LAGRANGIAN H-UMBILICAL SUBMANIFOLDS OF PARA-KÄHLER MANIFOLDS

Bang-Yen Chen

Abstract

The notion of Lagrangian H-umbilical submanifolds of Kähler manifolds introduced in $[3,4]$ is closely related with several problems in Lagrangian geometry (cf. [7]). The classification of such submanifolds was done in a series of author's papers [3, 4, 5]. On the other hand, the study of Lagrangian submanifolds of para-Kahler manifolds was initiated very recently in [10]. In this paper we study Lagrangian H-submanifolds of para-Kahler manifolds. As results we prove several fundemental properties of such submanifolds. Moreover, we are able to classify Lagrangian H-umbilical submanifolds of the para-Kahler n-plane $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ for $n \geq 3$.

1. Introduction

An almost para-Hermitian manifold is a manifold M endowed with an almost product structure $P \neq \pm I$ and a semi-Riemannian metric g such that

$$
\begin{equation*}
P^{2}=I, g(P X, P Y)=-g(X, Y) \tag{1.1}
\end{equation*}
$$

for vector fields X, Y tangent to M, where I is the identity map. Consequently, the dimension of M is even and the signature of g is (n, n), where $\operatorname{dim} M=2 n$. Let ∇ denote the Levi-Civita connection of M. An almost para-Hermitian manifold is called para-Kahler if it satisfies $\nabla P=0$ identically.

Properties of para-Kahhler manifolds were first studied by R. K. Rashevski in 1948 in which he considered a neutral metric of signature (n, n) defined from a potential function on a locally product $2 n$-manifold [20]. He called such manifolds stratified space. Para-Kahler manifolds were explicitly defined by B. A. Rozenfeld in 1949 [21]. Rozenfeld compared Rashevskij's definition with Kähler's definition in the complex case and established the analogy between Kähler and para-Kahhler ones. Such manifolds were also defined independently by H. S. Ruse in 1949 [22].

[^0]The Levi-Civita connection of a para-Kähler manifold (M, g, P) preserves P, equivalently, its holonomy group $\operatorname{Hol}_{p}, p \in M$, preserves the eigenspace decomposition $T_{p} M=T_{p}^{+} \oplus T_{p}^{-}$. The parallel eigendistributions $T^{ \pm}$of P are g-isotropic integrable distributions. Moreover, they are Lagrangian distributions with respect to the Kahler form $\omega=g \circ P$, which is parallel and hence closed. The leaves of these distributions are totally geodesic submanifolds, Thus, from the standpoint of symplectic manifolds, a para-Kahler structure can be regarded as a pair of complementary integrable Lagrangian distributions (T^{+}, T^{-}) on a symplectic manifold (M, ω). Such a structure is often called a bi-Lagrangian structure or a Lagrangian 2-web (cf. [16]).

There exist many para-Kähler manifolds, for instance, a homogeneous manifold $M=G / H$ of a semisimple Lie group G admits an invariant para-Kahler structure (g, P) if and only if it is a covering of the adjoint orbit $\mathrm{Ad}_{G} h$ of a semisimple element h (see [19] for details).

Analogous to totally real submanifolds in an almost Hermitian manifold (cf. [11]), we call a space-like submanifold N in an almost para-Hermitian manifold $\left(M_{m}^{2 m}, g, P\right)$ totally real if P maps each tangent space $T_{p} N, p \in N$, into the normal space $T_{p}^{\perp} N$. In particular, we call N Lagrangian if $P\left(T_{p} N\right)=T_{p}^{\perp} N$ for each $p \in N$.

Lagrangian submanifolds in Kăhler manifolds have been studied extensively since early 1970s (see [6, 7] for surveys). In contrast, no results on Lagrangian submanifolds in para-Kahler manifolds are known (see [16, Section 5: Open Problems], in particular, see Open Problem (3)). This is the reason the author initiated recently the study of Lagrangian submanifolds of para-Kähler manifolds in [10] in which two optimal inequalities for Lagrangian submanifolds in flat para-Kahler manifolds were proved. Lagrangian submanifolds satisfying the equality case of one of the two inequalities are also classified in [10].

On the other hand, the notion of Lagrangian H-umbilical submanifolds of Kähler manifolds introduced in [3, 4] is closely related with several problems in Lagrangian geometry (cf. [7]). The classification of such submanifolds was achieved in a series of author's papers [3, 4, 5].

In this paper we introduce and study Lagrangian H-submanifolds of para-Kăhler manifolds. As consequences, we prove several fundamental properties of such submanifolds. Moreover, we classify Lagrangian H-umbilical submanifolds of the para-Kähler n-plane $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ with $n \geq 3$.

2. Preliminaries

2.1. Para-Kähler manifolds

Definition 2.1. An almost para-Hermitian manifold is a manifold M endowed with an almost product structure $P \neq \pm I$ and a pseudo-Riemannian metric g such
that

$$
\begin{equation*}
P^{2}=I, \quad \text { and } g(P v, P w)=-g(v, w) \tag{2.1}
\end{equation*}
$$

for vectors $v, w \in T_{p}(M), p \in M$, where I is the identity map.
The dimension of an almost para-Hermitian manifold M is even and the metric is neutral.

Definition 2.2. An almost para-Hermitian manifold (M, g, P) is called paraKahler if it satisfies $\nabla P=0$ identically, where ∇ is the Levi-Civita connection of M.

The simplest example of para-Kahler manifolds is the pseudo-Euclidean $2 n$ space $\mathbb{E}_{n}^{2 n}$ endowed with the neutral metric:

$$
\begin{equation*}
g_{0}=-\sum_{i=1}^{n} d x_{i}^{2}+\sum_{j=1}^{n} d y_{j}^{2} \tag{2.2}
\end{equation*}
$$

with P being defined by

$$
\begin{equation*}
P\left(\frac{\partial}{\partial x_{j}}\right)=\frac{\partial}{\partial y_{j}}, \quad P\left(\frac{\partial}{\partial y_{j}}\right)=\frac{\partial}{\partial x_{j}} \tag{2.3}
\end{equation*}
$$

for $j=1, \ldots, n$. We simply called $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ the para-Kahler n-plane.
The following result is well-known.
Lemma 2.1. The curvature tensor of a para-Kahler manifold satisfies

$$
\begin{align*}
& R(X, Y) \circ P=P \circ R(X, Y) \tag{2.4}\\
& R(P X, P Y)=R(X, Y) \tag{2.5}\\
& R(X, P Y)=R(P X, Y) \tag{2.6}
\end{align*}
$$

For a para-Kähler manifold M, (2.1) implies that

$$
\begin{equation*}
g(P v, w)+g(v, P w)=0, \quad v, w \in T_{p}(M), p \in M \tag{2.7}
\end{equation*}
$$

Thus $g(v, P v)=0$. If $\{v, P v\}$ determines a non-degenerate plane section called a P-section, the sectional curvature

$$
H^{P(v)}=K(v \wedge P v)
$$

of $\operatorname{Span}\{v, P v\}$ is called a para-sectional curvature.
By definition a para-Kahler space form is a para-Kahler manifold of constant para-sectional curvature.

The para-Kähler n-plane $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ is the standard model of flat para-Kähler manifolds. Models of para-Kahler space forms with nonzero para-sectional curvature were constructed in [17].

The Riemann curvature tensor of a para-Kähler space forms $M_{n}^{2 n}(4 c)$ of constant para-sectional curvature $4 c$ satisfies

$$
\begin{align*}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y+g(P Y, Z) P X \\
& -g(P X, Z) P Y+2 g(X, P Y) P Z\} . \tag{2.8}
\end{align*}
$$

2.2. Basic formulas and definitions

Let $\psi: N \rightarrow M_{n}^{2 n}$ be an isometric immersion of a Riemannian n-manifold N into a para-Kähler manifold $\left(M_{n}^{2 n}, g, P\right)$. Denote by ∇^{\prime} and ∇ the Levi-Civita connections on N and $M_{n}^{2 n}$, respectively.

