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LAGRANGIAN H-UMBILICAL SUBMANIFOLDS
OF PARA-KÄHLER MANIFOLDS

Bang-Yen Chen

Abstract. The notion of Lagrangian H-umbilical submanifolds of Kähler
manifolds introduced in [3, 4] is closely related with several problems in La-
grangian geometry (cf. [7]). The classification of such submanifolds was done
in a series of author’s papers [3, 4, 5]. On the other hand, the study of La-
grangian submanifolds of para-Kähler manifolds was initiated very recently in
[10]. In this paper we study Lagrangian H-submanifolds of para-Kähler man-
ifolds. As results we prove several fundemental properties of such submani-
folds. Moreover, we are able to classify Lagrangian H-umbilical submanifolds
of the para-Kähler n-plane (E2n

n , g0, P ) for n ≥ 3.

1. INTRODUCTION

An almost para-Hermitian manifold is a manifold M endowed with an almost
product structure P �= ±I and a semi-Riemannian metric g such that

P 2 = I, g(PX, PY ) = −g(X, Y )(1.1)

for vector fields X , Y tangent to M , where I is the identity map. Consequently, the
dimension of M is even and the signature of g is (n, n), where dimM = 2n. Let
∇ denote the Levi-Civita connection of M . An almost para-Hermitian manifold is
called para-Kähler if it satisfies ∇P = 0 identically.

Properties of para-Kähler manifolds were first studied by R. K. Rashevski in
1948 in which he considered a neutral metric of signature (n, n) defined from a
potential function on a locally product 2n-manifold [20]. He called such manifolds
stratified space. Para-Kähler manifolds were explicitly defined by B. A. Rozenfeld
in 1949 [21]. Rozenfeld compared Rashevskij’s definition with Kähler’s definition
in the complex case and established the analogy between Kähler and para-Kähler
ones. Such manifolds were also defined independently by H. S. Ruse in 1949 [22].
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Key words and phrases: Para-K ähler manifold, Lagrangian H-umbilical submanifold, Para-Kähler
n-plane.

2483



2484 Bang-Yen Chen

The Levi-Civita connection of a para-Kähler manifold (M, g, P ) preserves P ,
equivalently, its holonomy group Holp, p ∈M, preserves the eigenspace decompo-
sition TpM = T+

p ⊕ T−
p . The parallel eigendistributions T ± of P are g-isotropic

integrable distributions. Moreover, they are Lagrangian distributions with respect
to the Kähler form ω = g ◦ P , which is parallel and hence closed. The leaves of
these distributions are totally geodesic submanifolds, Thus, from the standpoint of
symplectic manifolds, a para-Kähler structure can be regarded as a pair of com-
plementary integrable Lagrangian distributions (T+, T−) on a symplectic manifold
(M,ω). Such a structure is often called a bi-Lagrangian structure or a Lagrangian
2-web (cf. [16]).

There exist many para-Kähler manifolds, for instance, a homogeneous manifold
M = G/H of a semisimple Lie group G admits an invariant para-Kähler structure
(g, P ) if and only if it is a covering of the adjoint orbit AdGh of a semisimple
element h (see [19] for details).

Analogous to totally real submanifolds in an almost Hermitian manifold (cf.
[11]), we call a space-like submanifold N in an almost para-Hermitian manifold
(M2m

m , g, P ) totally real if P maps each tangent space TpN , p ∈ N , into the
normal space T⊥

p N . In particular, we call N Lagrangian if P (TpN ) = T⊥
p N for

each p ∈ N .
Lagrangian submanifolds in Kähler manifolds have been studied extensively

since early 1970s (see [6, 7] for surveys). In contrast, no results on Lagrangian sub-
manifolds in para-Kähler manifolds are known (see [16, Section 5: Open Problems],
in particular, see Open Problem (3)). This is the reason the author initiated recently
the study of Lagrangian submanifolds of para-Kähler manifolds in [10] in which
two optimal inequalities for Lagrangian submanifolds in flat para-Kähler manifolds
were proved. Lagrangian submanifolds satisfying the equality case of one of the
two inequalities are also classified in [10].

On the other hand, the notion of Lagrangian H-umbilical submanifolds of Kähler
manifolds introduced in [3, 4] is closely related with several problems in Lagrangian
geometry (cf. [7]). The classification of such submanifolds was achieved in a series
of author’s papers [3, 4, 5].

In this paper we introduce and study Lagrangian H-submanifolds of para-Kähler
manifolds. As consequences, we prove several fundamental properties of such sub-
manifolds. Moreover, we classify Lagrangian H-umbilical submanifolds of the
para-Kähler n-plane (E2n

n , g0, P ) with n ≥ 3.

2. PRELIMINARIES

2.1. Para-Kähler manifolds

Definition 2.1. An almost para-Hermitian manifold is a manifold M endowed
with an almost product structure P �= ±I and a pseudo-Riemannian metric g such
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that

P 2 = I, and g(Pv, Pw) = −g(v, w)(2.1)

for vectors v, w ∈ Tp(M), p ∈M , where I is the identity map.

The dimension of an almost para-Hermitian manifold M is even and the metric
is neutral.

Definition 2.2. An almost para-Hermitian manifold (M, g, P ) is called para-
Kähler if it satisfies ∇P = 0 identically, where ∇ is the Levi-Civita connection of
M .

