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INFINITELY MANY SOLUTIONS FOR A CLASS OF DEGENERATE
ANISOTROPIC ELLIPTIC PROBLEMS WITH VARIABLE EXPONENT

Maria-Magdalena Boureanu

Abstract. We study the nonlinear degenerate problem −∑N
i=1 ∂xiai (x, ∂xiu)

= f(x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ R
N (N ≥ 3) is a bounded do-

main with smooth boundary,
∑N

i=1 ∂xiai (x, ∂xiu) is a →
p (·) - Laplace type

operator and the nonlinearity f is (P+
+ − 1) - superlinear at infinity (with

→
p (x) = (p1(x), p2(x), ...pN(x)) and P +

+ = maxi∈{1,...,N} {supx∈Ω pi(x)}).
By means of the symmetric mountain-pass theorem of Ambrosetti and Rabi-
nowitz, we establish the existence of a sequence of weak solutions in appro-
priate anisotropic variable exponent Sobolev spaces.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Our study is conducted in the framework of the anisotropic variable exponent
Lebesgue-Sobolev spaces. In the domain of PDEs, characterized by Bŕezis and
Browder [5] as ”the major bridge between central issues of applied mathematics
and physical sciences on the one hand and the central development of mathematical
ideas in active areas of pure mathematics on the other”, the theory of anisotropic
variable exponent Lebesgue-Sobolev spaces is a bridge itself. Indeed, it is a bridge
between the anisotropic Sobolev spaces theory developed by [31, 34, 35, 42, 43]
and the variable exponent Sobolev spaces theory developed by [8, 9, 10, 11, 12, 21,
28, 29, 30, 38]. This way, under our dazzled eyes, a delta is born, with new forms
of life, or, more exactly, since we refer to a delta of mathematics, with new articles
[2, 3, 4, 13, 19, 20, 25, 26, 27]. This state of fact is no surprise, since we know that
there are some materials with inhomogeneities for the study of which we can not use
the classical Lebesgue-Sobolev spaces Lp and W 1,p and we should let the exponent
p to vary instead (the need for the variable exponent spaces is confirmed by the
large scale of applications in elastic mechanics [45], in the mathematical modeling
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of non-Newtonian fluids [7, 15, 32, 36, 37, 39, 40, 41, 44] and in image restoration
[6]). But what happens when we want to consider materials with inhomogeneities
that have different behavior on different space directions? Well, in this case we
should work on the anisotropic variable exponent Lebesgue-Sobolev spaces L

→
p (·)

and W 1,
→
p (·), where →

p verifies the following condition:
(p) →

p (x) = (p1(x), p2(x), ...pN(x)) and pi, i ∈ {1, ..., N}, are continuous func-
tions such that 1 < p i(x) < N and

∑N
i=1 1/infx pi(x) > 1 for all x.

In the context of these spaces that will be carefully described in the next section,
we are interested in discussing the following problem:

(1)

 −
N∑

i=1

∂xiai (x, ∂xiu) = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary and ai, f :

Ω × R → R are Carathéodory functions. Let us denote by Ai, F : Ω × R → R

Ai(x, s) =
∫ s

0
ai(x, t)dt for all i ∈ {1, ..., N},

respectively
F (x, s) =

∫ s

0
f(x, t)dt.

We set C+(Ω) = {p ∈ C(Ω) : minx∈Ω p(x) > 1} and we denote, for any p ∈
C+(Ω),

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

We denote by
→
P+,

→
P− ∈ R

N the vectors
→
P + = (p+

1 , ..., p+
N),

→
P− = (p−1 , ..., p−N),

and by P+
+ , P+

− , P−
− ∈ R+ the following:

P+
+ = max{p+

1 , ..., p+
N}, P+

− = max{p−1 , ..., p−N}, P−
− = min{p−1 , ..., p−N}.

We define P �− ∈ R
+ and P−,∞ ∈ R

+ by

P �
− =

N
N∑

i=1

1/p−i − 1

, P−,∞ = max{P+
− , P �

−} .

