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L(3, 2, 1)-LABELING OF GRAPHS

Ma-Lian Chia1, David Kuo2, Hong-ya Liao3,
Cian-Hui Yang3 and Roger K. Yeh3

Abstract. Given a graph G, an L(3, 2, 1)-labeling of G is a function f
from the vertex set V (G) to the set of all nonnegative integers such that
|f(u) − f(v)| � 1 if d(u, v) = 3, |f(u) − f(v)| � 2 if d(u, v) = 2 and
|f(u)− f(v)| � 3 if d(u, v) = 1. For a nonnegative integer k, a k-L(3, 2, 1)-
labeling is an L(3, 2, 1)-labeling such that no label is greater than k. The
L(3, 2, 1)-labeling number of G, denoted by λ3,2,1(G), is the smallest number
k such that G has a k-L(3, 2, 1)-labeling. We study the L(3, 2, 1)-labelings of
graphs in this paper. We give upper bounds for the L(3, 2, 1)-labeling numbers
of general graphs and trees, and consider the L(3, 2, 1)-labeling numbers of
several classes of graphs, such as the Cartesian product of paths and cycles,
and the powers of paths.

1. INTRODUCTION

The L(2, 1)-labeling problem proposed by Griggs and Roberts [9] is a variation
of the frequency assignment problem introduced by Hale [5]. Suppose we are given
a number of transmitters or stations. The L(2, 1)-labeling problem is to assign fre-
quencies (nonnegative integers) to the transmitters so that “close” transmitters must
receive different frequencies and “very close” transmitters must receive frequencies
that are at least two frequencies apart.

To formulate the problem in graphs, the transmitters are represented by the
vertices of a graph; two vertices are “very close” if they are adjacent in the graph and
“close” if they are of distance two in the graph. More precisely, an L(2, 1)-labeling
of a graph G is a function f from the vertex set V (G) to the set of all nonnegative
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integers such that |f(u) − f(v)| � 1 if d(u, v) = 2 and |f(u) − f(v)| � 2 if
d(u, v) = 1. For a nonnegative integer k, a k-L(2, 1)-labeling is an L(2, 1)-labeling
such that no label is greater than k. The L(2, 1)-labeling number of G, denoted by
λ(G), is the smallest number k such that G has a k-L(2, 1)-labeling.

The L(2, 1)-labeling problem has been studied extensively over the past decade.
Griggs and Yeh [4] showed that the L(2, 1)-labeling problem is NP-complete for
general graphs. They proved that λ(G) � ∆2(G) + 2∆(G) and conjectured that
λ(G) � ∆2(G) for general graphs. Chang and Kuo [1] proved that λ(G) �
∆2(G) + ∆(G) and gave a polynomial-time algorithm for the L(2, 1)-labeling
problem on trees. The upper bound for general graphs was improved to λ(G) �
∆2(G) + ∆(G) − 1 by Král and Skrekovski [7], and was further improved to
λ(G) � ∆2(G) + ∆(G) − 2 by Gonçalves [3]. Hasunuma et al. [6] gave an
O(n1.75) algorithm for the L(2, 1)-labeling problem on trees. There are also many
results concerning this problem, for a good survey, see [11].

Liu and Shao [8] considered the following generalization of L(2, 1)-labeling
problem, which they called the L(3, 2, 1)-labeling problem: Given a graph G, an
L(3, 2, 1)-labeling of G is a function f from the vertex set V (G) to the set of all
nonnegative integers such that |f(u)− f(v)| � 1 if d(u, v) = 3, |f(u)− f(v)| � 2
if d(u, v) = 2 and |f(u)− f(v)| � 3 if d(u, v) = 1. For a nonnegative integer k,
a k-L(3, 2, 1)-labeling is an L(3, 2, 1)-labeling such that no label is greater than k.
The L(3, 2, 1)-labeling number of G, denoted by λ3,2,1(G), is the smallest number
k such that G has a k-L(3, 2, 1)-labeling.

Shao [10] studied the L(3, 2, 1)-labeling of Kneser graphs, extremely irregular
graphs, Halin graphs, and gave bounds for the L(3, 2, 1)-labeling numbers of these
classes of graphs. Liu and Shao [8] studied the L(3, 2, 1)-labeling of planar graphs,
and showed that λ3,2,1(G) ≤ 15(∆2 − ∆ + 1) if G is a planar graph of maximum
degree ∆. Clipperton et al. [2] determined the L(3, 2, 1)-labeling numbers for paths,
cycles, caterpillars, n-ary trees, complete graphs and complete bipartite graphs, and
showed that λ3,2,1(G) ≤ ∆3 +∆2 +3∆ for any graph G with maximum degree ∆.

In this paper, we study the L(3, 2, 1)-labeling numbers of several classes of
graphs. We give some basic properties in Section two, and give upper bounds for
the L(3, 2, 1)-labeling numbers of general graphs and trees in Section three. In
Section four, we study the the L(3, 2, 1)-labeling numbers of the Cartesian product
of paths and cycles. And, in the last section, we study the L(3, 2, 1)-labeling
numbers of the powers of paths.

2. PRELIMINARIES

Lemma 1. If H is a subgraph of G, then λ 3,2,1(H) ≤ λ3,2,1(G).

Lemma 2. If f is a k-L(3, 2, 1)-labeling of G, then the function f ′ : V (G) →
{0, 1, ..., k}, defined by f ′(v) = k − f(v), is also a k-L(3, 2, 1)-labeling of G.
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Lemma 3. For a star Sn = {v}+ Kn, λ3,2,1(Sn) = 2n + 1. Moreover, if f is
a (2n + 1)-L(3, 2, 1)-labeling of Sn, then f(v) = 0 or 2n + 1.

Corollary 4. For any graph G with ∆(G) = ∆ > 0, λ3,2,1(G) ≥ 2∆ + 1.
Moreover, if λ3,2,1(G) = 2∆+1 and f is a (2∆+1)-L(3, 2, 1)-labeling of G, then
for all v ∈ V (G) with deg(v) = ∆, f(v) ∈ {0, 2∆ + 1}.

Corollary 5. Given a graph G with ∆(G) = ∆. If there exist v 1, v2, v3 in
V (G), such that deg(vi) = ∆, and d(vi, vj) ≤ 3 for all 1 ≤ i, j ≤ 3, then
λ3,2,1(G) ≥ 2∆ + 2.

Lemma 6. Given a graph G with ∆(G) = ∆. If λ3,2,1(G) = 2∆ + 2, and f

is a (2∆ + 2)-L(3, 2, 1)-labeling of G, then for all v ∈ V (G) with deg(v) = ∆,
f(v) ∈ {0, 1, 3, ..., 2∆ − 1, 2∆ + 1, 2∆ + 2}.

Corollary 7. Given a graph G with ∆(G) = ∆. If λ3,2,1(G) = 2∆ + 2,
and there exist v, v1, v2, v3 ∈ V (G), such that deg(v) = deg(v1) = deg(v2) =
deg(v3) = ∆, and vv1, vv2, vv3 ∈ E(G), then for all (2∆ + 2)-L(3, 2, 1)-labeling
f of G, f(v) ∈ {0, 2∆ + 2}.

3. UPPER BOUNDS FOR THE L(3, 2, 1)-LABELING NUMBERS OF

GENERAL GRAPHS AND TREES

Given a graph G and a vertex v in V (G), the kth-neighborhood of v in G,
denoted N k

G(v), is defined by Nk
G(v) = {u | dG(u, v) = k}. If G is the only graph

we considered, we use N k(v) to replace Nk
G(v) for simplicity. And, when k = 1,

we simply write NG(v) in stead of N k
G(v).