The simplest example of para-Kähler manifolds is the pseudo-Euclidean 2n-
space E

2n
n endowed with the neutral metric:

g0 = −
n∑

i=1

dx2
i +

n∑
j=1

dy2
j(2.2)

with P being defined by

P

(
∂

∂xj

)
=

∂

∂yj
, P

(
∂

∂yj

)
=

∂

∂xj
(2.3)

for j = 1, . . . , n. We simply called (E2n
n , g0, P ) the para-Kähler n-plane.

The following result is well-known.

Lemma 2.1. The curvature tensor of a para-Kähler manifold satisfies

R(X, Y ) ◦ P = P ◦R(X, Y ),(2.4)

R(PX, PY ) = R(X, Y ),(2.5)

R(X, PY ) = R(PX, Y ).(2.6)

For a para-Kähler manifold M , (2.1) implies that

g(Pv, w)+ g(v, Pw) = 0, v, w ∈ Tp(M), p ∈M.(2.7)

Thus g(v, Pv) = 0. If {v, Pv} determines a non-degenerate plane section called a
P -section, the sectional curvature

HP (v) = K(v ∧ Pv)
of Span{v, Pv} is called a para-sectional curvature.

By definition a para-Kähler space form is a para-Kähler manifold of constant
para-sectional curvature.
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The para-Kähler n-plane (E2n
n , g0, P ) is the standard model of flat para-Kähler

manifolds. Models of para-Kähler space forms with nonzero para-sectional curvature
were constructed in [17].

The Riemann curvature tensor of a para-Kähler space formsM2n
n (4c) of constant

para-sectional curvature 4c satisfies

(2.8)
R(X, Y )Z = c{g(Y, Z)X − g(X,Z)Y + g(PY, Z)PX

− g(PX, Z)PY + 2g(X, PY )PZ}.
2.2. Basic formulas and definitions

Let ψ : N → M 2n
n be an isometric immersion of a Riemannian n-manifold

N into a para-Kähler manifold (M2n
n , g, P ). Denote by ∇′ and ∇ the Levi-Civita

connections on N and M2n
n , respectively.

For vector fields X, Y tangent to N and ξ normal to N , the formulas of Gauss
and Weingarten are given respectively by (cf. [1, 2]):

∇XY = ∇′
XY + h(X, Y ),(2.9)

∇Xξ = −AξX +DXξ,(2.10)

where h, A and D are the second fundamental form, the shape operator, and the
normal connection of N in M2n

n .
The shape operator and the second fundamental form are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉 ,(2.11)

where 〈 , 〉 is the inner product. The mean curvature vector is defined by

H =
(

1
n

)
traceh.(2.12)

The equations of Gauss, Codazzi and Ricci are given respectively by

R′(X, Y )Z = R(X, Y )Z + Ah(Y,Z)X −Ah(X,Z)Y,(2.13)

(R(X, Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X,Z),(2.14)

g(RD(X, Y )ξ, η) = g(R(X, Y )ξ, η) + g([Aξ, Aη]X, Y )(2.15)

for X, Y, Z tangent to N and ξ, η normal to N , where R′ (respectively, R) is the
curvature tensor of N (respectively, ofM2n

n ), (R(X, Y )Z)⊥ is the normal component
of R(X, Y )Z, and ∇̄h and RD are defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇′
XY, Z)− h(Y,∇′

XZ),(2.16)

RD(X, Y ) = DXDY −DYDX −D[X,Y ].(2.17)
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3. LAGRANGIAN SUBMANIFOLDS OF PARA-KÄHLER MANIFOLDS

The following basic lemma is given in [10].

Lemma 3.2. Let N be a Lagrangian submanifold of a para-K ähler manifold
M2n

n . Then we have

(i) P (∇′
XY ) = DX(PY ),

(ii) APXY = −P (h(X, Y )),

(iii) 〈h(X, Y ), PZ〉 = 〈h(Y, Z), PX〉 = 〈h(Z,X), PY 〉,
(iv) P (R′(X, Y )Z) = RD(X, Y )PZ

for X, Y, Z tangent to N .

The equations of Gauss and Codazzi for a Lagrangian submanifold N of a
para-Kähler space form M2n

n (4c) are given respectively by

R′(X, Y ;Z,W ) =
〈
Ah(Y,Z)X,W

〉− 〈Ah(X,Z)Y,W
〉

(3.1)

+ c (〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉),
(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z)(3.2)

for X, Y, Z,W tangent to N .
If we put h = P ◦ σ (equivalently σ = P ◦ h), then (2.1) and Lemma 3.2(iii)

imply that〈
Ah(Y,Z)X,W

〉
= 〈h(X,W ), h(Y, Z)〉= 〈h(X,W ), Pσ(Y,Z)〉

= 〈h(σ(Y, Z), X), PW 〉 = −〈σ(σ(Y, Z), X),W 〉 .
Therefore, equation (3.1) of Gauss can be rephrased as

R′(X, Y )Z = σ(σ(X,Z), Y )− σ(σ(Y, Z), X)

+ c 〈Y, Z〉X − c 〈X,Z〉Y.
It follows Lemma 3.2(i) that the equation of Ricci is nothing but the equation

of Gauss for Lagrangian submanifolds of para-Kähler manifolds.
Now, we state the fundamental existence and uniqueness theorems for La-

grangian submanifolds in (E2n
n , g0, P ) are given by the following.