For vector fields X, Y tangent to N and ξ normal to N, the formulas of Gauss and Weingarten are given respectively by (cf. [1, 2]):

$$
\begin{align*}
& \nabla_{X} Y=\nabla_{X}^{\prime} Y+h(X, Y), \tag{2.9}\\
& \nabla_{X} \xi=-A_{\xi} X+D_{X} \xi, \tag{2.10}
\end{align*}
$$

where h, A and D are the second fundamental form, the shape operator, and the normal connection of N in $M_{n}^{2 n}$.

The shape operator and the second fundamental form are related by

$$
\begin{equation*}
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle, \tag{2.11}
\end{equation*}
$$

where \langle,$\rangle is the inner product. The mean curvature vector is defined by$

$$
\begin{equation*}
H=\left(\frac{1}{n}\right) \text { trace } h . \tag{2.12}
\end{equation*}
$$

The equations of Gauss, Codazzi and Ricci are given respectively by

$$
\begin{align*}
& R^{\prime}(X, Y) Z=R(X, Y) Z+A_{h(Y, Z)} X-A_{h(X, Z)} Y, \tag{2.13}\\
& (R(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z), \tag{2.14}\\
& g\left(R^{D}(X, Y) \xi, \eta\right)=g(R(X, Y) \xi, \eta)+g\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right) \tag{2.15}
\end{align*}
$$

for X, Y, Z tangent to N and ξ, η normal to N, where R^{\prime} (respectively, R) is the curvature tensor of N (respectively, of $\left.M_{n}^{2 n}\right),(R(X, Y) Z)^{\perp}$ is the normal component of $R(X, Y) Z$, and $\bar{\nabla} h$ and R^{D} are defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X}^{\prime} Y, Z\right)-h\left(Y, \nabla_{X}^{\prime} Z\right), \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
R^{D}(X, Y)=D_{X} D_{Y}-D_{Y} D_{X}-D_{[X, Y]} . \tag{2.17}
\end{equation*}
$$

3. Lagrangian Submanifolds of Para-KÄhler Manifolds

The following basic lemma is given in [10].
Lemma 3.2. Let N be a Lagrangian submanifold of a para-Kahler manifold $M_{n}^{2 n}$. Then we have
(i) $P\left(\nabla_{X}^{\prime} Y\right)=D_{X}(P Y)$,
(ii) $A_{P X} Y=-P(h(X, Y))$,
(iii) $\langle h(X, Y), P Z\rangle=\langle h(Y, Z), P X\rangle=\langle h(Z, X), P Y\rangle$,
(iv) $P\left(R^{\prime}(X, Y) Z\right)=R^{D}(X, Y) P Z$
for X, Y, Z tangent to N.
The equations of Gauss and Codazzi for a Lagrangian submanifold N of a para-Kahler space form $M_{n}^{2 n}(4 c)$ are given respectively by

$$
\begin{align*}
R^{\prime}(X, Y ; Z, W)= & \left\langle A_{h(Y, Z)} X, W\right\rangle-\left\langle A_{h(X, Z)} Y, W\right\rangle \tag{3.1}\\
& +c(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle) \\
\left(\bar{\nabla}_{X} h\right)(Y, Z)= & \left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{3.2}
\end{align*}
$$

for X, Y, Z, W tangent to N.
If we put $h=P \circ \sigma$ (equivalently $\sigma=P \circ h$), then (2.1) and Lemma 3.2(iii) imply that

$$
\begin{aligned}
\left\langle A_{h(Y, Z)} X, W\right\rangle & =\langle h(X, W), h(Y, Z)\rangle=\langle h(X, W), P \sigma(Y, Z)\rangle \\
& =\langle h(\sigma(Y, Z), X), P W\rangle=-\langle\sigma(\sigma(Y, Z), X), W\rangle
\end{aligned}
$$

Therefore, equation (3.1) of Gauss can be rephrased as

$$
\begin{aligned}
R^{\prime}(X, Y) Z= & \sigma(\sigma(X, Z), Y)-\sigma(\sigma(Y, Z), X) \\
& +c\langle Y, Z\rangle X-c\langle X, Z\rangle Y
\end{aligned}
$$

It follows Lemma 3.2(i) that the equation of Ricci is nothing but the equation of Gauss for Lagrangian submanifolds of para-Kähler manifolds.

Now, we state the fundamental existence and uniqueness theorems for Lagrangian submanifolds in $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ are given by the following.

Existence Theorem. Let N be a simply-connected Riemannian n-manifold. If σ is a TN-valued symmetric bilinear form on N such that
(a) $g(\sigma(X, Y), Z)$ is totally symmetric,
(b) $(\nabla \sigma)(X, Y, Z)$ is totally symmetric,
(c) $R^{\prime}(X, Y) Z=\sigma(\sigma(X, Z), Y)-\sigma(\sigma(Y, Z), X)$,
then there is a Lagrangian isometric immersion $L: N \rightarrow\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ whose second fundamental form is $h=P \circ \sigma$.

Uniqueness Theorem. Let $L_{1}, L_{2}: N \rightarrow\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ be two Lagrangian isometric immersions of a Riemannian n-manifold N with second fundamental forms h^{1} and h^{2}, respectively. If

$$
g\left(h^{1}(X, Y), P L_{1 \star} Z\right)=g\left(h^{2}(X, Y), P L_{2 \star} Z\right)
$$

for all vector fields X, Y, Z tangent to N, then there is an isometry Φ of $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ such that $L_{1}=\Phi \circ L_{2}$.

Similar existence and uniqueness theorems also hold for Lagrangian submanifolds in para-Kähler space forms.

4. Lagrangian H-Umbilical Submanifolds

A pseudo-Riemannian submanifold N of a pseudo-Riemannian manifold is called totally umbilical if its second fundamental form satisfies

$$
\begin{equation*}
h(X, Y)=\langle X, Y\rangle H \tag{4.1}
\end{equation*}
$$

for X, Y tangent to N.
Proposition 4.1. The only totally umbilical Lagrangian submanifold N of a para-Kahler space form $M_{n}^{2 n}(4 c)$ with $n \geq 2$ is the totally geodesic ones.

Proof. Let N be a totally umbilical Lagrangian submanifold of a para-Kähler space form $M_{n}^{2 n}(4 c)$ with $n \geq 2$. Assume that N is non-totally geodesic, then $H \neq 0$.

It follows from (4.1) that $\left(\bar{\nabla}_{X} h\right)(Y, Z)=\langle Y, Z\rangle D_{X} H$. Thus, after applying equation (3.2) of Codazzi, we find

$$
\begin{equation*}
\langle Y, Z\rangle D_{X} H=\langle X, Z\rangle D_{Y} H \tag{4.2}
\end{equation*}
$$

for X, Y, Z tangent to N. For any $X \in T N$, by choosing $0 \neq Y=Z \perp X$, we get $D H=0$. Therefore, it follows from the equation of Gauss that N is of constant sectional curvature $c-\|H\|^{2}<c$, where $\|H\|=\sqrt{-\langle H, H\rangle}$.

Let us put $Z=P H$. Then Lemma 3.1(i) implies that $\nabla^{\prime} Z=0$. Thus, Z is a nonzero parallel vector field on N, which implies that N is a flat Riemannian manifold. Hence, we get $c=-\langle H, H\rangle>0$.

Since N is totally umbilical, we have $\left[A_{H}, A_{\xi}\right]=0$ for any normal vector ξ. Hence, by using $D H=0$ we find from equation (2.15) of Ricci that

$$
\begin{equation*}
g(R(Z, Y) H, P Y)=0 \tag{4.3}
\end{equation*}
$$

for $Y, Z \in T N$. On the other hand, by applying (2.8) we also have
(4.4) $\quad g(R(Z, Y) H, P Y)=c\{g(P Y, H) g(P Z, P Y)-g(P Z, H) g(P Y, P Y)\}$

Thus, after choosing Y, Z such that $Z=P H$ and $g(Y, Z)=0$, we find $g(H, H)=$ 0 . But this is a contradiction. Consequently, N must be totally geodesic.

