−1(ε1,ε2)

h−1∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω))

+ T‖fth‖2
L∞(0,∞;L2(Ω))

)
.

Put

JN
h (T ) = ‖uN

th+1(x, T )‖2
L2(Ω) + (µ0 − ε1)‖uN

th(x, T )‖2
Hm(Ω),
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φ(T ) = Ch(ε1, ε2)
(
C∗

h−1(ε1, ε2)e
2Tγh−1(ε1,ε2)

h−1∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω))

+T‖fth‖2
L∞(0,∞;L2(Ω))

)
From inequality (3.20) we have

JN
h (T ) ≤ 2γ∗

T∫
0

JN
h (t)dt+ φ(T ).

Applying the Gronwall- Bellman inequality, from inequality (3.19) we obtain

(3.21) JN
h (T ) ≤

∫ T

0
e2γ∗(T−t)φ′(t)dt.

Since γh−1(ε1, ε2) < γh(ε1, ε2) = γ∗, it follows from (3.21) that

JN
h (T ) ≤ Ch−1,h(ε1, ε2)e2γ∗T

h∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)).

This implies that

(3.22)

‖uN
th+1(x, T )‖2

L2(Ω) + ‖uN
th(x, T )‖2

Hm(Ω)

≤ C∗
h−1,h(ε1, ε2)e2γ∗T

h∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)).

From (3.12) we have γ > γ∗. Therefore, by multiplying e−2γT to the both sides
of inequality (3.22) and integrating it with respect to T from 0 to ∞, we obtain

(3.23) ‖uN
th‖2

Hm,1(e−γt,Ω∞) ≤ C
h∑

k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of N and f .
We now return to inequality (3.17). Since γ∗0 > γ0, by multiplying the both

sides of inequality (3.17) on e−2Tγ∗
0 and integrating with respect to T ∈ (0,∞), we

have
‖uN‖2

Hm,1(e−γ∗
0 t,Ω∞)

≤ C‖f‖2
L∞(0,∞;L2(Ω)),

where C = const. Therefore, there exist a subsequence which converges weakly
to a function v in Hm,1(e−γ∗

0 t,Ω∞). It is easy to check that v is a generalized
solution of problem (2.3)-(2.5) in the space Hm,1(e−γ∗

0 t,Ω∞). Since this problem
has exactly one generalized solution in the space Hm,1(e−γ∗

0 t,Ω∞), we have v ≡ u.
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From (3.23) it follows that
{
uN

th

}
is bounded in Hm,1(e−γt,Ω∞). We can

choose a subsequence which converges weakly to a function uh in Hm,1(e−γt,Ω∞).
By passing in (3.23) to the limit for a weakly convergent subsequence, we obtain

‖uth‖2
Hm,1(e−γt,Ω∞) ≤ C

h∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f . The proof of Theorem 3.1 is
completed.

4. REGULARITY WITH RESPECT TO BOTH OF TIME AND SPATIAL VARIABLES

Let Ω be a bounded domain in Rn with the boundary ∂Ω. We suppose that ∂Ω
is a infinitely differentiable surface everywhere except the coordinate origin, in a
neighborhood of which the domain Ω coincides with the cone K = {x : x/|x| ∈ G},
where G is a smooth domain on the unit sphere Sn−1.

Suppose that w = (w1, ..., wn−1) is a local coordinate system on the unit sphere
Sn−1 and L0(0, t, D) is the principal part of the operator L(x, t, D) at the coordinate
origin. Then we can write L0(0, t, D) in the form

L0(0, t, D) = r−2mQ(w, t, rDr, Dw)

whereQ(w, t, rDr, Dw) is the linear operator with smooth coefficients, Dr = i∂/∂r

and Dw = ∂/∂w1.....∂wn−1. Consider the spectral problem:

(4.1) Q(ω, t, λ, Dw)v(w) = 0, w ∈ G,

(4.2) Dα
wv(w) = 0, w ∈ ∂G, |α| = 0, 1, ...,m− 1.

It is well known (see [2]; p. 39) that for every t ∈ [0,∞) its spectrum is discrete.
We consider the Dirichlet problem for an elliptic system with the parameter t:

(4.3) (−1)m−1L0(0, t, D) = F (x, t), x ∈ Ω.