Existence Theorem. Let N be a simply-connected Riemannian n-manifold. If
σ is a TN -valued symmetric bilinear form on N such that

(a) g(σ(X, Y ), Z) is totally symmetric,
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(b) (∇σ)(X, Y,Z) is totally symmetric,

(c) R′(X, Y )Z = σ(σ(X,Z), Y ) − σ(σ(Y, Z),X),
then there is a Lagrangian isometric immersion L : N → (E 2n

n , g0, P ) whose
second fundamental form is h = P ◦ σ.

Uniqueness Theorem. Let L1, L2 : N → (E2n
n , g0, P ) be two Lagrangian

isometric immersions of a Riemannian n-manifold N with second fundamental
forms h1 and h2, respectively. If

g(h1(X, Y ), PL1�Z) = g(h2(X, Y ), PL2�Z)

for all vector fieldsX, Y, Z tangent toN , then there is an isometry Φ of (E 2n
n , g0, P )

such that L1 = Φ ◦ L2.

Similar existence and uniqueness theorems also hold for Lagrangian submani-
folds in para-Kähler space forms.

4. LAGRANGIAN H-UMBILICAL SUBMANIFOLDS

A pseudo-Riemannian submanifold N of a pseudo-Riemannian manifold is
called totally umbilical if its second fundamental form satisfies

h(X, Y ) = 〈X, Y 〉H(4.1)

for X, Y tangent to N .

Proposition 4.1. The only totally umbilical Lagrangian submanifold N of a
para-Kähler space form M 2n

n (4c) with n ≥ 2 is the totally geodesic ones.

Proof. Let N be a totally umbilical Lagrangian submanifold of a para-Kähler
space form M2n

n (4c) with n ≥ 2. Assume that N is non-totally geodesic, then
H �= 0.

It follows from (4.1) that (∇̄Xh)(Y, Z) = 〈Y, Z〉DXH . Thus, after applying
equation (3.2) of Codazzi, we find

〈Y, Z〉DXH = 〈X,Z〉DYH(4.2)

for X, Y, Z tangent to N . For any X ∈ TN , by choosing 0 �= Y = Z ⊥ X , we get
DH = 0. Therefore, it follows from the equation of Gauss that N is of constant
sectional curvature c− ||H ||2 < c, where ||H || =√−〈H,H〉.

Let us put Z = PH . Then Lemma 3.1(i) implies that ∇ ′Z = 0. Thus, Z is
a nonzero parallel vector field on N , which implies that N is a flat Riemannian
manifold. Hence, we get c = −〈H,H〉 > 0.
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Since N is totally umbilical, we have [AH , Aξ] = 0 for any normal vector ξ.
Hence, by using DH = 0 we find from equation (2.15) of Ricci that

g(R(Z, Y )H, PY ) = 0(4.3)

for Y, Z ∈ TN . On the other hand, by applying (2.8) we also have

g(R(Z, Y )H, PY ) = c{g(PY,H)g(PZ,PY ) − g(PZ,H)g(PY, PY )}(4.4)

Thus, after choosing Y, Z such that Z = PH and g(Y, Z) = 0, we find g(H,H) =
0. But this is a contradiction. Consequently, N must be totally geodesic.

Definition 4.3. A Lagrangian submanifoldN of a para-Kähler manifold is called
Lagrangian H-umbilical if the second fundamental form takes the following simple
form:

(4.5)
h(e1, e1) = λPe1, h(e2, e2) = · · · = h(en, en) = µPe1,

h(e1, ej) = µPej , h(ej , ek) = 0, 2 ≤ j �= k ≤ n,

for some functions λ, µ with respect to some orthonormal local frame field.

In view of Proposition 4.1, Lagrangian H-umbilical submanifolds are the sim-
plest Lagrangian submanifolds next to totally geodesic ones.

The following result shows that there exist many non-totally geodesic Lagrangian
H-umbilical submanifolds.

Proposition 4.2. Let γ = (γ1, γ2) : I → E
2
1 be a unit speed space-like curve

satisfying 〈γ, γ〉< 0. Define L : I ×R× Sn−2(1) → E
2n
n by

(4.6)
(
γ1(s) cosh t, γ2(s)z sinh t, γ2(s) cosh t, γ1(s)z sinh t

)
,

where z = (z2, . . . , zn) ∈ E
n−1 satisfies z2

2 + z2
3 + · · ·+ z2

n = 1. Then L defines a
Lagrangian H-umbilical submanifold of (E 2n

n , g0, P ) satisfying (4.5) with

λ = κ, µ =
γ ′1γ2 − γ1γ

′
2

||γ||2 .(4.7)

Proof. Under the hypothesis it follows from (4.6) that

Ls = (γ ′1 cosh t, γ ′2z sinh t, γ ′2 cosh t, γ ′1z sinh t),(4.8)

Lt = (γ1 sinh t, γ2z cosh t, γ2 sinh t, γ1z cosh t),(4.9)

XL = (0, γ2(sinh t)X, 0, γ1(sinh t)X),(4.10)

Lss = (γ ′′1 cosh t, γ ′′2z sinh t, γ ′′2 cosh t, γ ′′1z sinh t),(4.11)

Lst = (γ ′1 sinh t, γ ′2z cosh t, γ ′2 sinh t, γ ′1z cosh t),(4.12)
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XLs = (γ ′1 cosh t, γ ′2(sinh t)X, γ ′2 cosh t, γ ′1(sinh t)X),(4.13)

XLt = (γ1 sinh t, γ2(cosh t)X, γ2 sinh t, γ1(cosh t)X),(4.14)

XY L = (0, γ2(cosh t)∇′
XY, 0, γ1(cosh t)∇′

XY )(4.15)