Definition 4.3. A Lagrangian submanifold N of a para-Kähler manifold is called Lagrangian H-umbilical if the second fundamental form takes the following simple form:

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=\lambda P e_{1}, h\left(e_{2}, e_{2}\right)=\cdots=h\left(e_{n}, e_{n}\right)=\mu P e_{1}, \\
& h\left(e_{1}, e_{j}\right)=\mu P e_{j}, h\left(e_{j}, e_{k}\right)=0,2 \leq j \neq k \leq n, \tag{4.5}
\end{align*}
$$

for some functions λ, μ with respect to some orthonormal local frame field.
In view of Proposition 4.1, Lagrangian H-umbilical submanifolds are the simplest Lagrangian submanifolds next to totally geodesic ones.

The following result shows that there exist many non-totally geodesic Lagrangian H-umbilical submanifolds.

Proposition 4.2. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right): I \rightarrow \mathbb{E}_{1}^{2}$ be a unit speed space-like curve satisfying $\langle\gamma, \gamma\rangle<0$. Define $L: I \times \mathbf{R} \times S^{n-2}(1) \rightarrow \mathbb{E}_{n}^{2 n}$ by

$$
\begin{equation*}
\left(\gamma_{1}(s) \cosh t, \gamma_{2}(s) z \sinh t, \gamma_{2}(s) \cosh t, \gamma_{1}(s) z \sinh t\right) \tag{4.6}
\end{equation*}
$$

where $z=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{E}^{n-1}$ satisfies $z_{2}^{2}+z_{3}^{2}+\cdots+z_{n}^{2}=1$. Then L defines a Lagrangian H-umbilical submanifold of $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ satisfying (4.5) with

$$
\begin{equation*}
\lambda=\kappa, \quad \mu=\frac{\gamma_{1}^{\prime} \gamma_{2}-\gamma_{1} \gamma_{2}^{\prime}}{\|\gamma\|^{2}} . \tag{4.7}
\end{equation*}
$$

Proof. Under the hypothesis it follows from (4.6) that

$$
\begin{align*}
& L_{s}=\left(\gamma_{1}^{\prime} \cosh t, \gamma_{2}^{\prime} z \sinh t, \gamma_{2}^{\prime} \cosh t, \gamma_{1}^{\prime} z \sinh t\right), \tag{4.8}\\
& L_{t}=\left(\gamma_{1} \sinh t, \gamma_{2} z \cosh t, \gamma_{2} \sinh t, \gamma_{1} z \cosh t\right), \tag{4.9}\\
& X L=\left(0, \gamma_{2}(\sinh t) X, 0, \gamma_{1}(\sinh t) X\right) \tag{4.10}\\
& L_{s s}=\left(\gamma_{1}^{\prime \prime} \cosh t, \gamma_{2}^{\prime \prime} z \sinh t, \gamma_{2}^{\prime \prime} \cosh t, \gamma_{1}^{\prime \prime} z \sinh t\right), \tag{4.11}\\
& L_{s t}=\left(\gamma_{1}^{\prime} \sinh t, \gamma_{2}^{\prime} z \cosh t, \gamma_{2}^{\prime} \sinh t, \gamma_{1}^{\prime} z \cosh t\right), \tag{4.12}
\end{align*}
$$

$$
\begin{align*}
X L_{s}= & \left(\gamma_{1}^{\prime} \cosh t, \gamma_{2}^{\prime}(\sinh t) X, \gamma_{2}^{\prime} \cosh t, \gamma_{1}^{\prime}(\sinh t) X\right) \tag{4.13}\\
X L_{t}= & \left(\gamma_{1} \sinh t, \gamma_{2}(\cosh t) X, \gamma_{2} \sinh t, \gamma_{1}(\cosh t) X\right) \tag{4.14}\\
X Y L= & \left(0, \gamma_{2}(\cosh t) \nabla_{X}^{\prime} Y, 0, \gamma_{1}(\cosh t) \nabla_{X}^{\prime} Y\right) \tag{4.15}\\
& -\left(0,\langle X, Y\rangle \gamma_{2} z \cosh t, 0,\langle X, Y\rangle \gamma_{1} z \cosh t\right)
\end{align*}
$$

for X, Y tangent to $S^{n-2}(1)$. From (4.8)-(4.10) we get

$$
\begin{align*}
& \mathcal{P}\left(L_{s}\right)=\left(\gamma_{2}^{\prime} \cosh t, \gamma_{1}^{\prime} z \sinh t, \gamma_{1}^{\prime} \cosh t, \gamma_{2}^{\prime} z \sinh t\right) \tag{4.16}\\
& \mathcal{P}\left(L_{t}\right)=\left(\gamma_{2} \sinh t, \gamma_{1} z \cosh t, \gamma_{1} \sinh t, \gamma_{2} z \cosh t\right), \tag{4.17}\\
& \mathcal{P}(X L)=\left(0, \gamma_{1}(\sinh t) X, 0, \gamma_{2}(\sinh t) X\right) \tag{4.18}
\end{align*}
$$

Since $\gamma(s)=\left(\gamma_{1}(s), \gamma_{2}(s)\right)$ is a unit speed space-like curve in \mathbb{E}_{1}^{2}, (4.8)-(4.10) imply that the induced metric via L is given by

$$
\begin{equation*}
g=d s^{2}+\|\gamma\|^{2}\left(d t^{2}+\sinh ^{2} t g_{1}\right) \tag{4.19}
\end{equation*}
$$

where g_{1} is the metric of $S^{n-2}(1)$. From (4.8)-(4.10) and (4.16)-(4.18), we know that L is Lagrangian. Because γ is unit speed and space-like, we have

$$
\begin{equation*}
\left(\gamma_{1}^{\prime \prime}(s), \gamma_{2}^{\prime \prime}(s)\right)=\kappa(s)\left(\gamma_{2}^{\prime}(s), \gamma_{1}^{\prime}(s)\right) \tag{4.20}
\end{equation*}
$$

for some function κ. Thus, by (4.11)-(4.20) and $\langle z, X\rangle=0$ for $X \in T N$, we obtain (4.5) with

$$
\begin{equation*}
\lambda=\kappa, \quad \mu=\frac{\gamma_{1}^{\prime} \gamma_{2}-\gamma_{1} \gamma_{2}^{\prime}}{\|\gamma\|^{2}} \tag{4.21}
\end{equation*}
$$

Consequently, L defines a Lagrangian H-umbilical submanifold with the desired properties. This completes the proof of the proposition.

Similarly, we also have the following.
Proposition 4.3. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right): I \rightarrow \mathbb{E}_{1}^{2}$ be a unit speed space-like curve satisfying $\langle\gamma, \gamma\rangle>0$. Define $L: I \times \mathbf{R} \times S^{n-2}(1) \rightarrow \mathbb{E}_{n}^{2 n}$ by

$$
\begin{equation*}
\left(\gamma_{1}(s) \sin t, \gamma_{1}(s) z \cos t, \gamma_{2}(s) \sin t, \gamma_{2}(s) z \cos t\right) \tag{4.22}
\end{equation*}
$$

where $z=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{E}^{n-1}$ satisfies $z_{2}^{2}+z_{3}^{2}+\cdots+z_{n}^{2}=1$. Then L defines a Lagrangian H-umbilical submanifold of $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ satisfying (4.5) with

$$
\begin{equation*}
\lambda=\kappa, \quad \mu=\frac{\gamma_{1}^{\prime} \gamma_{2}-\gamma_{1} \gamma_{2}^{\prime}}{\|\gamma\|^{2}} \tag{4.23}
\end{equation*}
$$

Proof. This can be proved in the same as Proposition 4.2
Let N be a Lagrangian H-umbilical submanifold of a para-Kahler submanifold satisfying (4.5) with respect to an orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$. We put

$$
\begin{equation*}
\nabla_{X}^{\prime} e_{i}=\sum_{j=1}^{n} \omega_{i}^{j}(X) e_{j}, \quad i=1, \ldots, n \tag{4.24}
\end{equation*}
$$

Lemma 4.3. Let N be a Lagrangian H-umbilical submanifold of a para-K ahler space form $M_{n}^{2 n}(4 c)$ which satisfies (4.5) with respect to an orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$. The we have

$$
\begin{align*}
& e_{1} \mu=(\lambda-2 \mu) \omega_{1}^{2}\left(e_{2}\right)=\cdots=(\lambda-2 \mu) \omega_{1}^{n}\left(e_{n}\right) \tag{4.25}\\
& e_{j} \lambda=(2 \mu-\lambda) \omega_{j}^{1}\left(e_{1}\right), \quad j>1 \tag{4.26}\\
& (\lambda-2 \mu) \omega_{1}^{j}\left(e_{k}\right)=0, \quad 1<j \neq k \leq n \tag{4.27}\\
& e_{j} \mu=3 \mu \omega_{1}^{j}\left(e_{1}\right) \tag{4.28}\\
& \mu \omega_{1}^{j}\left(e_{1}\right)=0, \quad j>1 \tag{4.29}
\end{align*}
$$

Proof. By applying (4.5), Lemma 3.2(i) and Codazzi's equation, we obtain this lemma by direct computation.