The function u(x, t) is called a generalized solution of the Dirichlet problem

for system (4.3) in the space Hm(Ω) if u(x, t) ∈
◦
Hm(Ω) for almost all t ∈ [0,∞)

and the identity

(−1)m−1

∫
Ω

m∑
|α|,|β|=1

(−1)|α|aαβ(0, t)Dβu(x, t)Dαϕ(x)dx = −
∫
Ω

F (x, t)ϕ(x)dx

holds for all test functions ϕ(x) ∈
0
Hm(Ω), t ∈ [0,∞).

From Lemma 2.1 of Section 2 of this paper and by using the similar arguments
as in the proof of Lemma 3.2 in [4] we obtain the following result.
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Lemma 4.1. Suppose F (x, t) ∈ H l,0
β (e−γt,Ω∞) for almost all t ∈ [0,∞) and

u(x, t) is a generalized solution of Dirichlet problem for system (4.3) in the space
Hm(Ω) such that u(x, t) ≡ 0 outside U0. Then u(x, t) ∈ H

2m+l,0
β (e−γt,Ω∞) and

‖u‖2
H2m+l,0

β (e−γt,Ω∞)
≤ C

(
‖u‖2

H2m+l−1,0
β−1 (e−γt,Ω∞)

+ ‖F‖2
H l,0

β (e−γt,Ω∞)

)
,

where C = const > 0 is independent of u and F .

We surround the origin by a neighborhood U0 of a diameter sufficiently small
so that the intersection of Ω and U0 coincides with the cone K. From Theorem 3.1
with h = 1 and by using the similar arguments as in the proof of Lemma 3.1 in [4],
we have the following assertion.

Lemma 4.2. Assume that problem (2.3)-(2.5) has exactly one generalized so-
lution u(x, t) in the space Hm,1(e−γ∗

0 t,Ω∞). and the following conditions are
fulfilled:

(i) sup
(x,t)∈Ω∞

∣∣∣∂kaαβ

∂tk

∣∣∣ ≤ µ; 1 ≤ |α|, |β| ≤ m, 0 ≤ k ≤ 2,

(ii) ftk ∈ L∞(0,∞;L2(Ω)), 0 ≤ k ≤ 1,
(iii) f(x, 0) = 0.

In addition, assume that u(x, t) ≡ 0 outside U 0. Then for every γ > max{γ1, γ
∗
0}

the generalized solution u(x, t) belongs to H 2m,2
m (e−γt,Ω∞) and

(4.1) ‖u‖2
H

2m,2
m (e−γt,Ω∞)

≤ C(‖f‖2
L∞(0,∞;L2(Ω)) + ‖ft‖2

L∞(0,∞;L2(Ω)),

where C = const > 0 does not depend on u and f .

Theorem 4.3. Assume that problem (2.3)-(2.5) has exactly one genenalized
solution u(x, t) in the space Hm,1(e−γ∗

0 t,Ω∞), and the following conditions are
fulfilled:

(i) sup
(x,t)∈Ω∞

∣∣∣∂kaαβ

∂tk

∣∣∣ ≤ µ; 1 ≤ |α|, |β| ≤ m, 0 ≤ k ≤ 2m+ l+ 1,

(ii) ftk ∈ L∞(0,∞;L2(Ω)), 0 ≤ k ≤ l+ 2m,
(iii) ftk(x, 0) = 0, 0 ≤ k ≤ l+ 2m− 1.

In addition, suppose that the strip

m− n

2
≤ Imλ ≤ 2m+ l− n

2
does not contain the points of the spectrum of problem (2.7) − (2.8) for every
t ∈ [0,∞). Then for every γ > max{γ2m+l, γ

∗
0} the generalized solution u(x, t)

belongs to the space H 2m+l
0 (e−γt,Ω∞) and the following inequality holds
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‖u‖2
H2m+l

0 (e−γt,Ω∞)
≤ C

2m+l∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f .

Proof.