− (0, 〈X, Y 〉 γ2z cosh t, 0, 〈X, Y 〉 γ1z cosh t)

for X, Y tangent to Sn−2(1). From (4.8)-(4.10) we get

P(Ls) = (γ ′2 cosh t, γ ′1z sinh t, γ ′1 cosh t, γ ′2z sinh t),(4.16)

P(Lt) = (γ2 sinh t, γ1z cosh t, γ1 sinh t, γ2z cosh t),(4.17)

P(XL) = (0, γ1(sinh t)X, 0, γ2(sinh t)X).(4.18)

Since γ(s) = (γ1(s), γ2(s)) is a unit speed space-like curve in E
2
1, (4.8)-(4.10)

imply that the induced metric via L is given by

g = ds2 + ||γ||2(dt2 + sinh2 tg1),(4.19)

where g1 is the metric of Sn−2(1). From (4.8)-(4.10) and (4.16)-(4.18), we know
that L is Lagrangian. Because γ is unit speed and space-like, we have

(γ ′′1 (s), γ ′′2(s)) = κ(s)(γ ′2(s), γ
′
1(s))(4.20)

for some function κ. Thus, by (4.11)-(4.20) and 〈z, X〉 = 0 for X ∈ TN , we
obtain (4.5) with

λ = κ, µ =
γ ′1γ2 − γ1γ

′
2

||γ||2 .(4.21)

Consequently, L defines a Lagrangian H-umbilical submanifold with the desired
properties. This completes the proof of the proposition.

Similarly, we also have the following.

Proposition 4.3. Let γ = (γ1, γ2) : I → E
2
1 be a unit speed space-like curve

satisfying 〈γ, γ〉> 0. Define L : I ×R× Sn−2(1) → E
2n
n by

(4.22)
(
γ1(s) sin t, γ1(s)z cos t, γ2(s) sin t, γ2(s)z cos t

)
,

where z = (z2, . . . , zn) ∈ E
n−1 satisfies z2

2 + z2
3 + · · ·+ z2

n = 1. Then L defines a
Lagrangian H-umbilical submanifold of (E 2n

n , g0, P ) satisfying (4.5) with

λ = κ, µ =
γ ′1γ2 − γ1γ

′
2

||γ||2 .(4.23)
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Proof. This can be proved in the same as Proposition 4.2
Let N be a Lagrangian H-umbilical submanifold of a para-Kähler submanifold

satisfying (4.5) with respect to an orthonormal frame {e1, . . . , en}. We put

∇′
Xei =

n∑
j=1

ωj
i (X)ej, i = 1, . . . , n.(4.24)

Lemma 4.3. Let N be a LagrangianH-umbilical submanifold of a para-K ähler
space form M 2n

n (4c) which satisfies (4.5) with respect to an orthonormal frame
{e1, . . . , en}. The we have

e1µ = (λ− 2µ)ω2
1(e2) = · · · = (λ− 2µ)ωn

1 (en),(4.25)

ejλ = (2µ− λ)ω1
j (e1), j > 1,(4.26)

(λ− 2µ)ωj
1(ek) = 0, 1 < j �= k ≤ n,(4.27)

ejµ = 3µωj
1(e1),(4.28)

µωj
1(e1) = 0, j > 1.(4.29)

Proof. By applying (4.5), Lemma 3.2(i) and Codazzi’s equation, we obtain
this lemma by direct computation.

Proposition 4.4. Let N be a Lagrangian H-umbilical submanifold of a para-
Kähler space form M 2n

n (4c) satisfying (4.5). If λ = 2µ, then µ is a constant, say
b, and N is of constant sectional curvature c− b 2.

Proof. Under the hypothesis, it follows from (4.25) and (4.26) that

e1µ = e2λ = · · · = enλ = 0.

Thus, by using λ = 2µ we see that µ is a constant, say b. Now, by applying the
equation of Gauss and µ = b we conclude that N is of constant curvature −b2.

Theorem 4.1. A LagrangianH-umbilical submanifold of (E 2n
n , g0, P ) satisfying

λ = 2µ is either a flat totally geodesic Lagrangian submanifold or congruent to
an open portion of

(4.30)
(cosh2(bs) cosh t

b
,
sinh(2bs) sinh t

2b
z,

sinh(2bs) cosh t
2b

,
cosh2(bs) sinh t

b
z
)

with b �= 0, where z = (z2, . . . , zn) ∈ E
n−1 satisfies z2

2 + z2
3 + · · ·+ z2

n = 1.

Proof. Let N be a Lagrangian H-umbilical submanifold of (E2n
n , g̃0,P)

satisfying λ = 2µ. Then, by Proposition 4.4, µ is a constant, say b. If b = 0, then
N is totally geodesic. In this case, N is a flat Lagrangian submanifold.
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Next, assume b is a nonzero constant. Then N is of constant negative curvature
−b2. Thus, N is an open portion of a hyperbolic n-space Hn(−b2) in E

2n
n whose

second fundamental form satisfies

(4.31)
h(e1, e1) = 2bPe1, h(e2, e2) = · · · = h(en, en) = bPe1,

h(e1, ej) = bPej , h(ej, ek) = 0, 2 ≤ j �= k ≤ n,

for some orthonormal frame e1, . . . , en.
On the other hand, a direct computation shows that (4.30) defines a Lagrangian

H-umbilical immersion of Hn(−b2) into (E2n
n , g0, P ) whose second fundamental

form also satisfies (4.31). Therefore, by uniqueness theorem, N is congruent to an
open portion of (4.30).