Proposition 4.4. Let N be a Lagrangian H-umbilical submanifold of a paraKahler space form $M_{n}^{2 n}(4 c)$ satisfying (4.5). If $\lambda=2 \mu$, then μ is a constant, say b, and N is of constant sectional curvature $c-b^{2}$.

Proof. Under the hypothesis, it follows from (4.25) and (4.26) that

$$
e_{1} \mu=e_{2} \lambda=\cdots=e_{n} \lambda=0
$$

Thus, by using $\lambda=2 \mu$ we see that μ is a constant, say b. Now, by applying the equation of Gauss and $\mu=b$ we conclude that N is of constant curvature $-b^{2}$.

Theorem 4.1. A Lagrangian H-umbilical submanifold of $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ satisfying $\lambda=2 \mu$ is either a flat totally geodesic Lagrangian submanifold or congruent to an open portion of

$$
\begin{equation*}
\left(\frac{\cosh ^{2}(b s) \cosh t}{b}, \frac{\sinh (2 b s) \sinh t}{2 b} z, \frac{\sinh (2 b s) \cosh t}{2 b}, \frac{\cosh ^{2}(b s) \sinh t}{b} z\right) \tag{4.30}
\end{equation*}
$$

with $b \neq 0$, where $z=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{E}^{n-1}$ satisfies $z_{2}^{2}+z_{3}^{2}+\cdots+z_{n}^{2}=1$.
Proof. Let N be a Lagrangian H-umbilical submanifold of $\left(\mathbb{E}_{n}^{2 n}, \tilde{g}_{0}, \mathcal{P}\right)$ satisfying $\lambda=2 \mu$. Then, by Proposition $4.4, \mu$ is a constant, say b. If $b=0$, then N is totally geodesic. In this case, N is a flat Lagrangian submanifold.

Next, assume b is a nonzero constant. Then N is of constant negative curvature $-b^{2}$. Thus, N is an open portion of a hyperbolic n-space $H^{n}\left(-b^{2}\right)$ in $\mathbb{E}_{n}^{2 n}$ whose second fundamental form satisfies

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=2 b P e_{1}, h\left(e_{2}, e_{2}\right)=\cdots=h\left(e_{n}, e_{n}\right)=b P e_{1}, \\
& h\left(e_{1}, e_{j}\right)=b P e_{j}, h\left(e_{j}, e_{k}\right)=0,2 \leq j \neq k \leq n, \tag{4.31}
\end{align*}
$$

for some orthonormal frame e_{1}, \ldots, e_{n}.
On the other hand, a direct computation shows that (4.30) defines a Lagrangian H-umbilical immersion of $H^{n}\left(-b^{2}\right)$ into $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ whose second fundamental form also satisfies (4.31). Therefore, by uniqueness theorem, N is congruent to an open portion of (4.30).

5. Classification of Lagrangian H-Umbilical Submanifolds of $\mathbb{E}_{n}^{2 n}$

Next, we classify Lagrangian H-umbilical submanifolds in the para-Kähler n plane $\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$.

Theorem 5.1. Let $L: N \rightarrow\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ be a Lagrangian H-umbilical immersion of a Riemannian n-manifold N into the para-K ahler n-plane with $n \geq 3$. Then
(i) If N is of constant sectional curvature, then either N is flat or L is congruent to an open portion of

$$
\frac{1}{2 b}\left(2 \cosh ^{2}(b s) \cosh t, z \sinh (2 b s) \sinh t, \sinh (2 b s) \cosh t, 2 z \cosh ^{2}(b s) \sinh t\right)
$$

with $b \neq 0$, where $z=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{E}^{n-1}$ satisfies $z_{2}^{2}+z_{3}^{2}+\cdots+z_{n}^{2}=1$.
(ii) If N contains no open subset of constant sectional curvature, then L is locally congruent to one of the following three types of submanifolds:
(ii.1) a Lagrangian submanifold defined by

$$
\begin{aligned}
& \left(\frac{e^{2 r}}{8}-\frac{e^{-2 r}}{2 r^{\prime 2}}+a^{2} \sum_{j=2}^{n} x_{j}^{2}-\int^{s} \frac{2 r^{\prime 2}+r^{\prime \prime}}{e^{2 r} r^{\prime 3}} d s, \frac{1-a^{2} e^{2 r}}{2} x_{2}, \ldots, \frac{1-a^{2} e^{2 r}}{2} x_{n}\right. \\
& \left.\quad-\frac{e^{2 r}}{8}-\frac{e^{-2 r}}{2 r^{\prime 2}}+a^{2} \sum_{j=2}^{n} x_{j}^{2}-\int^{s} \frac{2 r^{\prime 2}+r^{\prime \prime}}{e^{2 r} r^{\prime 3}} d s, \frac{1+a^{2} e^{2 r}}{2} x_{2}, \ldots, \frac{1+a^{2} e^{2 r}}{2} x_{n}\right),
\end{aligned}
$$

where $r=r(s)$ is a non-constant function and a is positive number;
(ii.2) a Lagrangian submanifold defined by

$$
\begin{aligned}
& \frac{1}{2}\left(\left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}+\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right) \sin t,\left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}+\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right) z \cos t\right. \\
& \left.\quad\left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}-\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right) \sin t,\left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}-\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right) z \cos t\right)
\end{aligned}
$$

where $\mu(s)$ and $\varphi(s)$ are nonzero functions satisfies $\varphi \varphi^{\prime}-\mu \mu^{\prime}=\left(\mu^{2}-\varphi^{2}\right) \varphi$ and $\lambda=2 \mu+\mu \varphi^{-1}$ and $z=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{E}^{n-1}$ satisfies $z_{2}^{2}+z_{3}^{2}+\cdots+z_{n}^{2}=1$;
(ii.3) a Lagrangian submanifold defined by

$$
\begin{aligned}
& \frac{1}{2}\left(\left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}+\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right) \cosh t,\left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}-\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right) z \sinh t\right. \\
& \left.\quad\left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}-\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right) \cosh t,\left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}+\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right) z \sinh t\right)
\end{aligned}
$$

where $\mu(s)$ and $\varphi(s)$ are nonzero functions satisfies $\varphi \varphi^{\prime}-\mu \mu^{\prime}=\left(\mu^{2}-\varphi^{2}\right) \varphi$ and $\lambda=2 \mu+\mu \varphi^{-1}$ and $z=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{E}^{n-1}$ satisfies $z_{2}^{2}+z_{3}^{2}+\cdots+z_{n}^{2}=1$.

Proof. Assume that $n \geq 3$ and $L: N \rightarrow\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ is a Lagrangian H umbilical submanifold of the para-Kähler n-plane which satisfies (4.5) with respect to some suitable orthonormal local frame field e_{1}, \ldots, e_{n}.

If N is of constant curvature, then it follows from (4.5) and the equation of Gauss that $\mu(\lambda-2 \mu)=0$. Thus, either $\mu=0$ or $\lambda=2 \mu$ at each point. If $\mu=0$ identically, then N is flat. If $\mu \neq 0$, then $\lambda=2 \mu \neq 0$ on a nonempty open subset V of N. Thus, Proposition 4.4 implies that λ and μ are nonzero constants on V. Thus, by continuity, $V=N$. Therefore, it follows from Theorem 4.1 that N is congruent to an open portion the Lagrangian submanifold given in (i).