Case 1. We prove that the Theorem is true for a generalized solution u(x, t)
of problem (2.3)-(2.5) in the space Hm,1(e−γt,Ω∞) satisfying u(x, t) ≡ 0 outside
U0. First, we consider the case l = 0 and rewrite system (2.3) in the form

(4.5) (−1)m−1L0(0, t, D)u= F (x, t),

where F (x, t) = utt + f + (−1)m−1[L0(0, t, D)− L(x, t, D)]u. From Lemma 4.2
and Theorem 3.1 it follows that F (x, t) ∈ H0,0

m−1(e
−2γt,Ω∞). Therefore, F (x, t) ∈

H0
m−1(Ω) for almost all t ∈ [0,∞). On the other hand, for every t ∈ [0,∞) the

strip m − (n/2) ≤ Imλ ≤ m + 1 − (n/2) does not contain any points of the
spectrum of problem (4.2)-(4.3). So from the results of the work [8] it follows that
for almost all t ∈ [0,∞) the function u(x, t) belongs to the space H2m

m−1(Ω) and

‖u‖2
H2m

m−1(Ω) ≤ C
(
‖utt‖2

L2(Ω) + ‖f‖2
L2(Ω)

)
,

where C = const > 0 is independent of u and f . Using similar arguments we can
show that

‖u‖2
H2m

0 (Ω) ≤ C
(
‖utt‖2

L2(Ω) + ‖f‖2
L2(Ω)

)
,

where C = const > 0 is independent of u and f . Multiplying by e−4γt the both
sides of this inequality and integrating with respect to t from 0 to ∞, we obtain

‖u‖2
H

2m,0
0 (e−2γt ,Ω∞)

≤ C
(
‖utt‖2

L2(Ω∞) + ‖f‖2
L∞(0,∞;L2(Ω))

)
,

where C = const > 0 is independent of u and f . This inequality and Theorem 3.1
imply

(4.6) ‖u‖2
H

2m,0
0 (e−2γt,Ω∞)

≤ C
(
‖f‖2

L∞(0,∞;L2(Ω)) + ‖ft‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f.
We claim that the following inequality is valid:

(4.7) ‖uts‖2
H2m,0

0 (e−2γt,Ω∞)
≤ C

2m∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f .
Indeed, differentiating system (2.3) with respect to t and putting v = uts , we

have
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(4.8) (−1)m−1L(x, t, D)v = vtt + fts + (−1)m
s∑

k=1

(
s

k

)
Ltkuts−k,

where
Ltk =

m∑
|α|,|β|=1

Dα
(∂kaαβ

∂tk
Dβ

)
+

m∑
|α|=1

∂kaα

∂tk
Dα +

∂ka

∂tk
.

Put

F1 = vtt − fts − (−1)m
s∑

k=1

(
s

k

)
Ltkuts−k +

(− 1)m−1(L0(0, t, D)−L(x, t, D)
)
v.

Therefore, we have the system:

(4.9) (−1)m−1L0(0, t, D)v = F1(x, t).

Using the induction hypothesis and the similar arguments as in the proof of (4.6),
we obtain the inequality

(4.10) ‖uts‖2
H2m,0

0 (e−2γt,Ω∞)
= ‖v‖2

H2m,0
0 (e−2γt,Ω∞)

≤ C

2m∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0. It follows that inequality (4.7) is true and so the claim is
proved.

Since

‖u‖2
H2m

0 (e−2γt,Ω∞) ≤
2m−1∑
k=0

‖utk‖2
H2m,0

0 (e−2γt,Ω∞)
+ ‖ut2m‖2

H0,0
0 (e−2γt,Ω∞)

,

from inequality (4.10) and Theorem 3.1, we have

‖u‖2
H2m

0 (e−2γt,Ω∞) ≤ C

2m∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f . Hence the Theorem is proved for
l = 0.

Suppose that the conclusion of the Theorem is true for all s ≤ l − 1, that is

(4.11) ‖u‖2
H2m+s

0 (e−γt,Ω∞)
≤ C

2m+s∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)), s ≤ l − 1,

where C = const > 0 is independent of u and f. We need to show that the
conclusion of the Theorem holds for all s ≤ l.