For a fixed integer k, a k-stable set of a graph G is a subset S of V (G) such
that every two distinct vertices in S are of distance greater than k.

Theorem 8. If G is a graph with maximum degree ∆, λ3,2,1(G) ≤ ∆3 + 2∆.

Proof. Consider the following labeling scheme on V (G). Initially, all vertices
are unlabeled. Let S−2 = S−1 = ∅. When Si−2 and Si−1 is determined and not all
vertices in G are labeled, let

Fi = {x ∈ V (G) | x is unlabeled and d(x, y) ≥ 2 for all y ∈ Si−2

and d(x, z) ≥ 3 for all z ∈ Si−1}.

Choose a maximal 3-stable subset Si of Fi. Note that if Fi = ∅, (i.e., for any
unlabeled vertex x, there exists some y ∈ Si−2 with d(x, y) < 2 or some z ∈ Si−1

with d(x, y) < 3) Si = ∅. In any case, label all vertices in Si by i. Then increase
i by 1, and continue the process until all vertices are labeled. Assume that k is the
maximum label used and choose a vertex x whose label is k. Let
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I1 = {i | 0 ≤ i ≤ k − 1 and d(x, y) = 1 for some y ∈ Si},
I2 = {i | 0 ≤ i ≤ k − 1 and d(x, y) = 2 for some y ∈ Si},
I3 = {i | 0 ≤ i ≤ k − 1 and d(x, y) ≤ 3 for some y ∈ Si},
I4 = {i | 0 ≤ i ≤ k − 1 and d(x, y) ≥ 4 for all y ∈ Si}.

It is clear that |I3| + |I4| = k. Since the total number of vertices y with 1 ≤
d(x, y) ≤ 3 is at most deg(x) +

∑
y∈N(x)

(deg(y) − 1) +
∑

z∈N2(x)

(deg(z) − 1) ≤

∆ + ∆(∆ − 1) + ∆(∆ − 1)2 = ∆3 − ∆2 + ∆, we have |I3| ≤ ∆3 − ∆2 + ∆.

Similarly, we have |I1| ≤ ∆ and |I2| ≤ ∆2 − ∆. For any i ∈ I4, x /∈ Fi, for
otherwise, Si ∪{x} is a 3-stable set, which will contradict to the choice of Si. That
is, d(x, y) = 2 for some y ∈ Si−1 or d(x, z) = 1 for some z ∈ Si−2 ∪ Si−1. Thus
|I4| ≤ |I2| + 2|I1|, and so

k = |I3|+ |I4|
≤ |I3|+ |I2| + 2|I1|
≤ ∆3 − ∆2 + ∆ + ∆2 − ∆ + 2∆

= ∆3 + 2∆.

We now consider the upper bound of the L(3, 2, 1)-labeling numbers of trees.
Given a rooted tree T with root v, the height of T, denoted h(T ), is defined by
h(T ) = max{d(u, v) | u ∈ V (T )}. A rooted tree T with V (T ) = {vij | 1 ≤ i ≤
h+1, 1 ≤ j ≤ ni−1} and E(T ) = {vijv(i+1)k | 1 ≤ i ≤ h, (j−1)n+1 ≤ k ≤ jn}
is called a complete n-ary tree of height h. Griggs and Yeh [4] studied the L(2, 1)-
labeling numbers of trees and showed that if T is a tree with ∆(T ) = ∆, then
∆ + 1 ≤ λ(T ) ≤ ∆ + 2. Chang and Kuo [1] gave a polynomial-time algorithm
to determine whether λ(T ) = ∆ + 1 or ∆ + 2 if T is a tree with ∆(T ) = ∆.
Clipperton et al. [2] studied the complete n-ary trees and gave the following result.

Theorem 9. ([2]). If T is a complete n-ary tree of height h ≥ 3, then
λ3,2,1(T ) = 2n + 5.

In fact, for any tree T with ∆(T ) = ∆, we have

Lemma 10. If T is a rooted tree with root v, and ∆(T ) = ∆, then λ 3,2,1(T ) ≤
2∆ + 3. Moreover, there exists a (2∆ + 3)-L(3, 2, 1)-labeling f of T such that
f(u) ≡ d(u, v) (mod2) for all u ∈ V (T ).

Proof. We prove this by induction on the height h of T. The conclusion
clearly holds for h ≤ 2. Suppose the conclusion holds for all rooted trees of height
h with 2 ≤ h ≤ l, and let T be a rooted tree with root v of height h = l + 1.
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Consider the subtree T ′ of T which is obtained from T by deleting all the leaves of
T other than v. Then, since h(T ′) = l, by the induction hypothesis, there exists a
(2∆(T ′) + 3)-L(3, 2, 1)-labeling f ′ of T ′ such that f ′(u) ≡ d(u, v) (mod2) for all
u ∈ V (T ′). Note that since ∆(T ′) ≤ ∆, f ′ is a (2∆ + 3)-L(3, 2, 1)-labeling of T ′.

Now, let {vi | 1 ≤ i ≤ m} be the set of leaves of T ′. For all i, 1 ≤ i ≤ m, let
{ui} = NT ′(vi), ai = f ′(ui), bi = f ′(vi), and let Ai = NT (vi) − {ui}, Bi = {j
| 0 ≤ j ≤ 2∆ + 3, j �≡ f ′(vi) (mod2)} − {ai, bi − 1, bi + 1}. Since for each i,

1 ≤ i ≤ m, |Ai| ≤ ∆ − 1 and |Bi| ≥ ∆ − 1, there exists a one-to-one function hi

from Ai to Bi. Define a function f : V (T ) → {0, 1, 2, · · · , 2∆ + 3} by

f(v) =

{
f ′(v), if v ∈ V (T ′),
hi(v), if v ∈ Ai.

Then, clearly, f is a (2∆+3)-L(3, 2, 1)-labeling of T which satisfies f(u) ≡ d(u, v)
(mod2) for all u ∈ V (T ). Thus the conclusion also holds for h = l + 1. By the
principle of mathematical induction, the conclusion holds for any tree T.

By Corollary 4 and Lemma 10, we have

Theorem 11. For any tree T with ∆(T ) = ∆, 2∆ + 1 ≤ λ3,2,1(T ) ≤ 2∆ + 3.

4. L(3, 2, 1)-LABELINGS OF CARTESIAN PRODUCT OF PATHS AND CYCLES

Given k graphs G1, G2, · · · , Gk, the Cartesian product of these k graphs, de-
noted by G1 × G2 × · · · × Gk, is a graph with

V (G1 × G2 × · · · × Gk)

= V (G1) × V (G2) × · · · × V (Gk),

E(G1 × G2 × · · · × Gk)

= {(u1, u2, · · · , uk)(v1, v2, · · · , vk) | ul, vl ∈ V (Gl)

for all l, 1 ≤ l ≤ k, uivi ∈ E(Gi) for some i and

uj = vj for all j �= i}.

We consider the L(3, 2, 1)-labeling numbers of Cartesian product of paths and
cycles in this section. From now on, in convenience, when consider the graph
Pm1 × Pm2 × · · · × Pmk

, we always assume that

V (Pm1 × Pm2 × · · · × Pmk
)

= {(i1, i2, · · · , ik) | 1 ≤ il ≤ ml for all l, 1 ≤ l ≤ k},

and
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E(Pm1 × Pm2 × · · · × Pmk
)

= {(i1, i2, · · · , ik)(j1, j2, · · · , jk) |
k∑

l=1

|il − jl| = 1}.