Next, assume that N contains no open subset of constant curvature. Then

$$
\begin{equation*}
U:=\{p \in N: \mu(\lambda-2 \mu) \neq 0 \text { at } p\} \tag{5.1}
\end{equation*}
$$

is an open dense subset of N. Moreover, it follows from Lemma 4.3 that

$$
\begin{align*}
& \omega_{1}^{j}=\left(\frac{e_{1} \mu}{\lambda-2 \mu}\right) \omega^{j}, \quad e_{j} \lambda=e_{j} \mu=0, \quad j=2, \ldots, n \tag{5.2}\\
& \omega_{1}^{j}\left(e_{1}\right)=\omega_{1}^{j}\left(e_{k}\right)=0, \quad 2 \leq j \neq k \leq n \tag{5.3}
\end{align*}
$$

From $\omega_{1}^{j}\left(e_{1}\right)=0$, we find $\nabla_{e_{1}} e_{1}=0$. Thus, the integral curves of e_{1} are geodesics. By using (5.2) and Cartan's structure equations, we get $d \omega^{1}=0$. Hence, according to Poincaré lemma, $\omega^{1}=d s$ for some local function s.

Let \mathcal{D} denote the distribution spanned by e_{1} which is clearly integrable. Using (5.3) we find

$$
\left\langle\left[e_{j}, e_{k}\right], e_{1}\right\rangle=\omega_{k}^{1}\left(e_{j}\right)-\omega_{j}^{1}\left(e_{k}\right)=0
$$

for $j, k=2, \ldots, n$. Thus the complementary orthogonal distribution \mathcal{D}^{\perp} spanned by $\left\{e_{2}, \ldots, e_{n}\right\}$ is an integrable distribution. Because \mathcal{D} and \mathcal{D}^{\perp} are both integrable, there is a local coordinate system $\left\{s, x_{2}, \ldots, x_{n}\right\}$ such that
(a) \mathcal{D} is spanned by $\{\partial / \partial s\}$ and \mathcal{D}^{\perp} is spanned by $\left\{\partial / \partial x_{2}, \ldots, \partial / \partial x_{n}\right\}$ and
(b) $e_{1}=\frac{\partial}{\partial s}, \omega^{1}=d s$.

From (4.26), (4.28) and (5.3) we have $e_{j} \lambda=e_{j} \mu=0$ for $j>1$. Hence, both λ and μ depend only on s. Moreover, it follows from (5.2) and (5.3) that

$$
\begin{equation*}
\nabla_{X}^{\prime} e_{1}=\varphi X, \quad \varphi=\frac{\mu^{\prime}}{\lambda-2 \mu}, \quad X \in \mathcal{D}^{\perp} \tag{5.4}
\end{equation*}
$$

where $\mu^{\prime}=d \mu / d s$.
It follows from (5.4) and $K_{1 j}=\left\langle R\left(e_{j}, e_{1}\right) e_{1}, e_{j}\right\rangle$ that the sectional curvature $K_{1 j}$ of the plane section spanned by e_{1}, e_{j} is $K_{1 j}=-\varphi^{\prime}-\varphi^{2}$. On the other hand, (4.5) and the equation of Gauss shows that $K_{1 j}=\mu^{2}-\lambda \mu$. Thus

$$
\begin{equation*}
\varphi^{\prime}=\lambda \mu-\mu^{2}-\varphi^{2} \tag{5.5}
\end{equation*}
$$

Also, from (5.4) we find that

$$
\begin{equation*}
\left\langle\nabla_{X}^{\prime} Y, e_{1}\right\rangle=-\varphi\langle X, Y\rangle \tag{5.6}
\end{equation*}
$$

This implies that the integrable distribution \mathcal{D}^{\perp} is spherical, i.e., the leaves of \mathcal{D}^{\perp} are totally umbilical with parallel mean curvature vector in N. Moreover, it follows from (4.6), (5.6) and Gauss' equation that each leaf of \mathcal{D}^{\perp} (with $s=$ constant) is of constant curvature $\varphi^{2}(s)-\mu^{2}(s)$. Hence, a result of [18] (see also [15, Remark 2.1]) implies that U is locally a warped product $I \times_{f(s)} R^{n-1}(c)$, where $R^{n-1}(c)$ is a Riemannian $(n-1)$-manifold of constant curvature and $f(s)$ is the warping function, where we choose $c=0,1$ or -1 according to $\varphi^{2}=\mu^{2}, \varphi^{2}>\mu^{2}$, or $\varphi^{2}<\mu^{2}$, respectively. Clearly, vectors tangent to I are in \mathcal{D} and vectors tangent to R^{n-1} are in \mathcal{D}^{\perp}.

The metric on $I \times{ }_{f} R^{n-1}(c)$ is given by

$$
\begin{equation*}
g=d s^{2}+f^{2}(s) \hat{g}_{c} \tag{5.7}
\end{equation*}
$$

where \hat{g}_{c} is metric of $R^{n-1}(c)$. From (5.7) we obtain

$$
\begin{equation*}
\nabla_{\partial / \partial s}^{\prime} \frac{\partial}{\partial s}=0, \nabla_{\partial / \partial s}^{\prime} X=\frac{f^{\prime}}{f} X, \nabla_{X}^{\prime} Y=-f f^{\prime}\langle X, Y\rangle \frac{\partial}{\partial s}+\mathcal{L}\left(\nabla_{X}^{\prime \prime} Y\right) \tag{5.8}
\end{equation*}
$$

for vector fields X, Y tangent to $R^{n-1}(c)$, where $\mathcal{L}\left(\nabla_{X}^{\prime \prime} Y\right)$ is the lift of the the covariant derivative $\nabla_{X}^{\prime \prime} Y$ of Y with respect to X on $R^{n-1}(c)$.

Case (1). $\varphi^{2}=\mu^{2}$. We may put $\varphi=\mu$. Also we have assume that

$$
\begin{equation*}
g=d s^{2}+f^{2}(s)\left(d x_{2}^{2}+d x_{3}^{2}+\cdots+d x_{n}^{2}\right) \tag{5.9}
\end{equation*}
$$

Thus (5.8) becomes

$$
\begin{equation*}
\nabla_{\partial / \partial s}^{\prime} \frac{\partial}{\partial s}=0, \nabla_{\partial / \partial s}^{\prime} \frac{\partial}{\partial x_{j}}=\frac{f^{\prime}}{f} \frac{\partial}{\partial x_{j}}, \nabla_{\partial / \partial x_{j}}^{\prime} \frac{\partial}{\partial x_{k}}=-f f^{\prime} \delta_{j k} \frac{\partial}{\partial s} \tag{5.10}
\end{equation*}
$$

for $j, k=2, \ldots, n$. From (4.5), (5.10) and $\left(\bar{\nabla}_{\partial / \partial s} h\right)\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_{j}}\right)=\left(\bar{\nabla}_{\partial / \partial x_{j}} h\right)\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right)$ we derive that

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\mu=\frac{\mu^{\prime}}{\lambda-2 \mu} \tag{5.11}
\end{equation*}
$$

Thus there is a real number $a \neq 0$ such that

$$
\begin{equation*}
f(s)=a e^{r(s)}, \quad r(s)=\int^{s} \mu(x) d x \tag{5.12}
\end{equation*}
$$

From (5.11), we find

$$
\begin{equation*}
\lambda=2 r^{\prime}+\frac{r^{\prime \prime}}{r^{\prime}} \tag{5.13}
\end{equation*}
$$