5. CLASSIFICATION OF LAGRANGIAN H-UMBILICAL SUBMANIFOLDS OF E
2n
n

Next, we classify Lagrangian H-umbilical submanifolds in the para-Kähler n-
plane (E2n

n , g0, P ).

Theorem 5.1. Let L : N → (E2n
n , g0, P ) be a Lagrangian H-umbilical im-

mersion of a Riemannian n-manifold N into the para-K ähler n-plane with n ≥ 3.
Then

(i) If N is of constant sectional curvature, then eitherN is flat or L is congruent
to an open portion of

1
2b

(
2cosh2(bs) cosh t, z sinh(2bs) sinh t, sinh(2bs) cosh t, 2z cosh2(bs) sinh t

)

with b �= 0, where z = (z2, . . . , zn) ∈ E
n−1 satisfies z2

2 + z2
3 + · · ·+ z2

n = 1.
(ii) If N contains no open subset of constant sectional curvature, then L is

locally congruent to one of the following three types of submanifolds:
(ii.1) a Lagrangian submanifold defined by(
e2r

8
− e−2r

2r′2
+ a2

n∑
j=2

x2
j −
∫ s 2r′2 + r′′

e2rr′3
ds,

1 − a2e2r

2
x2, . . . ,

1 − a2e2r

2
xn,

− e2r

8
− e−2r

2r′2
+ a2

n∑
j=2

x2
j −
∫ s 2r′2 + r′′

e2rr′3
ds,

1 + a2e2r

2
x2, . . . ,

1 + a2e2r

2
xn

)
,

where r = r(s) is a non-constant function and a is positive number;
(ii.2) a Lagrangian submanifold defined by
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1
2

((
e
∫ sλds

µ+ ϕ
+
e−

∫ sλds

µ− ϕ

)
sin t,

(
e
∫ sλds

µ+ ϕ
+
e−

∫ sλds

µ − ϕ

)
z cos t,

(
e
∫ sλds

µ+ ϕ
− e−

∫ sλds

µ − ϕ

)
sin t,

(
e
∫ sλds

µ+ ϕ
− e−

∫ sλds

µ− ϕ

)
z cos t

)
,

where µ(s) and ϕ(s) are nonzero functions satisfies ϕϕ ′ − µµ′ = (µ2 − ϕ2)ϕ and
λ = 2µ+ µϕ−1 and z = (z2, . . . , zn) ∈ E

n−1 satisfies z2
2 + z2

3 + · · ·+ z2
n = 1;

(ii.3) a Lagrangian submanifold defined by

1
2

((
e
∫ sλds

µ+ ϕ
+
e−

∫ sλds

µ− ϕ

)
cosh t,

(
e
∫ sλds

µ+ ϕ
− e−

∫ sλds

µ − ϕ

)
z sinh t,

(
e
∫ sλds

µ+ ϕ
− e−

∫ sλds

µ− ϕ

)
cosh t,

(
e
∫ sλds

µ+ ϕ
+
e−

∫ sλds

µ− ϕ

)
z sinh t

)
,

where µ(s) and ϕ(s) are nonzero functions satisfies ϕϕ ′ − µµ′ = (µ2 − ϕ2)ϕ and
λ = 2µ+ µϕ−1 and z = (z2, . . . , zn) ∈ E

n−1 satisfies z2
2 + z2

3 + · · ·+ z2
n = 1.

Proof. Assume that n ≥ 3 and L : N → (E2n
n , g0, P ) is a Lagrangian H-

umbilical submanifold of the para-Kähler n-plane which satisfies (4.5) with respect
to some suitable orthonormal local frame field e1, . . . , en.

If N is of constant curvature, then it follows from (4.5) and the equation of
Gauss that µ(λ− 2µ) = 0. Thus, either µ = 0 or λ = 2µ at each point. If µ = 0
identically, then N is flat. If µ �= 0, then λ = 2µ �= 0 on a nonempty open subset
V of N . Thus, Proposition 4.4 implies that λ and µ are nonzero constants on V .
Thus, by continuity, V = N . Therefore, it follows from Theorem 4.1 that N is
congruent to an open portion the Lagrangian submanifold given in (i).

Next, assume that N contains no open subset of constant curvature. Then

U := { p ∈ N : µ(λ− 2µ) �= 0 at p }(5.1)

is an open dense subset of N . Moreover, it follows from Lemma 4.3 that

ω
j
1 =

(
e1µ

λ− 2µ

)
ωj, ejλ = ejµ = 0, j = 2, . . . , n.(5.2)

ωj
1(e1) = ωj

1(ek) = 0, 2 ≤ j �= k ≤ n.(5.3)

From ωj
1(e1) = 0, we find ∇e1e1 = 0. Thus, the integral curves of e1 are geodesics.

By using (5.2) and Cartan’s structure equations, we get dω1 = 0. Hence, according
to Poincaré lemma, ω1 = ds for some local function s.

Let D denote the distribution spanned by e1 which is clearly integrable. Using
(5.3) we find

〈[ej, ek], e1〉 = ω1
k(ej) − ω1

j (ek) = 0
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for j, k = 2, . . . , n. Thus the complementary orthogonal distributionD⊥ spanned by
{e2, . . . , en} is an integrable distribution. Because D and D⊥ are both integrable,
there is a local coordinate system {s, x2, . . . , xn} such that

(a) D is spanned by {∂/∂s} and D⊥ is spanned by {∂/∂x2, . . . , ∂/∂xn} and

(b) e1 = ∂
∂s , ω1 = ds.