And, in order to simplify the notation, when consider a label of a vertex (i1, i2, · · · , ik),
we use f(i1, i2, · · · , ik) to replace f((i1, i2, · · · , ik)).

Clipperton et al. [2] studied the L(3, 2, 1)-labeling numbers of cycles and gave
the following result.

Theorem 12. [2] For any cycle Cn, n ≥ 3,

λ3,2,1(Cn) =




6, if n = 3,

7, if n is even,

8, if n is odd and n �= 3, 7,

9, if n = 7.

Given an integer k ≥ 2, we use the symbol ik to denote the number imodk.

Theorem 13. For all n ≥ 2,

λ3,2,1(P2 × Pn) =




7, if n = 2,

8, if n = 3, 4,

9, if n ≥ 5.

Proof. Since P2 × P2 = C4, λ3,2,1(P2 × P2) = 7 follows from Theorem 12.
For n ≥ 3, consider the labeling f of P2 ×Pn defined by f(i, j) = (5i + 3j − 6)10

for all i, j, 1 ≤ i ≤ 2, 1 ≤ j ≤ n. Then, it is easy to verify that f is an
L(3, 2, 1)-labeling of P2 × Pn. Since max{f(i, j) | (i, j) ∈ V (P2 × Pn)} = 8
when n = 3, 4, and max{f(i, j) | (i, j) ∈ V (P2 ×Pn)} = 9 when n ≥ 5, we have
λ3,2,1(P2 × Pn) ≤ 8 when n = 3, 4, and λ3,2,1(P2 × Pn) ≤ 9 when n ≥ 5.

Now, to prove this theorem, by Lemma 1, we only need to show that λ3,2,1(P2×
P3) ≥ 8 and λ3,2,1(P2 × P5) ≥ 9. Suppose λ3,2,1(P2 × P3) ≤ 7, and f is a 7-
L(3, 2, 1)-labeling of P2 × P3. Then by Corollary 4, we have {f(1, 2), f(2, 2)} =
{0, 7}. However, this implies {f(1, 1), f(2, 1)} = {f(1, 3), f(2, 3)} = {2, 5},
a contradiction. Thus λ3,2,1(P2 × P3) ≥ 8. If λ3,2,1(P2 × P5) ≤ 8, let f
be an 8-L(3, 2, 1)-labeling of P2 × P5, and let S = {(i, j) | i = 1, 2, j =
2, 3, 4}, then f(i, j) ∈ {0, 1, 3, 5, 7, 8} for all (i, j) ∈ S by Lemma 6. There-
fore, f(S) = {0, 1, 3, 5, 7, 8} since f is an L(3, 2, 1)-labeling of P2×P5. However,
since {f(1, 3), f(2, 3)} = {0, 8} by Corollary 7, f(i, j) �= 1 for all (i, j) ∈ S, a
contradiction. Hence λ3,2,1(P2 × P5) ≥ 9.

Lemma 14. λ3,2,1(Pm × Pn) ≤ 11 if n ≥ m ≥ 3. Furthermore, λ3,2,1(P3 ×
Pn) ≤ 10 when n = 4, 5.
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Proof. Consider the labeling f of Pm×Pn defined by f(i, j) = (3i + 5j − 4)12.
Then, it is easy to verify that f is an L(3, 2, 1)-labeling of Pm × Pn, hence
λ3,2,1(Pm × Pn) ≤ 11 for all m, n with n ≥ m ≥ 3. Note that when m = 3 and
n = 4, 5, max{f(i, j) | (i, j) ∈ V (Pm × Pn)} = 10. Hence λ3,2,1(P3 × Pn) ≤ 10
for n = 4, 5.

Lemma 15. Let V (C4) = {v1, v2, v3, v4} and E(C4) = {v1v2, v2v3, v3v4, v4v1}.
If f is a 9-L(3, 2, 1)-labeling of C4, then {f(v1), f(v3)} �= {3, 7}, {2, 6}. And, if
f is a 10-L(3, 2, 1)-labeling of C4, then {f(v1), f(v3)} �= {3, 8}, {1, 8}, {4, 8}.

Lemma 16. λ3,2,1(P3 ×P4) = 10. Moreover, if f is a 10-L(3, 2, 1)-labeling of
P3 × P4, then {f(2, 2), f(2, 3)}= {0, 5} or {f(2, 2), f(2, 3)}= {5, 10}.

Proof. λ3,2,1(P3×P4) ≤ 10 follows from Lemma 14. If λ3,2,1(P3 × P4)
= 9, let f be a 9-L(3, 2, 1)-labeling of P3 × P4, then, by Corollary 4, we have
{f(2, 2), f(2, 3)} = {0, 9}. Without loss of generality, we may assume that f(2, 2) =
0 and f(2, 3) = 9. Since {f(1, 2), f(2, 1), f(3, 2)} = {3, 5, 7}, by Lemma 15,
{f(1, 2), f(2, 1)} �= {3, 7} and {f(2, 1), f(3, 2)} �= {3, 7}, thus f(2, 1) = 5, and,
without loss of generality, we may assume that f(3, 2) = 3 and f(1, 2) = 7. By a
similar argument, we must have f(3, 3) = 6, f(2, 4) = 4, and f(1, 3) = 2. How-
ever, in this case, no numbers can be be assigned to the vertex (1, 4), a contradiction.
Hence λ3,2,1(P3 × P4) = 10.

Now, if f is a 10-L(3, 2, 1)-labeling of P3×P4, by Lemma 6, {f(2, 2), f(2, 3)} ⊆
{0, 1, 3, 5, 7, 9, 10}.

Claim 1. 3 /∈ {f(2, 2), f(2, 3)} and 7 /∈ {f(2, 2), f(2, 3)}.
Proof of Claim 1. Suppose, to the contrary, 3 ∈ {f(2, 2), f(2, 3)}. Without loss

of generality, we may assume that f(2, 2) = 3. Since {f(i, j) | (i, j) ∈ N ((2, 2))}=
{0, 6, 8, 10}, by Lemma 6, we have f(2, 3) ∈ {0, 10}. Consider the following two
cases.

Case 1. f(2, 3) = 0.
In this case, if f(2, 1) = 6, then {f(1, 2), f(3, 2)} = {8, 10}. But this implies

f(1, 1) = f(3, 1) = 1, a contradiction. Hence f(2, 1) �= 6. Without loss of gen-
erality, we assume that f(3, 2) = 6. Now, if f(1, 2) = 8, then f(2, 1) = 10 and
f(3, 1) = 1, which implies f(1, 1) = 5. But then, no number can be assigned to the
vertex (1, 3), a contradiction. Hence if f(3, 2) = 6, we must have f(1, 2) = 10 and
f(2, 1) = 8. In this case, we have f(3, 1) = 1 and f(3, 3) = 9. But this implies
f(1, 1) = 5, and so f(1, 3) = 7. Thus f(2, 4) = 5, and so f(1, 4) = f(3, 4) = 2,
also a contradiction. Hence this case is impossible.