Consequently, (4.5), (5.10), (5.12), (5.13) and Gauss' formula imply that the immersion $L: N \rightarrow\left(\mathbb{E}_{n}^{2 n}, g_{0}, P\right)$ satisfies

$$
\begin{align*}
L_{s s} & =\left(2 r^{\prime}+\frac{r^{\prime \prime}}{r^{\prime}}\right) P L_{s} \\
L_{s x_{j}} & =r^{\prime}\left(L_{x_{j}}+P L_{x_{j}}\right) \tag{5.14}\\
L_{x_{j} x_{k}} & =a^{2} \delta_{j k} e^{2 r} r^{\prime}\left(P L_{s}-L_{s}\right)
\end{align*}
$$

From $P^{2}=I$ and (5.14) we have

$$
\begin{align*}
P L_{s s} & =\left(2 r^{\prime}+\frac{r^{\prime \prime}}{r^{\prime}}\right) L_{s} \\
P L_{s x_{j}} & =r^{\prime}\left(L_{x_{j}}+P L_{x_{j}}\right) \tag{5.15}\\
P L_{x_{j} x_{k}} & =a^{2} \delta_{j k} e^{2 r} r^{\prime}\left(L_{s}-P L_{s}\right)
\end{align*}
$$

After solving the PDE system given by (5.14) and (5.15), we obtain

$$
\begin{aligned}
L\left(s, x_{2}, \ldots, x_{n}\right)= & c_{1} e^{2 r}+c_{2}\left(2 a^{2} \sum_{j=2}^{n} x_{j}^{2}-2 \int^{s} \frac{2 r^{\prime 2}+r^{\prime \prime}}{e^{2 r} r^{\prime 3}} d s-\frac{e^{-2 r}}{r^{\prime 2}}\right) \\
& +\sum_{i=2}^{n} c_{i+1} x_{j}+e^{2 r} \sum_{j=2}^{n} c_{n+j} x_{j}, \quad r=\int^{s} \mu(s) d s
\end{aligned}
$$

for some $\mathbb{E}_{n}^{2 n}$-valued functions $c_{1}, \ldots, c_{2 n}$. Consequently, after choosing suitable initial values we obtain (ii.1).

Case (2). $\varphi^{2}>\mu^{2}$. With respect to a spherical coordinate chart $\left\{u_{2}, \ldots, u_{n}\right\}$, the metric on $I \times_{f} R^{n-1}(1)$ is given by

$$
\begin{equation*}
g=d s^{2}+f^{2}(s)\left\{d u_{2}^{2}+\cos ^{2} u_{2} d u_{3}^{2}+\cdots+\cos ^{2} u_{2} \cdots \cos ^{2} u_{n-1} d u_{n}^{2}\right\} \tag{5.16}
\end{equation*}
$$

From (5.16) we obtain

$$
\begin{align*}
\nabla_{\partial / \partial s}^{\prime} \frac{\partial}{\partial s} & =0, \quad \nabla_{\partial / \partial s}^{\prime} \frac{\partial}{\partial u_{k}}=\frac{f^{\prime}}{f} \frac{\partial}{\partial u_{k}}, \quad \nabla_{\partial / \partial u_{2}}^{\prime} \frac{\partial}{\partial u_{2}}=-f f^{\prime} \frac{\partial}{\partial s} \\
\nabla_{\partial / \partial u_{i}}^{\prime} \frac{\partial}{\partial u_{j}} & =-\tan u_{i} \frac{\partial}{\partial u_{j}}, \quad 2 \leq i<j \tag{5.17}\\
\nabla_{\partial / \partial u_{j}}^{\prime} \frac{\partial}{\partial u_{j}} & =-f f^{\prime} \prod_{\ell=2}^{j-1} \cos ^{2} u_{\ell} \frac{\partial}{\partial s}+\sum_{k=2}^{j-1}\left(\frac{\sin 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cos ^{2} u_{l}\right) \frac{\partial}{\partial u_{k}}
\end{align*}
$$

$$
j>2
$$

From (4.5), (5.17) and and $\left(\bar{\nabla}_{\partial / \partial s} h\right)\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial u_{j}}\right)=\left(\bar{\nabla}_{\partial / \partial u_{j}} h\right)\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right)$ we find

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\varphi=\frac{\mu^{\prime}}{\lambda-2 \mu} \tag{5.18}
\end{equation*}
$$

Thus, there is a real number $c \neq 0$ such that

$$
\begin{equation*}
f=a e^{\int^{s} \varphi(x) d x} \tag{5.19}
\end{equation*}
$$

By applying (5.16) and (5.19) we know that the sectional curvature K_{23} of the plane section spanned by $\partial / \partial u_{2}, \partial / \partial u_{3}$ is given by

$$
\begin{equation*}
K_{23}=a^{-2} e^{-2 \int \varphi(s) d s}-\varphi^{2} \tag{5.20}
\end{equation*}
$$

On the other hand, (4.5) and Gauss' equation yields

$$
\begin{equation*}
K_{23}=-\mu^{2} \tag{5.21}
\end{equation*}
$$

Combining (5.18), (5.19), (5.20) and (5.21) gives

$$
\begin{equation*}
f^{2}=\frac{1}{\varphi^{2}-\mu^{2}}, \quad \varphi=\frac{\mu^{\prime}}{\lambda-2 \mu}, \quad \lambda=2 \mu+\frac{\mu^{\prime}}{\varphi} \tag{5.22}
\end{equation*}
$$

It follows from (5.5) and the last equation in (5.22) that ϕ and μ satisfy the following differential equation

$$
\begin{equation*}
\varphi^{\prime}=\mu^{2}-\varphi^{2}+\frac{\mu \mu^{\prime}}{\varphi} \tag{5.23}
\end{equation*}
$$

Therefore, by applying (4.5), (5.16)-(5.19), (5.22) and Gauss' formula, we obtain

$$
\begin{align*}
& L_{s s}=\lambda P L_{s} \\
& L_{s u_{j}}=\varphi L_{u_{j}}+\mu P L_{u_{j}} \\
& L_{u_{i} u_{j}}=-\tan u_{i} L_{u_{j}}, \quad 2 \leq i<j \leq n \\
& L_{u_{j} u_{j}}= \tag{5.24}\\
& \quad \prod_{k=2}^{j-1} \cos ^{2} u_{k}\left(\frac{\mu}{\varphi^{2}-\mu^{2}} P L_{s}-\frac{\varphi}{\varphi^{2}-\mu^{2}} L_{s}\right) \\
& \quad+\sum_{k=2}^{j-1}\left(\frac{\sin 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cos ^{2} u_{l}\right) L_{u_{k}}, \quad j=2, \ldots, n
\end{align*}
$$

By applying $P^{2}=I$, we obtain from (5.24) that

$$
\begin{align*}
& P L_{s s}=\lambda L_{s} \\
& P L_{s u_{j}}=\mu L_{u_{j}}+\varphi P L_{u_{j}} \\
& P L_{u_{i} u_{j}}= \\
& P L_{u_{j} u_{j}}= \tag{5.25}\\
& \prod_{k=2}^{j-1} \cos ^{2} u_{k}\left(\frac{\mu}{\varphi^{2}-\mu^{2}} L_{s}-\frac{\varphi}{\varphi^{2}-\mu^{2}} P L_{u_{j}}, \quad 2 \leq i<j \leq n\right. \\
& \\
& \quad+\sum_{k=2}^{j-1}\left(\frac{\sin 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cos ^{2} u_{l}\right) P L_{u_{k}}, \quad j=2, \ldots, n
\end{align*}
$$

A direct computation shows that the compatibility condition of the PDE system (5.24)-(5.25) is (5.23).