From (4.26), (4.28) and (5.3) we have ejλ = ejµ = 0 for j > 1. Hence, both
λ and µ depend only on s. Moreover, it follows from (5.2) and (5.3) that

∇′
Xe1 = ϕX, ϕ =

µ′

λ− 2µ
, X ∈ D⊥,(5.4)

where µ′ = dµ/ds.
It follows from (5.4) and K1j = 〈R(ej, e1)e1, ej〉 that the sectional curvature

K1j of the plane section spanned by e1, ej is K1j = −ϕ′ −ϕ2. On the other hand,
(4.5) and the equation of Gauss shows that K1j = µ2 − λµ. Thus

ϕ′ = λµ− µ2 − ϕ2.(5.5)

Also, from (5.4) we find that〈∇′
XY, e1

〉
= −ϕ 〈X, Y 〉 .(5.6)

This implies that the integrable distribution D⊥ is spherical, i.e., the leaves of D⊥

are totally umbilical with parallel mean curvature vector in N . Moreover, it follows
from (4.6), (5.6) and Gauss’ equation that each leaf of D⊥ (with s = constant) is
of constant curvature ϕ2(s)− µ2(s). Hence, a result of [18] (see also [15, Remark
2.1]) implies that U is locally a warped product I ×f(s) R

n−1(c), where Rn−1(c)
is a Riemannian (n − 1)-manifold of constant curvature and f(s) is the warping
function, where we choose c = 0, 1 or −1 according to ϕ2 = µ2, ϕ2 > µ2, or
ϕ2 < µ2, respectively. Clearly, vectors tangent to I are in D and vectors tangent to
Rn−1 are in D⊥.

The metric on I ×f R
n−1(c) is given by

g = ds2 + f2(s)ĝc(5.7)

where ĝc is metric of Rn−1(c). From (5.7) we obtain

∇′
∂/∂s

∂

∂s
= 0, ∇′

∂/∂sX =
f ′

f
X, ∇′

XY = −ff ′ 〈X, Y 〉 ∂
∂s

+ L(∇′′
XY ),(5.8)

for vector fields X, Y tangent to Rn−1(c), where L(∇′′
XY ) is the lift of the the

covariant derivative ∇′′
XY of Y with respect to X on Rn−1(c).
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Case (1). ϕ2 = µ2. We may put ϕ = µ. Also we have assume that

g = ds2 + f2(s)(dx2
2 + dx2

3 + · · ·+ dx2
n).(5.9)

Thus (5.8) becomes

∇′
∂/∂s

∂

∂s
= 0, ∇′

∂/∂s

∂

∂xj
=
f ′

f

∂

∂xj
, ∇′

∂/∂xj

∂

∂xk
= −ff ′δjk ∂

∂s
(5.10)

for j, k = 2, . . . , n. From (4.5), (5.10) and (∇̄∂/∂sh)( ∂
∂s ,

∂
∂xj

) = (∇̄∂/∂xj
h)( ∂

∂s ,
∂
∂s)

we derive that
f ′

f
= µ =

µ′

λ− 2µ
.(5.11)

Thus there is a real number a �= 0 such that

f(s) = a er(s), r(s) =
∫ s

µ(x)dx.(5.12)

From (5.11), we find

λ = 2r′ +
r′′

r′
.(5.13)

Consequently, (4.5), (5.10), (5.12), (5.13) and Gauss’ formula imply that the im-
mersion L : N → (E2n

n , g0, P ) satisfies

(5.14)

Lss =
(

2r′ +
r′′

r′

)
PLs,

Lsxj = r′(Lxj + PLxj ),

Lxjxk
= a2δjke

2rr′(PLs − Ls).

From P2 = I and (5.14) we have

(5.15)

PLss =
(

2r′ +
r′′

r′

)
Ls,

PLsxj = r′(Lxj + PLxj ),

PLxjxk
= a2δjke

2rr′(Ls − PLs).

After solving the PDE system given by (5.14) and (5.15), we obtain

L(s, x2, . . . , xn) = c1e
2r + c2

(
2a2

n∑
j=2

x2
j − 2

∫ s 2r′2 + r′′

e2rr′3
ds− e−2r

r′2

)

+
n∑

i=2

ci+1xj + e2r
n∑

j=2

cn+jxj, r =
∫ s

µ(s)ds,
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for some E
2n
n -valued functions c1, . . . , c2n. Consequently, after choosing suitable

initial values we obtain (ii.1).

Case (2). ϕ2 > µ2. With respect to a spherical coordinate chart {u2, . . . , un},
the metric on I ×f R

n−1(1) is given by

g = ds2 + f2(s){du2
2 + cos2 u2du

2
3 + · · ·+ cos2 u2 · · ·cos2 un−1du

2
n}.(5.16)

From (5.16) we obtain

(5.17)

∇′
∂/∂s

∂

∂s
= 0, ∇′

∂/∂s

∂

∂uk
=
f ′

f

∂

∂uk
, ∇′

∂/∂u2

∂

∂u2
= −ff ′ ∂

∂s
,

∇′
∂/∂ui

∂

∂uj
= − tanui

∂

∂uj
, 2 ≤ i < j,

∇′
∂/∂uj

∂

∂uj
= −ff ′

j−1∏
�=2

cos2 u�
∂

∂s
+

j−1∑
k=2

(
sin 2uk

2

j−1∏
l=k+1

cos2 ul

)
∂

∂uk
,

j> 2.