Case 2. f(2, 3) = 10.
In this case, since the diameter of the subgraph induced by the vertices in

V (P3 × P4) − {(1, 1), (3, 1), (1, 4), (3, 4)} is 3 and f(i, j) = 0 for some (i, j) ∈
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N ((2, 2)), {f(i, j) | (i, j) ∈ N ((2, 3))}= {1, 3, 5, 7}. If f(2, 4) = 1, then, without
loss of generality, we may assume that f(3, 3) = 5 and f(1, 3) = 7. However, this
implies f(1, 2) = 0 and f(3, 4) = 8. But then, no number can be assigned to the
vertex (3, 2), a contradiction. If f(2, 4) = 5, then, without loss of generality, we
may assume that f(3, 3) = 1 and f(1, 3) = 7. However, this implies f(1, 2) = 0
and f(3, 4) = 8. Hence f(3, 2) = 6 and f(2, 1) = 8. But then, no number can be
assigned to the vertex (3, 1), a contradiction. If f(2, 4) = 7, then, without loss of
generality, we may assume that f(3, 3) = 1 and f(1, 3) = 5. Under this condition,
if {f(1, 2), f(2, 1)}= {0, 8}, then no number can be assigned to the vertex (1, 1).
Therefore, since f(1, 2) �= 6 and f(3, 2) �= 0, we must have f(2, 1) = 6, f(1, 2) =
0, and f(3, 2) = 8. But then, no number can be assigned to the vertex (3, 1), a
contradiction. Hence this case is also impossible.

From the two cases above, we have 3 /∈ {f(2, 2), f(2, 3)}. By Lemma 2, we
also have 7 /∈ {f(2, 2), f(2, 3)}.

Claim 2. 1 /∈ {f(2, 2), f(2, 3)} and 9 /∈ {f(2, 2), f(2, 3)}.
Proof of Claim 2. Suppose, to the contrary, 1 ∈ {f(2, 2), f(2, 3)}. With-

out loss of generality, we may assume that f(2, 2) = 1. Since {f(i, j) (i, j) ∈
N ((2, 2))} = {4, 6, 8, 10}, by Lemma 6, we have f(2, 3) = 10. By Lemma 15,
we have {f(1, 2), f(3, 2)} = {4, 8}. Hence, without loss of generality, we may
assume that f(1, 2) = 4, f(2, 1) = 6, and f(3, 2) = 8. Therefore, f(3, 1) = 3 and
f(1, 3) = 7, which implies f(3, 3) = 5, and so f(2, 4) = 3. However, in this case,
we have f(1, 4) = f(3, 4) = 0, a contradiction. Thus 1 /∈ {f(2, 2), f(2, 3)}. By
Lemma 2, we also have 9 /∈ {f(2, 2), f(2, 3)}.

Claim 3. If f(2, 2) = 0 and f(2, 3) = 10, then there exists (i, j) ∈ N ((2, 2)),
f(i, j) = 3.

Proof of Claim 3. If f(i, j) ≥ 4 for all (i, j) ∈ N ((2, 2)), then {f(i, j) | (i, j) ∈
N ((2, 2))} = {4, 6, 8, 10}. By Lemma 15, we have {f(1, 2), f(3, 2)} = {4, 8}.
Without loss of generality, we assume that f(1, 2) = 4, f(2, 1) = 6, and f(3, 2) = 8.
Hence f(1, 3) = 7, and so {f(2, 4), f(3, 3)} = {2, 5} or {f(2, 4), f(3, 3)} =
{3, 5}. In either case, no number can be assigned to the vertex (3, 4), a contradiction.

By Claim 1 and Claim 2, we know that {f(2, 2), f(2, 3)} ⊆ {0, 5, 10}. If
{f(2, 2), f(2, 3)} = {0, 10}, then, without loss of generality, we may assume that
f(2, 2) = 0 and f(2, 3) = 10. By Claim 3, there exists (i, j) ∈ N ((2, 2)), f(i, j) =
3. By Lemma 15, we have {f(1, 2), f(2, 1)} �= {3, 8} and {f(2, 1), f(3, 2)} �=
{3, 8}. If {f(1, 2), f(2, 1)} = {3, 7}, then no number can be assigned to the ver-
tex (1, 1), a contradiction. Hence {f(1, 2), f(2, 1)} �= {3, 7}. Similarly, {f(2, 1),
f(3, 2)} �= {3, 7}. Hence f(2, 1) �= 3. Without loss of generality, we may assume
that f(1, 2) = 3. In this case, if f(1, 3) = 6, then {f(2, 4), f(3, 3)}= {4, 8}, which
will contradict to Lemma 15. Hence f(1, 3) = 7, and so f(1, 4) = 1. Therefore,
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f(2, 4) ∈ {4, 5}, and so f(3, 3) = 2. Thus f(3, 4) = 8 and f(3, 2) ∈ {5, 6}, which
implies f(2, 1) = 8. But this will contradict to Lemma 15, thus {f(2, 2), f(2, 3)} �=
{0, 10}, and so either {f(2, 2), f(2, 3)}= {0, 5} or {f(2, 2), f(2, 3)}= {5, 10}.

Combining Lemma 14 and Lemma 16, we have

Lemma 17. λ3,2,1(P3 ×P5) = 10. Moreover, if f is a 10-L(3, 2, 1)-labeling of
P3 × P5, then (f(2, 2), f(2, 3), f(2, 4)) = (0, 5, 10) or (10, 5, 0).

Theorem 18. For all n ≥ 3,

λ3,2,1(P3 × Pn) =




9, if n = 3,

10, if n = 4, 5,

11, if n ≥ 6.

Proof. λ3,2,1(P3 × Pn) = 10 for n = 4, 5 follows from Lemma 1, Lemma
14 and Lemma 16. For n ≥ 6, by Lemma 14, we have λ3,2,1(P3 × Pn) ≤ 11.

If λ3,2,1(P3 × P6) = 10, then, by Lemma 17, for any 10-L(3, 2, 1)-labeling f of
P3 × P6, we have f(2, 3) = 5 and f(2, 4) = 5(the subgraph induced by {(i, j) |
1 ≤ i ≤ 3, 2 ≤ j ≤ 6} is the graph P3 × P5), a contradiction. Hence λ3,2,1(P3 ×
P6) ≥ 11, and so λ3,2,1(P3 × Pn) = 11 for all n ≥ 6.

For n = 3, since ∆(P3 × P3) = 4, we have λ3,2,1(P3 × P3) ≥ 9 by Corollary
4. It is easy to verify that the labeling f : V (P3 × P3) → {0, 1, 2, · · · , 9}, defined
by f(i, j) = (5i + 3j − 6)10 for all i, j, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3, and f(3, 1) = 4,
f(3, 2) = 9, f(3, 3) = 6, is a 9-L(3, 2, 1)-labeling of P3 × P3. Thus λ3,2,1(P3 ×
P3) = 9.

Theorem 19. For all m, n with n ≥ m ≥ 4, λ3,2,1(Pm × Pn) = 11.

Proof. By Lemma 14, λ3,2,1(Pm × Pn) ≤ 11 for all m, n. If λ3,2,1(P4 × P4)
= 10, then, by Lemma 16, for any 10-L(3, 2, 1)-labeling f of P4 × P4, we have
5 ∈ {f(2, 2), f(2, 3)} and 5 ∈ {f(3, 2), f(3, 3)}(the subgraph induced by {(i, j) |
2 ≤ i ≤ 4, 1 ≤ j ≤ 4} is the graph P3 × P4), a contradiction. Hence λ3,2,1(P4 ×
P4) ≥ 11, and so λ3,2,1(Pm × Pn) = 11 for all m, n with n ≥ m ≥ 4.