The goal of this paper is to prove the following theorem.
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Theorem 1. Suppose that →
p verifies (p) and, for all i ∈ {1, ..., N}, the functions

Ai, ai, f fulfil the conditions:
(A1) Ai is even in s, that is, Ai(x,−s) = Ai(x, s) for all x ∈ Ω;
(A2) there exists a positive constant c 1,i such that ai satisfies the growth condition

|ai(x, s)| ≤ c1,i(1 + |s|pi(x)−1),

for all x ∈ Ω and s ∈ R;
(A3) ai is strictly monotone, that is,

(ai(x, s)− ai(x, t))(s− t) > 0,

for all x ∈ Ω and s, t ∈ R with s �= t;
(A4) the following inequalities hold:

|s|pi(x) ≤ ai(x, s)s ≤ pi(x) Ai(x, s),

for all x ∈ Ω and s ∈ R;
(f1) f is odd in s, that is, f(x,−s) = −f(x, s) for all x ∈ Ω;
(f2) there exist a positive constant c 2 and q ∈ C(Ω) with 1 < P−

− < P+
+ < q− <

q+ < P �−, such that f satisfies the growth condition

|f(x, s)| ≤ c2|s|q(x)−1,

for all x ∈ Ω and s ∈ R;
(f3) f verifies the Ambrosetti-Rabinowitz type condition: there exists a constant
µ > P+

+ such that for every x ∈ Ω

0 < µF (x, s) ≤ sf(x, s), ∀s > 0.

Then problem (1) admits an unbounded sequence of weak solutions.

Remark 1. Since f is odd in its second variable s, we obtain that F is even in
s and the relation described by (f3) remains valid for all s ∈ R \ {0}. Moreover, by
rewriting condition (f3), we can obtain the existence of a positive constant c3 such
that

F (x, s) ≥ c3 |s|µ, ∀x ∈ Ω, ∀s ∈ R

and we can deduce that f is (P +
+ − 1) - superlinear at infinity:

|f(x, s)| ≥ c4 |s|µ−1 ∀x ∈ Ω, ∀s ∈ R,

where c4 is a positive constant.
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As for the conditions imposed on Ai and ai, obviously they are not randomly
chosen. In fact, there are already studies where we can find almost identical con-
ditions and, to give some examples, we indicate [20, 25], or [22, 24, 28] if we are
referring to problems of the type{

−div(a(x,∇u)) = f(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary and a :

Ω × R
N → R verifies conditions resembling to (A1)-(A4). The preference for

conditions (A1)-(A4) may be explained by giving two examples of well known
operators that satisfy them:

(1) when choosing ai(x, s) = |s|pi(x)−2s for all i ∈ {1, ..., N}, we have Ai(x, s) =
1

pi(x) |s|pi(x) for all i ∈ {1, ..., N}, and we obtain the anisotropic variable ex-
ponent Laplace operator

N∑
i=1

∂xi

(
|∂xiu|pi(x)−2 ∂xiu

)
;

(2) when choosing ai(x, s) = (1 + |s|2)(pi(x)−2)/2s for all i ∈ {1, ..., N}, we
have Ai(x, s) = 1

pi(x) [(1 + |s|2)pi(x)/2 − 1] for all i ∈ {1, ..., N}, and we
obtain the anisotropic variable mean curvature operator

N∑
i=1

∂xi

[(
1 + |∂xiu|2

)(pi(x)−2)/2
∂xiu

]
.

In the light of the above said, we point out that our problem is closely related
to the problem discussed in [4],

(2)

 −
N∑

i=1

∂xi

(
|∂xiu|pi(x)−2 ∂xiu

)
= f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, f : Ω×R → R

is a Carathéodory function satisfying conditions (f1)-(f3) and pi are continuous
functions on Ω such that 2 ≤ pi(x) < N for all x ∈ Ω and i ∈ {1, ..., N}.
Their main theorem also asserts the existence of an unbounded sequence of weak
solutions. It is clear that our work extends this result since we can consider (2) to
be a particular case of problem (1).