From (5.24)-(5.25) we find

$$
L_{u_{2} u_{2} u_{2}}+L_{u_{2}}=0
$$

Thus

$$
\begin{equation*}
L=A\left(s, u_{3}, \ldots, u_{n}\right) \cos u_{2}+B\left(s, u_{3}, \ldots, u_{n}\right) \sin u_{2}+K\left(s, u_{3}, \ldots, u_{n}\right) \tag{5.26}
\end{equation*}
$$

for some $\mathbb{E}_{n}^{2 n}$-valued functions A, B and K. Substituting (5.26) into the third equation in (5.24) for $i=2, j \geq 3$, we obtain $A=A(s)$ and $K=K(s)$. Thus, (5.26) reduces to

$$
\begin{equation*}
L=A\left(s, u_{3}, \ldots, u_{n}\right) \cos u_{2}+B(s) \sin u_{2}+K(s) \tag{5.27}
\end{equation*}
$$

By substituting (5.27) into the last equation in (5.24) for $j=2$ and using the first equation of (5.24), we conclude that A, B and K satisfy the following second order differential equations:

$$
\begin{align*}
& A_{s s}-\left(2 \varphi(s)+\frac{\mu^{\prime}(s)}{\mu(s)}\right) A_{s}+\left(\varphi^{2}(s)-\mu^{2}(s)\right)\left(2+\frac{\mu^{\prime}(s)}{\mu(s) \varphi(s)}\right) A=0, \tag{5.28}\\
& B_{s s}-\left(2 \varphi(s)+\frac{\mu^{\prime}(s)}{\mu(s)}\right) B_{s}+\left(\varphi^{2}(s)-\mu^{2}(s)\right)\left(2+\frac{\mu^{\prime}(s)}{\mu(s) \varphi(s)}\right) B=0, \\
& K_{s s}-\left(2 \varphi(s)+\frac{\mu^{\prime}(s)}{\mu(s)}\right) K_{s}=0,
\end{align*}
$$

where μ, φ satisfy (5.23). After solving these second order differential equations we obtain

$$
\begin{align*}
& A=A_{1}\left(u_{3}, \ldots, u_{n}\right) \frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}+A_{2}\left(u_{3}, \ldots, u_{n}\right) \frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}, \tag{5.31}\\
& B=c_{1} \frac{e^{s} \lambda d s}{\mu+\varphi}+c_{2} \frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}, \tag{5.32}\\
& K=c_{-1}+c_{0} \int^{s} \mu(s) e^{2 \int^{s} \varphi(u) d u} d s \tag{5.33}
\end{align*}
$$

for some vectors $c_{-1}, c_{0}, c_{1}, c_{2} \in \mathbb{E}_{n}^{2 n}$ and $\mathbb{E}_{n}^{2 n}$-valued functions A_{1}, A_{2}. Thus, by combining (5.31)-(5.33) with (5.27) we conclude that, up to a suitable translation, the immersion L satisfies

$$
\begin{align*}
L\left(s, u_{2}, \ldots, u_{n}\right)= & \left(\frac{e^{\int^{s} \lambda d s}}{\mu+\varphi}\right)\left(c_{1} \sin u_{2}+A_{1}\left(u_{3}, \ldots, u_{n}\right) \cos u_{2}\right) \\
& +\left(\frac{e^{-\int^{s} \lambda d s}}{\mu-\varphi}\right)\left(c_{2} \sin u_{2}+A_{2}\left(u_{3}, \ldots, u_{n}\right) \cos u_{2}\right) \tag{5.34}\\
& +c_{0} \int^{s} \mu(s) e^{2 \int^{s} \varphi(u) d u} d s .
\end{align*}
$$

Now, by substituting (5.34) into the remaining equations of system (5.24)-(5.25), we obtain after long computation that

$$
\begin{aligned}
L= & \frac{e^{s} \lambda(s) d s}{\mu+\varphi}\left\{c_{1} \sin u_{2}+\cos u_{2}\left(c_{2} \sin u_{3}+\cdots+\frac{e^{-\int^{s} \lambda(s) d s}}{\mu-\varphi}\right.\right. \\
& \left.\left\{c_{n+1} \sin u_{2}+c_{n-1} \sin u_{n-1} \prod_{\ell=3}^{n-2} \cos u_{\ell}+c_{n} \prod_{\ell=3}^{n-1} \cos u_{\ell}\right)\right\} \\
& \left.+\cos u_{2}\left(c_{n+2} \sin u_{3}+\cdots+c_{2 n-1} \sin u_{n-1} \prod_{\ell=3}^{n-2} \cos u_{\ell}+c_{2 n} \prod_{\ell=3}^{n-1} \cos u_{\ell}\right)\right\} \\
& +c_{0} \int^{s} \mu(s) e^{2 \int^{s} \varphi(u) d u} d s
\end{aligned}
$$

for some vectors $c_{1}, \ldots, c_{2 n} \in \mathbb{E}_{n}^{2 n}$. Consequently, after choosing suitable initial conditions, we obtain (ii.2).

Case (3). $\varphi^{2}<\mu^{2}$. In this case, we may assume that the metric on $I \times_{f}$ $R^{n-1}(-1)$ is given by

$$
\begin{aligned}
g= & d s^{2}+f^{2}(s)\left\{d u_{2}^{2}+\sinh ^{2} u_{2}\left(d u_{3}^{2}+\cos ^{2} u_{3} d u_{4}^{2}+\cdots\right.\right. \\
& \left.\left.+\prod_{k=3}^{n-1} \cos ^{2} u_{k} d u_{n-1}^{2}\right)\right\}
\end{aligned}
$$

From (5.35) we obtain

$$
\begin{align*}
& \nabla_{\partial / \partial s}^{\prime} \frac{\partial}{\partial s}=0, \quad \nabla_{\partial / \partial s}^{\prime} \frac{\partial}{\partial u_{k}}=\frac{f^{\prime}}{f} \frac{\partial}{\partial u_{k}}, \\
& \nabla_{\partial / \partial u_{2}}^{\prime} \frac{\partial}{\partial u_{2}}=-f f^{\prime} \frac{\partial}{\partial s}, \\
& \nabla_{\partial / \partial u_{2}}^{\prime} \frac{\partial}{\partial u_{j}}= \operatorname{coth} u_{2} \frac{\partial}{\partial u_{j}}, \quad 3 \leq j \leq n, \\
& \nabla_{\partial / \partial u_{i}}^{\prime} \frac{\partial}{\partial u_{j}}=-\tan u_{i} \frac{\partial}{\partial u_{j}}, \quad 3 \leq i<j, \tag{5.36}\\
& \nabla_{\partial / \partial u_{j}}^{\prime} \frac{\partial}{\partial u_{j}}=-\prod_{\ell=3}^{j-1} \cos ^{2} u_{\ell}\left\{f f^{\prime} \sinh ^{2} u_{2} \frac{\partial}{\partial s}+\frac{\sinh 2 u_{2}}{2} \frac{\partial}{\partial u_{2}}\right\} \\
&+\sum_{k=3}^{j-1}\left(\frac{\sin 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cos ^{2} u_{l}\right) \frac{\partial}{\partial u_{k}}, \quad j \geq 3
\end{align*}
$$

From (4.5), (5.36) and and $\left(\bar{\nabla}_{\partial / \partial s} h\right)\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_{j}}\right)=\left(\bar{\nabla}_{\partial / \partial x_{j}} h\right)\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right)$ we also find

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\varphi=\frac{\mu^{\prime}}{\lambda-2 \mu} \tag{5.37}
\end{equation*}
$$

Thus, there is a real number $c \neq 0$ such that

$$
\begin{equation*}
f=c e^{\int^{s} \varphi(x) d x} \tag{5.38}
\end{equation*}
$$

By applying (5.35) and (5.38) we know that the sectional curvature K_{23} of the plane section spanned by $\partial / \partial u_{2}, \partial / \partial u_{3}$ is given by

$$
\begin{equation*}
K_{23}=-c^{-2} e^{-2 \int \varphi(s) d s}-\varphi^{2} \tag{5.39}
\end{equation*}
$$

On the other hand, (4.5) and Gauss' equation yields

$$
\begin{equation*}
K_{23}=-\mu^{2} \tag{5.40}
\end{equation*}
$$

Combining (5.37), (5.38), (5.39) and (5.40) gives

$$
\begin{equation*}
f^{2}=\frac{1}{\mu^{2}-\varphi^{2}}, \quad \varphi=\frac{\mu^{\prime}}{\lambda-2 \mu}, \quad \lambda=2 \mu+\frac{\mu^{\prime}}{\varphi} . \tag{5.41}
\end{equation*}
$$