Combining the theorems above, we have

Theorem 20. For all m, n with n ≥ m ≥ 2,

λ3,2,1(Pm × Pn) =




7, if (m, n) = (2, 2),
8, if (m, n) = (2, 3), (2, 4),
9, if (m, n) = (3, 3), or m = 2 and n ≥ 5,

10, if (m, n) = (3, 4), (3, 5),
11, if m = 3 and n ≥ 6, or n ≥ m ≥ 4.
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The lattice Γ� is a graph with V (Γ�) = {(a, b) | a, b ∈ Z} and E(Γ�) =
{(a, b)(c, d) | |a− c|+ |b−d|= 1, a, b, c, d ∈ Z}. It is easy to see that the labeling
of Pm × Pn, given in Lemma 14, can be extended as an L(3, 2, 1)-labeling of Γ�.

Therefore, since Pm × Pn can be viewed as a subgraph of Γ�, by Lemma 1 and
Theorem 20, we have

Theorem 21. λ3,2,1(Γ�) = 11.

By Lemma 16 and the labeling given in Lemma 14, we also have

Theorem 22. λ3,2,1(Cm × Pn) = 11 if m ≡ 0 (mod4) and n ≥ 3.

Theorem 23. λ3,2,1(Cm × Cn) = 11 if m ≡ 0 (mod4) and n ≡ 0 (mod12).

We now consider the L(3, 2, 1)-labeling numbers of P2 × Cn. The following
lemma is easy to verify.

Lemma 24. If f is a 9-L(3, 2, 1)-labeling of P2×Cn, then for all u ∈ V (P2×
Cn) with f(u) = 2, f(v) ∈ {5, 7, 9} for all v ∈ N (u). And for all w ∈ V (P2×Cn)
with f(w) = 7, f(x) ∈ {0, 2, 4} for all x ∈ N (w).

Lemma 25. If f is a 9-L(3, 2, 1)-labeling of P2 × Cn and uv ∈ E(P2 × Cn),
then {f(u), f(v)} �= {0, 8}.

Proof. Suppose, to the contrary, there exists uv ∈ E(P2 × Cn), such that
{f(u), f(v)} = {0, 8}. Let w, x be the vertices in P2 × Cn such that the subgraph
induced by {u, v, w, x} is isomorphic to C4. Without loss of generality, we may
assume that vw, wx, xu ∈ E(P2 × Cn) and f(u) = 0, f(v) = 8. Since f is a
9-L(3, 2, 1)-labeling, by Lemma 24, we have (f(w), f(x)) = (3, 6). However, in
this case, no number can be assigned to the vertex y with y ∈ N (w) − {v, x}, a
contradiction.

Lemma 26. If f is a 9-L(3, 2, 1)-labeling of P2 × Cn and there exist u =
(i, j), v = (k, l) ∈ V (P2 × Cn), such that d(u, v) = 2 and {f(u), f(v)} = {0, 8},
then |i − k| = 1.

Proof. Suppose, to the contrary, the conclusion false. Without loss of gener-
ality, we may assume that u = (1, 1), v = (1, 3), and (f(u), f(v)) = (0, 8). Then
f(1, 2) ∈ {3, 4, 5}. If f(1, 2) = 4, then no number can be assigned to the vertex
(2, 2). If f(1, 2) = 5, then f(2, 2) = 2, and thus no number can be assigned to
the vertex (2, 3). Hence f(1, 2) = 3. But this implies f(2, 2) = 6, f(2, 3) = 1,
and f(2, 4) = 4. However, in this case, no number can be assigned to the ver-
tex (1, 4), a contradiction. Hence if u = (i, j), v = (k, l), d(u, v) = 2 and
{f(u), f(v)} = {0, 8}, we must have |i− k| = 1.
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Lemma 27. If f is a 9-L(3, 2, 1)-labeling of P2 × Cn and f(1, 1) = 0, then
f(2, 1) /∈ {4, 6, 7}.

Proof. If f(2, 1) = 4, then {f(2, 2), f(2, n)} = {7, 9}. Without loss of
generality, we may assume that f(2, 2) = 7. But then, no number can be assigned
to the vertex (1, 2), a contradiction. Hence f(2, 1) �= 4. If f(2, 1) = 6, then
f(i, j) ∈ {2, 3} for some (i, j) ∈ {(2, 2), (2, n)}. Without loss of generality, we
may assume that f(2, 2) ∈ {2, 3}. In this case, f(2, n) = 9 and f(1, 2) = 8,
therefore, no number can be assigned to the vertex (2, 3), a contradiction. Now,
if f(2, 1) = 7, then, by Lemma 24, f(i, j) = 2 for some (i, j) ∈ {(2, 2), (2, n)}.
Without loss of generality, we may assume that f(2, 2) = 2. Again, by Lemma
24, {f(1, 2), f(2, 3)} = {5, 9}. But then, no number can be assigned to the vertex
(1, 3), also a contradiction. Thus if f is a 9-L(3, 2, 1)-labeling of P2 × Cn and
f(1, 1) = 0, f(2, 1) /∈ {4, 6, 7}.

Lemma 28. If f is a 9-L(3, 2, 1)-labeling of P2 × Cn and f(1, 1) = 0, then
there exists (i, j) ∈ N 2((1, 1)), f(i, j) = 8.

Proof. Suppose, to the contrary, for all (i, j) ∈ N2((1, 1)), f(i, j) �= 8. By
Lemma 25 and Lemma 27, f(2, 1) ∈ {3, 5, 9}. If f(2, 1) = 3, then there ex-
ists (i, j) ∈ {(2, 2), (2, n)}, such that f(i, j) ∈ {6, 7}. Without loss of generality,
we may assume that f(2, 2) ∈ {6, 7}. In this case, f(2, n) = 9. But then, no
numbers can be assigned to the vertex (1, 2), a contradiction. If f(2, 1) = 5,
then {f(2, 2), f(2, n)} = {2, 9}. Without loss of generality, we may assume that
f(2, 2) = 2 and f(2, n) = 9. Since d((2, n), (2, 3)) = d((2, n), (1, 2)) = 3,
9 /∈ {f(2, 3), f(1, 2)}. But this will contradict to Lemma 24. Thus f(2, 1) �= 5.

Now, assume that f(2, 1)=9. Since f is a 9-L(3, 2, 1)-labeling, {f(2, 2), f(2, n)}
= {2, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 6} or {4, 6}. We consider the following cases.

Case 1. {f(2, 2), f(2, n)} = {2, 5} or {3, 5}.
Without loss of generality, we may assume that f(2, 2) = 5. In this case, no

number can be assigned to the vertex (1, 2), a contradiction. Hence this case is
impossible.

Case 2. {f(2, 2), f(2, n)} = {3, 6}.
Without loss of generality, we may assume that f(2, n) = 3 and f(2, 2) = 6.

In this case, no number can be assigned to the vertex (1, 2), a contradiction. Hence
this case is impossible.

Case 3. {f(2, 2), f(2, n)} = {2, 4} or {4, 6}.
Without loss of generality, we may assume that f(2, 2) = 4. Thus f(1, 2) = 7

and f(2, 3) = 1. But then, no number can be assigned to the vertex (1, 3), a
contradiction. Thus this case is also impossible.
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Case 4. {f(2, 2), f(2, n)} = {2, 6}.
Without loss of generality, we may assume that f(2, 2) = 6. Thus f(1, 2) = 3

and f(2, 3) = 1. Since d((1, 1), (1, 3)) = 2, no number can be assigned to the
vertex (1, 3), a contradiction. Therefore, this case is also impossible.

From the argument above, there exists (i, j) ∈ N2((1, 1)), f(i, j) = 8.

Lemma 29. If f is a 9-L(3, 2, 1)-labeling of P2×Cn and f(1, 1) = 0, f(2, 2) =
8, then f(2, 1) = 5 and f(1, 2) = 3.