2. ABSTRACT FRAMEWORK

In this section we recall the definition and some important properties of the
Lebesgue-Sobolev spaces mentioned above.
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Everywhere below we consider p, pi ∈ C+(Ω) to be logarithmic Hölder contin-
uous. The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u : u is a measurable real–valued function such that∫
Ω
|u(x)|p(x) dx < ∞}

endowed with the Luxemburg norm

|u|p(·) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Notice that for p constant this norm becomes the norm

|u|p =
(∫

Ω
|u|p

)1/p

,

that is, the norm of the classical Lebesgue space Lp.
The space

(
Lp(·)(Ω), | · |p(·)

)
has many important qualities. We remind that

it is a separable and reflexive Banach space ([21, Theorem 2.5, Corollary 2.7])
and the inclusion between spaces generalizes naturally: if 0 < |Ω| < ∞ and p1,
p2 are variable exponents in C+(Ω) such that p1 ≤ p2 in Ω, then the embedding
Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous ([21, Theorem 2.8]). In addition, the following
Hölder-type inequality

(3)
∣∣∣∣∫

Ω
uv dx

∣∣∣∣ ≤ (
1
p−

+
1

p′−

)
|u|p(·)|v|p′(·) ≤ 2|u|p(·)|v|p′(·)

holds true for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) ([21, Theorem 2.1]), where we
denoted by Lp′(·)(Ω) the conjugate space of Lp(·)(Ω), obtained by conjugating the
exponent pointwise, that is, 1/p(x) + 1/p′(x) = 1 ([21, Corollary 2.7]).

Also, the function ρp(·) : Lp(·)(Ω) → R,

ρp(·)(u) =
∫

Ω
|u|p(x) dx,

which is called the p(·)-modular of the Lp(·)(Ω) space, plays a key role in handling
these generalized Lebesgue spaces. We present some of its properties (see again
[21]): if u ∈ Lp(·)(Ω), (un)n ⊂ Lp(·)(Ω) and p+ < ∞, then,

(4) |u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1)

(5) |u|p(·) > 1 ⇒ |u|p−
p(·) ≤ ρp(·)(u) ≤ |u|p+

p(·)
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(6) |u|p(·) < 1 ⇒ |u|p+

p(·) ≤ ρp(·)(u) ≤ |u|p−p(·)

(7) |u|p(·) → 0 (→ ∞) ⇔ ρp(·)(u) → 0 (→ ∞)

(8) lim
n→∞ |un − u|p(·) = 0 ⇔ lim

n→∞ ρp(·)(un − u) = 0.

Let us pass now to the definition of the variable exponent Sobolev space
W 1,p(·)(Ω),

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : ∂xiu ∈ Lp(·)(Ω), i ∈ {1, 2, ...N}

}
endowed with the norm

(9) ‖u‖ = |u|p(·) + |∇u|p(·).(
W 1,p(·)(Ω), ‖ · ‖) is a separable and reflexive Banach space. W

1,p(·)
0 (Ω), the

Sobolev space with zero boundary values defined as the closure of C∞
0 (Ω) with

respect to the norm ‖ · ‖, occupies an important place in the theory of variable
exponent spaces (see [16, 17]). Note that the norms

‖u‖1,p(·) = |∇u|p(·),

and

‖u‖p(·) =
N∑

i=1

|∂xiu|p(·)

are equivalent to (9) in W
1,p(·)
0 (Ω) and W

1,p(·)
0 (Ω) is also a separable and reflexive

Banach space. Moreover, if s ∈ C+(Ω) and s(x) < p�(x) for all x ∈ Ω, where
p�(x) = Np(x)/[N − p(x)] if p(x) < N and p�(x) = ∞ if p(x) ≥ N , then the
embedding W

1,p(·)
0 (Ω) ↪→ Ls(·)(Ω) is compact and continuous.

Finally we can present the anisotropic variable exponent Sobolev space W
1,

→
p (·)

0

(Ω), where →
p : Ω → R

N is the vectorial function
→
p (·) = (p1(·), ..., pN(·)) .

The space W
1,

→
p (·)

0 (Ω) is defined as the closure of C∞
0 (Ω) under the norm

‖u‖→
p (·) =

N∑
i=1

|∂xiu|pi(·) .