From (4.5), (5.17) and and (∇̄∂/∂sh)( ∂
∂s,

∂
∂uj

) = (∇̄∂/∂uj
h)( ∂

∂s ,
∂
∂s) we find

f ′

f
= ϕ =

µ′

λ− 2µ
.(5.18)

Thus, there is a real number c �= 0 such that

f = a e
∫ s ϕ(x)dx.(5.19)

By applying (5.16) and (5.19) we know that the sectional curvature K23 of the plane
section spanned by ∂/∂u2, ∂/∂u3 is given by

K23 = a−2e−2
∫

ϕ(s)ds − ϕ2.(5.20)

On the other hand, (4.5) and Gauss’ equation yields

K23 = −µ2.(5.21)

Combining (5.18), (5.19), (5.20) and (5.21) gives

f2 =
1

ϕ2 − µ2
, ϕ =

µ′

λ− 2µ
, λ = 2µ+

µ′

ϕ
.(5.22)

It follows from (5.5) and the last equation in (5.22) that φ and µ satisfy the following
differential equation

ϕ′ = µ2 − ϕ2 +
µµ′

ϕ
.(5.23)
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Therefore, by applying (4.5), (5.16)-(5.19), (5.22) and Gauss’ formula, we obtain

(5.24)

Lss = λPLs,

Lsuj = ϕLuj + µPLuj ,

Luiuj = − tanuiLuj , 2 ≤ i < j ≤ n,

Lujuj =
j−1∏
k=2

cos2 uk

(
µ

ϕ2 − µ2
PLs − ϕ

ϕ2 − µ2
Ls

)

+
j−1∑
k=2

(
sin 2uk

2

j−1∏
l=k+1

cos2 ul

)
Luk

, j = 2, . . . , n.

By applying P2 = I , we obtain from (5.24) that

(5.25)

PLss = λLs,

PLsuj = µLuj + ϕPLuj ,

PLuiuj = − tanuiPLuj , 2 ≤ i < j ≤ n,

PLujuj =
j−1∏
k=2

cos2 uk

(
µ

ϕ2 − µ2
Ls − ϕ

ϕ2 − µ2
PLs

)

+
j−1∑
k=2

(
sin 2uk

2

j−1∏
l=k+1

cos2 ul

)
PLuk

, j = 2, . . . , n.

A direct computation shows that the compatibility condition of the PDE system
(5.24)-(5.25) is (5.23).

From (5.24)-(5.25) we find

Lu2u2u2 + Lu2 = 0.

Thus

L = A(s, u3, . . . , un) cosu2 +B(s, u3, . . . , un) sinu2 +K(s, u3, . . . , un)(5.26)

for some E
2n
n -valued functions A,B and K. Substituting (5.26) into the third

equation in (5.24) for i = 2, j ≥ 3, we obtain A = A(s) and K = K(s). Thus,
(5.26) reduces to

L = A(s, u3, . . . , un) cosu2 +B(s) sinu2 +K(s).(5.27)

By substituting (5.27) into the last equation in (5.24) for j = 2 and using the first
equation of (5.24), we conclude that A,B and K satisfy the following second order
differential equations:
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Ass −
(

2ϕ(s) +
µ′(s)
µ(s)

)
As + (ϕ2(s) − µ2(s))

(
2 +

µ′(s)
µ(s)ϕ(s)

)
A = 0,(5.28)

Bss −
(

2ϕ(s) +
µ′(s)
µ(s)

)
Bs + (ϕ2(s)− µ2(s))

(
2 +

µ′(s)
µ(s)ϕ(s)

)
B = 0,(5.29)

Kss −
(

2ϕ(s) +
µ′(s)
µ(s)

)
Ks = 0,(5.30)

where µ, ϕ satisfy (5.23). After solving these second order differential equations
we obtain

A = A1(u3, . . . , un)
e
∫ s

λds

µ+ ϕ
+ A2(u3, . . . , un)

e−
∫ s

λds

µ− ϕ
,(5.31)

B = c1
e
∫ s

λds

µ+ ϕ
+ c2

e−
∫ s

λds

µ− ϕ
,(5.32)

K = c−1 + c0

∫ s

µ(s)e2
∫ s

ϕ(u)duds(5.33)

for some vectors c−1, c0, c1, c2 ∈ E
2n
n and E

2n
n -valued functions A1, A2. Thus, by

combining (5.31)-(5.33) with (5.27) we conclude that, up to a suitable translation,
the immersion L satisfies

(5.34)

L(s, u2, . . . , un) =

(
e
∫ sλds

µ+ ϕ

)
(c1 sinu2 + A1(u3, . . . , un) cosu2)

+

(
e−

∫
sλds

µ− ϕ

)
(c2 sinu2 +A2(u3, . . . , un) cosu2)

+ c0

∫ s

µ(s)e2
∫ s

ϕ(u)duds.

Now, by substituting (5.34) into the remaining equations of system (5.24)-(5.25),
we obtain after long computation that

L =
e
∫ s

λ(s)ds

µ+ ϕ

{
c1 sinu2 + cosu2

(
c2 sinu3 + · · ·+ e−

∫ s
λ(s)ds

µ− ϕ{
cn+1 sinu2 + cn−1 sinun−1

n−2∏
�=3

cos u� + cn

n−1∏
�=3

cos u�

)}

+ cosu2

(
cn+2 sinu3 + · · ·+ c2n−1 sinun−1

n−2∏
�=3

cosu� + c2n

n−1∏
�=3

cosu�

)}

+ c0

∫ s

µ(s)e2
∫ s

ϕ(u)duds
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for some vectors c1, . . . , c2n ∈ E
2n
n . Consequently, after choosing suitable initial

conditions, we obtain (ii.2).