Proof. Since f is a 9-L(3, 2, 1)-labeling, either (f(2, 1), f(1, 2)) = (3, 5) or
(f(2, 1), f(1, 2)) = (5, 3). If (f(2, 1), f(1, 2)) = (3, 5), then f(2, 3) = 1, and thus
no number can be assigned to the vertex (1, 3), a contradiction. Hence f(2, 1) = 5
and f(1, 2) = 3.

Lemma 30. If f is a 9-L(3, 2, 1)-labeling of P2 × Cn and f(1, 1) = 0, then
f(2, 1) = 5, and either f(2, 2) = 8, f(1, 2) = 3, or f(2, n) = 8 and f(1, n) = 3.

Proof. By Lemma 28, there exists (i, j) ∈ N2((1, 1)), f(i, j) = 8. Thus by
Lemma 25 and Lemma 26, either f(2, 2) = 8 or f(2, n) = 8. If f(2, 2) = 8,
then by Lemma 29, f(2, 1) = 5 and f(1, 2) = 3. Similarly, if f(2, n) = 8, then
f(2, n) = 5 and f(1, n) = 3.

Lemma 31. If f is a 9-L(3, 2, 1)-labeling of P2 × Cn and f(1, 1) = i10,

f(2, 1) = (i + 5)10, f(2, 2) = (i + 8)10, f(1, 2) = (i + 3)10, then f(2, 3) =
(i + 1)10 and f(1, 3) = (i + 6)10.

Proof. Clearly, f(2, 3) /∈{i10, (i+3)10, (i+4)10, (i+5)10, (i+6)10, (i+8)10}.
If f(2, 3) = (i + 2)10, then i = 7, and so f(1, 1) = 7, f(2, 1) = 2, f(2, 2) =
5 and f(2, 3) = 9. By Lemma 24, we have f(2, n) = 9, a contradiction. If
f(2, 3) = (i + 7)10, then i = 2, and so f(1, 1) = 2, f(2, 2) = 0, f(1, 2) = 5
and f(2, 3) = 9. But then, no number can be assigned to the vertex (1, 3), a
contradiction. If f(2, 3) = (i + 9)10, then i = 1, and so f(1, 1) = 1, f(2, 1) = 6,
f(2, 2) = 9, f(1, 2) = 4 and f(2, 3) = 0. But then, by Lemma 27, no number can
be assigned to the vertex (1, 3), also a contradiction. Hence f(2, 3) = (i + 1)10.
By a similar argument, we also have f(1, 3) = (i + 6)10.

Theorem 32. λ3,2,1(P2 × Cn) = 9 if and only if n ≡ 0 (mod10).

Proof. If λ3,2,1(P2 × Cn)=8, then, by Corollary 7, for all 8-L(3, 2, 1)-labeling
f of P2×Cn, f(i, j) ∈ {0, 8} for all i, j, i = 1, 2, 1 ≤ j ≤ n, which is impossible.
Hence λ3,2,1(P2 × Cn) ≥ 9. When n ≡ 0 (mod10), it is easy to see that the
function f, given in the proof of Theorem 13, is a 9-L(3, 2, 1)-labeling of P2×Cn.

Hence λ3,2,1(P2 × Cn) = 9 if n ≡ 0 (mod10).
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Conversely, if λ3,2,1(P2 ×Cn) = 9 and f is a 9-L(3, 2, 1)-labeling of P2 ×Cn,

then, since there exists (i, j), f(i, j) = 0, by Lemma 30, without loss of generality,
we may assume that f(1, 1) = 0, f(2, 1) = 5, f(2, 2) = 8 and f(1, 2) = 3.

Thus by Lemma 31, f(i, j) = (5i + 3j − 8)10 for all (i, j) ∈ V (P2 × Cn). Since
f(1, 1) = [f(1, n) + 3]10, we have n ≡ 0 (mod10).

Theorem 33. If n is even and n �≡ 0 (mod10), n �= 6, λ3,2,1(P2 × Cn) = 10.

Proof. By Theorem 32, if n �≡ 0 (mod10), then λ3,2,1(P2 × Cn) ≥ 10. If
n ≡ 0 (mod4), then, it is easy to verify that the labeling f : V (P2 × Cn) →
{0, 1, 2, · · · , 10}, defined by f(i, j) = (5i + 3j − 7)12, is a 10-L(3, 2, 1)-labeling
of P2×Cn. If n ≡ 2 (mod4), n �≡ 0 (mod10), and n �= 6, then, it is easy to verify
that the labeling f1 : V (P2 × Cn) → {0, 1, 2, · · · , 10}, defined by

f1(i, j) =

{
(5i + 3j + 3)10, if 1 ≤ j ≤ 10,

(5i + 3j − 1)12, if 11 ≤ j ≤ n,

is a 10-L(3, 2, 1)-labeling of P2 × Cn. Hence λ3,2,1(P2 × Cn) ≤ 10 if n is even
and n �≡ 0 (mod10), n �= 6.

Theorem 34. λ3,2,1(P2 × Cn) ≤ 11 if n ≡ 1 (mod4), n ≥ 21, or n ≡ 3
(mod4), n ≥ 11.

Proof. For n ≡ 1 (mod4), n ≥ 21, define f1 : V (P2 × Cn) → N ∪ {0} as

f1(i, j) =




(3j + 5i + 5)10, if 1 ≤ i ≤ 2 and 1 ≤ j ≤ 14,

(3j − 1)13, if i = 1 and 15 ≤ j ≤ 21,

10, if i = 2 and j = 15,

(3j + 2)10, if i = 2 and 16 ≤ j ≤ 21,

(7i + 3j)12, otherwise.

Then, it is easy to verify that f1 is an L(3, 2, 1)-labeling of P2×Cn, and max{f1(v)
| v ∈ V (P2 × Cn)} = 11. Hence λ3,2,1(P2 × Cn) ≤ 11 if n ≡ 1 (mod4), n ≥ 21.

Similarly, if n ≡ 3 (mod4) and n ≥ 11, then, it is easy to verify that the
labeling f2 : V (P2 × Cn) → N ∪ {0}, defined by

f2(i, j) =




(3j − 1)13, if i = 1 and 1 ≤ j ≤ 7,

(3j + 2)13, if i = 1 and 8 ≤ j ≤ 10,

(3j + 4)13, if i = 2 and 1 ≤ j ≤ 6,

(3j + 7)13, if i = 2 and 7 ≤ j ≤ 10,

(7i + 3j + 5)12, otherwise,
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is an L(3, 2, 1)-labeling of P2 × Cn. Since we also have max{f2(v) | v ∈ V (P2 ×
Cn)} = 11 in this case, λ3,2,1(P2 × Cn) ≤ 11 if n ≡ 3 (mod4), n ≥ 11.

By using a similar labeling scheme as in the proof of Lemma 14, for those
graphs which are the Cartesian product of paths, we have

Lemma 35. If G = Pm1 × Pm2 × · · · × Pmk
, then λ3,2,1(G) ≤ 4k + 3.

Proof. Define a labeling f of G as

f(i1, i2, · · · , ik) =

(
k∑

l=1

(2l + 1)il

)
4k+4

.

Then, for u = (i1, i2, · · · , ik), v = (j1, j2, · · · , jk) ∈ V (G), if d(u, v) = 1, then,
since (2i + 1)4k+4 �= 0, 1, 2 for all i, 1 ≤ i ≤ k, |f(u)− f(v)| ≥ 3. If d(u, v) = 2,
then, since [(2i + 1) + (2j + 1)]4k+4 �= 0, 1, and [(2i + 1)− (2l + 1)]4k+4 �= 0, 1
for all i, j, l, 1 ≤ i, j, l ≤ k, i �= l(note that i = j is possible), |f(u) − f(v)| ≥ 2.