The space W
1,

→
p (·)

0 (Ω) allows the adequate treatment of the existence of the
weak solutions for problem (1) and can be considered a natural generalization of
the variable exponent Sobolev space W

1,p(·)
0 (Ω). On the other hand, playing the
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previously announced role of ”bridge”, W
1,

→
p (·)

0 (Ω) can be considered a natural
generalization of the classical anisotropic Sobolev space W

1,
→
p

0 (Ω), where →
p is the

constant vector (p1, ..., pN). W 1,
→
p

0 (Ω) endowed with the norm

‖u‖
1,

→
p

=
N∑

i=1

|∂xiu|pi

is a reflexive Banach space for any →
p ∈ R

N with pi > 1 for all i ∈ {1, ..., N}. This

result can be easily extended to W
1,

→
p (·)

0 (Ω), see [27]. Another extension was made

in what concerns the embedding between W
1,

→
p (·)

0 (Ω) and Lq(·)(Ω) [27, Theorem
1]: if Ω ⊂ R

N (N ≥ 3) is a bounded domain with smooth boundary, →
p verifies (p)

and q ∈ C(Ω) verifies 1 < q(x) < P−,∞ for all x ∈ Ω, then the embedding

W
1,

→
p (·)

0 (Ω) ↪→ Lq(·)(Ω)

is continuous and compact.

3. AUXILIARY RESULTS

We denote W
1,

→
p (·)

0 (Ω) by E and we underline the fact that we work under the
conditions of Theorem 1. We base the proof of Theorem 1 on the critical point
theory, that is, we associate to our problem a functional energy whose critical points
represent the weak solutions of the problem.

Let us start by giving the definition of the weak solution for problem (1).

Definition 1. By a weak solution to problem (1) we understand a function
u ∈ E such that ∫

Ω

[
N∑

i=1

ai (x, ∂xiu) ∂xiϕ − f(x, u)ϕ

]
dx = 0,

for all ϕ ∈ E .

The energy functional corresponding to problem (1) is defined as I : E → R,

I(u) =
∫

Ω

N∑
i=1

Ai (x, ∂xiu) dx−
∫

Ω
F (x, u)dx.

For all i ∈ {1, 2, ...N}, we denote by J, Ji : E → R the functionals

J(u) =
∫

Ω

N∑
i=1

Ai (x, ∂xiu) dx and Ji(u) =
∫

Ω
Ai (x, ∂xiu) dx.

We recall the following results concerning the functionals Ji.
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Lemma 1. ([20, Lemma 3.4]). For i ∈ {1, 2, ...N},
(i) the functional Ji is well-defined on E;
(ii) the functional J i is of class C1(E, R) and

〈J ′
i(u), ϕ〉 =

∫
Ω

ai(x, ∂xiu)∂xiϕdx,

for all u, ϕ ∈ E .

A simple calculus leads us to the fact that I is well-defined on E and I ∈
C1(E, R) with the derivative given by

〈I ′(u), ϕ〉 =
∫

Ω

N∑
i=1

ai(x, ∂xiu)∂xiϕdx−
∫

Ω

f(x, u)ϕdx,

for all u, ϕ ∈ E . It is easy to see that the critical points of I are weak solutions
to (1). Therefore we are preoccupied with the existence of critical points. A major
help is provided by the mini-max principles, see for example [1, 33]. Here we focus
on the symmetric mountain-pass theorem of Ambrosetti and Rabinowitz:

Theorem 2. ([18, Theorem 11.5]). Let X be a real infinite dimensional Banach
space and Φ ∈ C1(X ; R) a functional satisfying the Palais-Smale condition (that
is, any sequence (un)n ⊂ X such that (Φ(un))n is bounded and Φ ′(un) → 0
admits a convergent subsequence). Assume that Φ satisfies:

(i) Φ(0) = 0 and there are constants ρ, r > 0 such that
Φ|∂Bρ

≥ r,

(ii) Φ is even, and
(iii) for all finite dimensional subspaces X̃ ⊂ X there exists R = R(X̃) > 0 such

that
Φ(u) ≤ 0 for u ∈ X̃ \ BR(X̃).