It follows from (5.5) and the last equation in (5.22) that ϕ and μ satisfy the following differential equation

$$
\begin{equation*}
\varphi^{\prime}=\mu^{2}-\varphi^{2}+\frac{\mu \mu^{\prime}}{\varphi} . \tag{5.4}
\end{equation*}
$$

Therefore, by applying (4.5), (5.35)-(5.38), (5.41) and Gauss' formula, we obtain

$$
\begin{aligned}
& L_{s s}=\lambda P L_{s}, \\
& L_{s u_{j}}=\varphi L_{u_{j}}+\mu P L_{u_{j}}, \quad 2 \leq j \leq n, \\
& L_{u_{2} u_{2}}=\frac{\mu}{\mu^{2}-\varphi^{2}} P L_{s}-\frac{\varphi}{\mu^{2}-\varphi^{2}} L_{s}, \\
& L_{u_{2} u_{j}}=\operatorname{coth} u_{2} L_{j}, \quad 3 \leq j \leq n, \\
& L_{u_{i} u_{j}}=-\tan u_{i} L_{u_{j}}, \quad 3 \leq i<j \leq n, \\
& L_{u_{j} u_{j}}=\sinh ^{2} u_{2} \prod_{\ell=3}^{j-1} \cos ^{2} u_{\ell}\left\{\frac{\mu}{\mu^{2}-\varphi^{2}} P L_{s}-\frac{\varphi}{\mu^{2}-\varphi^{2}} L_{s}\right\} \\
& \quad-\frac{\sinh 2 u_{2}}{2} \prod_{\ell=3}^{j-1} \cos ^{2} u_{\ell} L_{u_{2}}+\sum_{k=3}^{j-1}\left(\frac{\sin 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cos ^{2} u_{l}\right) L_{u_{k}}, j \geq 3 .
\end{aligned}
$$

Now, by applying $P 2=I$ and (5.43), we get

$$
\begin{aligned}
& P_{s s}=\lambda L_{s}, \\
& P L_{s u_{j}}=\mu L_{u_{j}}+\varphi P L_{u_{j}}, \quad 2 \leq j \leq n, \\
& P L_{u_{2} u_{2}}=\frac{\mu}{\mu^{2}-\varphi^{2}} L_{s}-\frac{\varphi}{\mu^{2}-\varphi^{2}} P L_{s}, \\
& P L_{u_{2} u_{j}}=\operatorname{coth} u_{2} P L_{j}, \quad 3 \leq j \leq n, \\
& P L_{u_{i} u_{j}}=-\tan u_{i} P L_{u_{j}}, \quad 3 \leq i<j \leq n, \\
& P L_{u_{j} u_{j}}=\sinh ^{2} u_{2} \prod_{\ell=3}^{j-1} \cos ^{2} u_{\ell}\left\{\frac{\mu}{\mu^{2}-\varphi^{2}} L_{s}-\frac{\varphi}{\mu^{2}-\varphi^{2}} P L_{s}\right\} \\
& \quad-\frac{\sinh 2 u_{2}}{2} \prod_{\ell=3}^{j-1} \cos ^{2} u_{\ell} P L_{u_{2}}+\sum_{k=3}^{j-1}\left(\frac{\sin 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cos ^{2} u_{l}\right) P L_{u_{k}}, j \geq 3 .
\end{aligned}
$$

A direct computation shows that the compatibility condition of this system (5.43)-(5.44) is (5.23). By solving system (5.23) in a similar way as Case (2)
and after long computation and using (5.23), we obtain

$$
\begin{aligned}
L\left(s, u_{2}, \ldots, u_{n}\right)= & \frac{e^{\int^{s} \lambda(s) d s}}{\mu+\varphi}\left\{c_{1} \cosh u_{2}+\sinh u_{2}\left(c_{2} \sin u_{3}+\cdots\right.\right. \\
& \left.\left.+c_{n-1} \sin u_{n-1} \prod_{\ell=3}^{n-2} \cos u_{\ell}+c_{n} \prod_{\ell=3}^{n-1} \cos u_{\ell}\right)\right\} \\
& +\frac{e^{-\int^{s} \lambda(s) d s}}{\mu-\varphi}\left\{c_{n+1} \cosh u_{2}+\sinh u_{2}\left(c_{n+2} \sin u_{3}+\cdots\right.\right. \\
& \left.\left.+c_{2 n-1} \sin u_{n-1} \prod_{\ell=3}^{n-2} \cos u_{\ell}+c_{2 n} \prod_{\ell=3}^{n-1} \cos u_{\ell}\right)\right\}
\end{aligned}
$$

for some vectors $c_{1}, \ldots, c_{2 n} \in \mathbb{E}_{n}^{2 n}$. Hence, after choosing suitable initial conditions, we obtain (ii.3).

References

1. B.-Y. Chen, Geometry of Submanifolds, Mercer Dekker, New York, 1973.
2. B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, New Jersey, 1984.
3. B.-Y. Chen, Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math., 99 (1997), 69-108.
4. B.-Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J., 49 (1997), 277-297.
5. B.-Y. Chen, Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces, Tohoku Math. J., 51 (1999), 13-20.
6. B. Y. Chen, Riemannian submanifolds, in: Handbook of Differential Geometry, Vol. I, 187-418, (F. Dillen and L. Verstraelen, eds.), North-Holland, Amsterdam, 2000.
7. B. Y. Chen, Riemannian geometry of Lagrangian submanifolds, Taiwanese J. Math., 5 (2001), 681-723.
8. B.-Y. Chen, Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces, Bull. Inst. Math. Acad. Sinica, 31 (2003), 151-179.
9. B.-Y. Chen, Totally geodesic complex extensors in indefinite complex Euclidean spaces, Bull. Inst. Math. Acad. Sinica, 33 (2005), 253-259.
10. B.-Y. Chen, Lagrangian submanifolds in para-Kăhler manifolds, Nonlinear Analysis, 73 (2010), 3561-3571.
11. B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
12. V. Cortes, The special geometry of Euclidean supersymmetry: a survey, Rev. Un. Mat. Argentina, 47 (2006), 29-34.
13. V Cortés, M.-A. Lawn and L. Schafer, Affine hyperspheres associated to special para-Kähler manifolds, Int. J. Geom. Methods Mod. Phys., 3 (2006), 995-1009.
14. V. Cortes, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean supersymmetry, I, Vector multiplets, J. High Energy Phys., 2004, No. 3, 028, 73 pp.
15. F. Dillen and S. Nölker, Semi-parallelity, multi-rotation surfaces and the helix-property, J. Reine Angew. Math., 435 (1993), 33-63.
16. F. Etayo, R. Santamaría and U. R. Trías, The geometry of a bi-Lagrangian manifold, Differential Geom. Appl., 24 (2006), 33-59.
17. P. M. Gadea and A. Montesinos Amilibia, Spaces of constant para sectional curvature, Pacific J. Math., 136 (1989), 85-101.
18. S. Hiepko, Eine innere Kennzeichung der verzerrten Produkte, Math. Ann., 241 (1979), 209-215.
19. Z. Hou, S. Deng and S. Kaneyuki, Dipolarizations in compact Lie algebras and homogeneous para-Kahler manifold, Tokyo J. Math., 20 (1997), 381-388.
20. P. K. Rashevskij, The scalar field in a stratified space, Trudy Sem. Vektor. Tenzor. Anal., 6 (1948), 225-248.
21. B. A. Rozenfeld, On unitary and stratified spaces, Trudy Sem. Vektor. Tenzor. Anal., 7 (1949), 260-275.
22. H. S. Ruse, On parallel fields of planes in a Riemannian manifold, Quart. J. Math. Oxford Ser., 20 (1949), 218-234.

Bang-Yen Chen
Department of Mathematics
Michigan State University
East Lansing, Michigan 48824-1027
U.S.A.
E-mail: bychen@math.msu.edu

[^0]: Received and accepted August 12, 2010.
 Communicated by Jen-Chih Yao.
 2010 Mathematics Subject Classification: Primary 53C40; Secondary 53C50, 53D12.
 Key words and phrases: Para-K ahler manifold, Lagrangian H-umbilical submanifold, Para-Kahler n-plane.