If d(u, v) = 3, then, since [(2i + 1)± (2j + 1) ± (2l + 1)]4k+4 �= 0 for all i, j, l,
1 ≤ i, j, l ≤ k(note that i = j, or i = j = l, are possible), |f(u) − f(v)| ≥ 1.

Hence f is an L(3, 2, 1)-labeling of G, and so λ3,2,1(G) ≤ 4k + 3.

Theorem 36. For the graph G = Pm1 × Pm2 × · · · × Pmk
with k ≥ 3 and

mk ≥ mk−1 ≥ · · · ≥ m1 ≥ 3, if mk−2 ≥ 4, or (mk−2, mk−1) = (3, 4) and
mk ≥ 6, then λ3,2,1(G) = 4k + 3.

Proof. λ3,2,1(G) ≤ 4k + 3 follows from Lemma 35. If λ3,2,1(G) = 4k + 2,
then, by Corollary 7, for any (4k+2)-L(3, 2, 1)-labeling f of G, f(i1, i2, · · · , ik) ∈
{0, 4k + 2} for all (i1, i2, · · · , ik) ∈ V (G) with 2 ≤ ij ≤ n − 1, 1 ≤ j ≤ k, which
is impossible since either mk ≥ mk−1 ≥ mk−2 ≥ 4, or (mk−2, mk−1) = (3, 4) and
mk ≥ 6. Thus λ3,2,1(G) ≥ 4k + 3, and so λ3,2,1(G) = 4k + 3.

Given a positive integer n, the n-cube Qn is defined by Qn = G1×G2×· · ·×Gn,
where Gi = P2 for all i, 1 ≤ i ≤ n. By Corollary 7 and the labeling given in Lemma
35, we also have

Theorem 37. For all n ≥ 3, 2n + 3 ≤ λ3,2,1(Qn) ≤ 4n + 3.

5. L(3, 2, 1)-LABELINGS OF POWERS OF PATHS

Given a graph G, the r-th power of G, denoted by Gr, is a graph with V (Gr) =
V (G) and E(Gr) = {uv | u, v ∈ V (G) and dG(u, v) ≤ r}.

We study the L(3, 2, 1)-labeling numbers of P r
n in this section. For convenience,

when consider the graph P r
n, we always assume that V (P r

n) = {vi | 1 ≤ i ≤ n}
and E(P r

n) = {vivj | 1 ≤ i, j ≤ n, |i − j| ≤ r}. For an L(3, 2, 1)-labeling f of
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a graph G, we let HG,f be the set defined by HG,f = {0, 1, 2, · · · , a}\f(V (G)),
where a = max{f(v) | v ∈ V (G)}. Clearly, if f is an L(3, 2, 1)-labeling of G and
max{f(v) | v ∈ V (G)} = a, then a = |f(V (G))|+ |HG,f | − 1.

For an integer k, we use n(k) to denote the set {k − 1, k, k + 1}.
Lemma 38. If r + 2 ≤ n ≤ 3r, then λ3,2,1(P r

n) = n + 2r.

Proof. If r + 2 ≤ n ≤ 2r + 2, define a labeling f of P r
n as

f(vi) =




4i− 2, if 1 ≤ i ≤ n − r − 1,

3i + n − r − 3, if n − r ≤ i ≤ r + 1,

4(i− r − 2), if r + 2 ≤ i ≤ n,

and if 2r + 3 ≤ n ≤ 3r, define a labeling f of P r
n as

f(vi) =




5i− 2, if 1 ≤ i ≤ n − 2r − 2,

4i + n − 2r − 4, if n − 2r − 1 ≤ i ≤ r + 1,

5(i− r − 2), if r + 2 ≤ i ≤ n − r,

4i + n − 6r − 10, if n − r + 1 ≤ i ≤ 2r + 2,

5i− 10r − 13, if 2r + 3 ≤ i ≤ n.

In either case, it is easy to verify that f is an L(3, 2, 1)-labeling of Pr
n. Hence

λ3,2,1(P r
n) ≤ n + 2r if r + 2 ≤ n ≤ 3r.

To prove the lower bound, let f be an L(3, 2, 1)-labeling of Pr
n , and max{f(v)

| v ∈ V (P r
n)} = a. Since n ≤ 3r, for all i, j with

⌊
n−r

2

⌋ ≤ i, j ≤ ⌊
n−r

2

⌋
+

r + 1, i �= j, we have d(vi, v) ≤ 2 for all v ∈ V (P r
n), and d(vi, vj) = 1

if {i, j} �= {⌊n−r
2

⌋
,
⌊

n−r
2

⌋
+ r + 1}. Hence n(f(vi)) ∩ f(V (P r

n)) = {f(vi)},
n(f(vi))∩n(f(vj)) = ∅ if {i, j} �= {⌊n−r

2

⌋
,
⌊

n−r
2

⌋
+ r +1}, and |n(f(v�n−r

2 �))∩
n(f(v�n−r

2 �+r+1))| ≤ 1. Therefore,

|HP r
n,f | ≥

∣∣∣∣∣∣∣




�n−r

2 �+r+1⋃
i=� n−r

2 �
n(f(vi))


⋂{0, 1, 2, · · · , a}


\f(V (P r

n))

∣∣∣∣∣∣∣
≥ 2r + 1.

Since diam(P r
n) ≤ 3, |f(V (P r

n))| = n. Thus a = |f(V (P r
n))| + |HP r

n,f | − 1 ≥
n + 2r, and so λ3,2,1(P r

n) ≥ n + 2r.

From now on, in convenience, when consider the graph Pr
n , we let S = {vi |

r + 1 ≤ i ≤ 2r + 1}.
Lemma 39. λ3,2,1(P r

3r+1) = 5r. Moreover, if f is a (5r)-L(3, 2, 1)-labeling of
P r

3r+1, then f(S) = {0, 5, · · · , 5r}.
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Proof. By Lemma 1 and Lemma 38, λ3,2,1(P r
3r+1) ≥ λ3,2,1(P r

3r) = 5r. Let f

be a labeling of P r
3r+1, defined by

f(vi) =




5i− 2, if 1 ≤ i ≤ r,

5(i− r − 1), if r + 1 ≤ i ≤ 2r + 1,

5(i− 2r − 1) − 3, if 2r + 2 ≤ i ≤ 3r + 1.

Then, clearly, f is a (5r)-L(3, 2, 1)-labeling of Pr
3r+1. Hence λ3,2,1(P r

3r+1) ≤ 5r,
and so λ3,2,1(P r

3r+1) = 5r.
If f is a (5r)-L(3, 2, 1)-labeling of Pr

3r+1, let f(S) = {a0, a1, · · · , ar}, where
a0 < a1 < · · · < ar.

Claim. a0 = 0, ar = 5r, and for each i, 0 ≤ i ≤ r−1, there exists exactly one
vertex vj in {v1, v2, · · · , vr}, and exactly one vertex vj′ in {v2r+2, v2r+3, · · · , v3r+1},
such that ai < f(vj), f(vj′) < ai+1.

Proof of the Claim. Since diam(P r
3r+1) = 3, we have |f(V (P r

3r+1))| = 3r+1.