First, we prove the following inequality:

(4.12) ‖uts‖2
H2m+l−s

0 (e−γt,Ω∞)
≤ C

2m+l∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω))
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for s = l, l − 1, ....., 0, where C = const > 0 is independent of u and f . Since
ftk ∈ L∞(0,∞;L2(Ω)) for k ≤ l + 2m, ftk(x, 0) = 0 for k ≤ l + 2m− 1, from
Theorem 3.1 it follows that utl+2 ∈ H0,0

0 (e−2γt,Ω∞). Using this fact and by the
similar arguments as in the proof of inequality (4.7) we obtain inequality (4.12) for
s = l. Let us assume that inequality (4.12) is true for s = l, l − 1, .., j + 1. Set
v = utj . From identity (4.8) it follows that

(4.13) (−1)m−1Lv = F,

where

F = F (x, t) = vtt + ftj + (−1)m
j∑

k=1

(
j

k

)
Ltkutj−k ,

Ltk =
m∑

|α|,|β|=1

Dα(
∂kaαβ

∂tk
Dβ) +

m∑
|α|=1

∂kaα

∂tk
Dα +

∂ka

∂tk
.

By virtue of the induction hypothesis with respect to l, we have
j∑

k=1

(
j

k

)
Ltkutj−k ∈ H l−j

0 (e−γt,Ω∞).

On the other hand, in view of the induction assumption with respect to s,

vtt ∈ H
l−j
0 (e−γt,Ω∞).

Therefore, F (x, t) ∈ Hl−j
0 (e−2γt,Ω∞). From this fact and the relation

H l−j
0 (e−2γt,Ω∞) ⊂ H l−j−1,0

−1 (e−2γt,Ω∞)

it follows that F (x, t) ∈ H
l−j−1,0
−1 (e−2γt,Ω∞).

By repeating arguments that are analogous to those which were used in the
proof of this theorem with l = 0, we obtain v ∈ H2m+l−j−1,0

−1 (e−2γt,Ω∞). The
application of Lemma 4.1 yields utj = v ∈ H2m+l−j,0

0 (e−2γt,Ω∞) and

(4.14) ‖v‖2
H2m+l−j,0

0 (e−2γt,Ω∞)
≤ C

2m+l∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f.
Since vspace-0.1cm

(4.15)
‖utj‖2

H2m+l−j
0 (e−γt,Ω∞)

≤ ‖utj+1‖2
H2m+l−j−1

0 (e−γt,Ω∞)
+ ‖utj‖2

H2m+l−j,0
0 (e−γt,Ω∞)

,

by the induction hypothesis with respect to s, it follows that
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‖utj‖2
H2m+l−j

0 (e−γt,Ω∞)
≤ C

2m+l∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f . Hence we obtain the conclusion
of the theorem for j = 0.

Case 2. We now prove the theorem for the general case. Take a function
u0 = ϕ0u, where ϕ0 ∈

◦
C∞(U0) and ϕ0 ≡ 1 in a neighborhood of the coordinate

origin. The function ϕ0 satisfies the system

(−1)m−1L(x, t, D)u0 − (u0)tt = ϕ0f + L1(x, t, D)u,

where L1 is a linear differential operator having order less than 2m. The coefficients
of this operator depend on the choice of the function ϕ0 and are equal to 0 outside
U0. Using this fact and by the similar arguments as in the proof of the case 1 we
have

(4.16) ‖ϕ0u‖2
H2m+l

0 (e−γt,Ω∞)
≤ C

2m+l∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f.
The function ϕ1u = (1−ϕ0)u is equal to 0 in a neighborhood of the coordinate

origin. We now apply this function to the theorem on the smoothness of a solution of
the elliptic problem in a smooth domain to conclude that ϕ1u ∈ H2m+l

0 (e−γt,Ω∞)
and

(4.17) ‖ϕ1u‖2
H2m+l

0 (e−γt,Ω∞)
≤ C

2m+l∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f. Since u = ϕ0u+ ϕ1u, it follows
from the inequalities (4.16) and (4.17) that

‖u‖2
H2m+l

0 (e−γt,Ω∞)
≤ C

2m+l∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C = const > 0 is independent of u and f. The proof of the theorem is
completed.
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