Case (3). ϕ2 < µ2. In this case, we may assume that the metric on I ×f

Rn−1(−1) is given by

(5.35)

g = ds2 + f2(s)
{
du2

2 + sinh2 u2(du2
3 + cos2 u3du

2
4 + · · ·

+
n−1∏
k=3

cos2 ukdu
2
n−1)

}
.

From (5.35) we obtain

(5.36)

∇′
∂/∂s

∂

∂s
= 0, ∇′

∂/∂s

∂

∂uk
=
f ′

f

∂

∂uk
,

∇′
∂/∂u2

∂

∂u2
= −ff ′ ∂

∂s
,

∇′
∂/∂u2

∂

∂uj
= cothu2

∂

∂uj
, 3 ≤ j ≤ n,

∇′
∂/∂ui

∂

∂uj
= − tanui

∂

∂uj
, 3 ≤ i < j,

∇′
∂/∂uj

∂

∂uj
= −

j−1∏
�=3

cos2 u�

{
ff ′ sinh2 u2

∂

∂s
+

sinh2u2

2
∂

∂u2

}

+
j−1∑
k=3

(
sin 2uk

2

j−1∏
l=k+1

cos2 ul

)
∂

∂uk
, j ≥ 3.

From (4.5), (5.36) and and (∇̄∂/∂sh)( ∂
∂s,

∂
∂xj

) = (∇̄∂/∂xj
h)( ∂

∂s,
∂
∂s) we also find

f ′

f
= ϕ =

µ′

λ− 2µ
.(5.37)

Thus, there is a real number c �= 0 such that

f = c e
∫ s

ϕ(x)dx.(5.38)

By applying (5.35) and (5.38) we know that the sectional curvature K23 of the plane
section spanned by ∂/∂u2, ∂/∂u3 is given by

K23 = −c−2e−2
∫

ϕ(s)ds − ϕ2.(5.39)

On the other hand, (4.5) and Gauss’ equation yields

K23 = −µ2.(5.40)



2500 Bang-Yen Chen

Combining (5.37), (5.38), (5.39) and (5.40) gives

f2 =
1

µ2 − ϕ2
, ϕ =

µ′

λ− 2µ
, λ = 2µ+

µ′

ϕ
.(5.41)

It follows from (5.5) and the last equation in (5.22) that φ and µ satisfy the following
differential equation

ϕ′ = µ2 − ϕ2 +
µµ′

ϕ
.(5.42)

Therefore, by applying (4.5), (5.35)-(5.38), (5.41) and Gauss’ formula, we obtain

(5.43)

Lss = λPLs,

Lsuj = ϕLuj + µPLuj , 2 ≤ j ≤ n,

Lu2u2 =
µ

µ2 − ϕ2
PLs − ϕ

µ2 − ϕ2
Ls,

Lu2uj = cothu2Lj, 3 ≤ j ≤ n,

Luiuj = − tanuiLuj , 3 ≤ i < j ≤ n,

Lujuj = sinh2 u2

j−1∏
�=3

cos2 u�

{
µ

µ2 − ϕ2
PLs − ϕ

µ2 − ϕ2
Ls

}

− sinh 2u2

2

j−1∏
�=3

cos2 u�Lu2 +
j−1∑
k=3

(
sin 2uk

2

j−1∏
l=k+1

cos2 ul

)
Luk

, j ≥ 3.

Now, by applying P2 = I and (5.43), we get

(5.44)

Pss = λLs,

PLsuj = µLuj + ϕPLuj , 2 ≤ j ≤ n,

PLu2u2 =
µ

µ2 − ϕ2
Ls − ϕ

µ2 − ϕ2
PLs,

PLu2uj = cothu2PLj, 3 ≤ j ≤ n,

PLuiuj = − tanuiPLuj , 3 ≤ i < j ≤ n,

PLujuj = sinh2 u2

j−1∏
�=3

cos2 u�

{
µ

µ2 − ϕ2
Ls − ϕ

µ2 − ϕ2
PLs

}

− sinh 2u2

2

j−1∏
�=3

cos2 u�PLu2 +
j−1∑
k=3

(
sin 2uk

2

j−1∏
l=k+1

cos2 ul

)
PLuk

, j≥3.

A direct computation shows that the compatibility condition of this system
(5.43)-(5.44) is (5.23). By solving system (5.23) in a similar way as Case (2)
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and after long computation and using (5.23), we obtain

L(s, u2, . . . , un) =
e
∫ s λ(s)ds

µ+ ϕ
{c1 coshu2 + sinhu2 (c2 sinu3 + · · ·

+cn−1 sinun−1

n−2∏
�=3

cos u� + cn

n−1∏
�=3

cosu�

)}

+
e−

∫ s
λ(s)ds

µ− ϕ
{cn+1 coshu2 + sinhu2 (cn+2 sinu3 + · · ·

+c2n−1 sinun−1

n−2∏
�=3

cos u� + c2n

n−1∏
�=3

cosu�

)}

for some vectors c1, . . . , c2n ∈ E
2n
n . Hence, after choosing suitable initial conditions,

we obtain (ii.3).
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