Hence |HP r
3r+1,f | = 5r − |f(V (P r

3r+1))| + 1 = 2r, since f is a (5r)-L(3, 2, 1)-
labeling of P r

3r+1. For vi, vj ∈ S, since d(vi, v) ≤ 2 for all v ∈ V (P r
3r+1),

and d(vi, vj) = 1, we have n(f(vi)) ∩ f(V (P r
3r+1)) = {f(vi)} and n(f(vi)) ∩

n(f(vj)) = ∅. Therefore, since |HP r
3r+1,f | = 2r, we have {0, 5r} ⊆ f(S) and

HP r
3r+1,f = {ai + 1 | 0 ≤ i ≤ r − 1} ∪ {ai − 1 | 1 ≤ i ≤ r}. Thus if v �∈ S, there

exists i, 0 ≤ i ≤ r − 1, such that ai < f(v) < ai+1. If vl, vm are two vertices in
{v1, v2, · · · , vr}, such that ai < f(vl) < f(vm) < ai+1 for some i, 0 ≤ i ≤ r − 1,

and for all vertex vq in {v1, v2, · · · , vr}, f(vq) < f(vl) or f(vq) > f(vm), then,
since d(vl, vm) = 1, and f(vl) + 1, f(vm) − 1 /∈ HP r

3r+1 ,f , there exist vl′ , vm′ in
{v2r+2, v2r+3, · · · , v3r+1}, such that f(vl′) = f(vl) + 1 and f(vm′) = f(vm) − 1.
But this implies that f(v l′) + 1 ∈ HP r

3r+1,f , a contradiction. Hence for all i,

0 ≤ i ≤ r − 1, there exists exactly one vertex vj in {v1, v2, · · · , vr}, such that
ai < f(vj) < ai+1. Similarly, for all i, 0 ≤ i ≤ r − 1, there exists exactly one
vertex vj′ in {v2r+2, v2r+3, · · · , v3r+1}, such that ai < f(vj′) < ai+1.

By the Claim, for all i, 0 ≤ i ≤ r − 1, ai+1 − ai ≥ 5. Since f is a (5r)-
L(3, 2, 1)-labeling of P r

3r+1, ai+1 − ai = 5 for all i, 0 ≤ i ≤ r − 1. Since a0 = 0,

we have f(S) = {0, 5, · · · , 5r}.

Lemma 40. If f is an L(3, 2, 1)-labeling of P r
3r+1, and max{f(v) | v ∈

V (P r
3r+1)} = a, then a ≥ 5r + 2 if {0, a} ∩ f(S) = ∅.

Proof. For vi, vj ∈ S, vi �= vj , v ∈ V (P r
3r+1), we have d(vi, v) ≤ 2 and

d(vi, vj) = 1. Hence n(f(vi))∩f(V (P r
3r+1)) = {f(vi)} and n(f(vi))∩n(f(vj)) =

∅. Therefore, if {0, a} ∩ f(S) = ∅, then
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|HP r
3r+1,f | ≥

∣∣∣∣∣
((⋃

v∈S

n(f(v))

)⋂
{0, 1, 2, · · · , a}

)
\f(V (P r

3r+1))

∣∣∣∣∣
≥ 2r + 2.

Since diam(P r
3r+1) = 3, |f(V (P r

3r+1))| = 3r + 1. Thus a = |f(V (P r
3r+1))| +

|HP r
3r+1,f | − 1 ≥ (3r + 1) + (2r + 2) − 1 = 5r + 2.

Lemma 41. If 3r + 2 ≤ n ≤ 5r + 2, then λ3,2,1(P r
n) = 5r + 1.

Proof. Let f be a labeling of P r
n, defined by f(vi) = (5i− 1)5r+3 for all i,

1 ≤ i ≤ n. Clearly, f is a (5r + 1)-L(3, 2, 1)-labeling of Pr
n . Hence λ3,2,1(P r

n) ≤
5r + 1.

To prove the lower bound, by Lemma 1, we only need to show that λ3,2,1(P r
3r+2) ≥

5r + 1. Suppose, to the contrary, λ3,2,1(P r
3r+2) ≤ 5r. Let f be a (5r)-L(3, 2, 1)-

labeling of P r
3r+2, and let G be the subgraph of P r

3r+2 induced by {v1, v2, · · · , v3r+1},
H be the subgraph of P r

3r+2 induced by {v2, v3, · · · , v3r+2}. By Lemma 39, since
f |V (G) is a (5r)-L(3, 2, 1)-labeling of G and f |V (H) is a (5r)-L(3, 2, 1)-labeling
of H, we have f(S) = {0, 5, · · · , 5r} = {f(vr+2), f(vr+3), · · · , f(v2r+2)}, which
implies f(vr+1) = f(v2r+2). However, d(vr+1, v2r+2) = 2, a contradiction. Thus
λ3,2,1(P r

3r+2) ≥ 5r + 1, and so λ3,2,1(P r
n) = 5r + 1 if 3r + 2 ≤ n ≤ 5r + 2.

Lemma 42. λ3,2,1(P r
n) = 5r + 2 if n ≥ 5r + 3.

Proof. Clearly, the labeling f, given in the proof of Lemma 41, is a (5r + 2)-
L(3, 2, 1)-labeling of P r

n. Hence λ3,2,1(P r
n) ≤ 5r + 2.

To prove the lower bound, by Lemma 1, we only need to show that λ3,2,1(P r
5r+3) ≥

5r + 2. Suppose, to the contrary, λ3,2,1(P r
5r+3) ≤ 5r + 1. Let f be a (5r + 1)-

L(3, 2, 1)-labeling of P r
5r+3, and let Gi be the subgraph of P r

5r+3 induced by
{vi, vi+1, · · · , v3r+i} for all i, 1 ≤ i ≤ 2r + 3. Since f |V (G1) is a (5r + 1)-
L(3, 2, 1)-labeling of G1, by Lemma 40, there exists vα ∈ S, such that f(vα) ∈
{0, 5r+1}. Without loss of generality, we assume that f(vα) = 0. Since f |V (Gα−r+1)

is a (5r + 1)-L(3, 2, 1)-labeling of Gα−r+1, by Lemma 40, there exists vβ ∈
{vα+1, vα+2, · · · , vα+r+1}, such that f(vβ) ∈ {0, 5r + 1}. Since d(vα, vβ) ≤ 2
and f(vα) = 0, we have f(vβ) = 5r + 1. By a similar argument, there exists
vγ ∈ {vβ+1, vβ+2, · · · , vβ+r+1}, such that f(vγ) = 0. Now, since γ−β ≤ r+1,

β−α≤r+1, we have γ−α≤2r+2. But this implies d(vα, vγ) ≤ 3, a contradiction.
Hence λ3,2,1(P r

5r+3)≥5r+2, and so λ3,2,1(P r
n)=5r+2 if n≥5r+3.

Since P r
n = Kn for r ≥ n − 1, by Lemma 38, Lemma 39, Lemma 41 and

Lemma 42, we have

Theorem 43. If n, r ≥ 1, then
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λ3,2,1(P r
n) =




3n − 3, if n ≤ r + 1,

n + 2r, if r + 2 ≤ n ≤ 3r,

5r, if n = 3r + 1,

5r + 1, if 3r + 2 ≤ n ≤ 5r + 2,

5r + 2, if n ≥ 5r + 3.

Clipperton et al. [2] determined the L(3, 2, 1)-labeling numbers of paths, by
setting r = 1 in Theorem 43, we also have

Theorem 44. [2]. For any n ≥ 2,

λ3,2,1(Pn) =




3, if n = 2,

5, if n = 3, 4,

6, if n = 5, 6, 7,

7, if n ≥ 8.
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