Then Φ possesses an unbounded sequence of critical values characterized by a
mini-max argument.

To adapt the usual variational methods described by [14, 23] so that we can work
on the anisotropic variable exponent Sobolev spaces is not an easy task. Especially
when we think at the fact that we inherited the variable exponent from the variable
exponent spaces and, in a ”world” of partial differential equations, to depend on x

may be viewed as a serious ”crime”. In addition, by the legacy received from the
anisotropic spaces, we are dealing with more than just one variable exponent since→
p (·) is a vector having continuous functions as components. Therefore we must
transform our techniques in such manner that we can succeed to overcome all the
difficulties and to verify the conditions of Theorem 2. In order to do so, we need
the following result, too.
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Lemma 2. The operator J ′ is of type (S+) on E , that is, if (un)n ⊂ E is
weakly convergent to u ∈ E and

(10) lim sup
n→∞

〈J ′(un), un − u〉 ≤ 0,

then (un)n converges strongly to u in E .

Proof. The idea of the proof is the same as in [24, Theorem 4.1] because our
lemma extends this theorem from the case of the p(·) - Laplace type operators to
the case of the →

p (·) - Laplace type operators. Therefore we follow the reasoning
from [24] and we use Vitali’s convergence theorem in order to show that

(11) lim
n→∞

∫
Ω

N∑
i=1

|∂xiun − ∂xiu|pi(x) dx = 0.

Consequently, we divide our proof into two parts.

Claim 1. The sequence
(∑N

i=1 |∂xiun − ∂xiu|pi(x)
)

n
is uniformly integrable

in Ω, that is, for every ε > 0 there exists δ > 0 such that if H is a measurable
subset of Ω with meas(H) ≤ δ, where meas(H) denotes the Lebesgue measure of
H , then ∫

H

N∑
i=1

|∂xiun − ∂xiu|pi(x) dx ≤ ε ∀n ∈ N.

Since for all n ∈ N and for all x ∈ Ω there exists c5 > 0 such that
N∑

i=1

|∂xiun − ∂xiu|pi(x) ≤ c5

(
N∑

i=1

|∂xiun|pi(x) +
N∑

i=1

|∂xiu|pi(x)

)

and |∂xiu|pi(x) ∈ L1(Ω), if we prove that the sequence
(∑N

i=1 |∂xiun|pi(x)
)

n
is

uniformly integrable in Ω, then we have the uniform integrability of
(∑N

i=1 |∂xiun

−∂xiu|pi(x)
)

n
. Let us show that

(∑N
i=1 |∂xiun|pi(x)

)
n

is uniformly integrable.
We know that (un)n is weakly convergent to u and we deduce that

lim
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xiu) (∂xiun − ∂xiu) dx = 0.

From this, (10) and (A3) we get

(12) lim
n→∞

∫
Ω

N∑
i=1

[ai(x, ∂xiun) − ai(x, ∂xiu)] (∂xiun − ∂xiu) dx = 0.
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The above relation assures us that for any ε > 0 and any measurable subset H of
Ω there exists N ∈ N such that∫

H

N∑
i=1

[ai(x, ∂xiun) − ai(x, ∂xiu)] (∂xiun − ∂xiu) dx ≤ ε

6
for all n ≥ N.

We fix ε > 0. Then there exists δ1 > 0 such that if H is a measurable subset of Ω
with meas(H) ≤ δ1,

(13)
∫

H

N∑
i=1

[ai(x, ∂xiun) − ai(x, ∂xiu)] (∂xiun − ∂xiu) dx ≤ ε

6
for all n ∈ N.

Using the first inequality of (A4) we obtain that

(14)
∫

H

N∑
i=1

ai(x, ∂xiun)∂xiun dx ≥
∫

H

N∑
i=1

|∂xiun|pi(x) dx.

By a variant of Young’s inequality we have that, given τ ∈ (0, 1), there exists
C(τ) > 0 depending on τ and pi(·), but not on x ∈ Ω, such that for all a, b ∈ R

and x ∈ Ω,
(15) ab ≤ τ |a|p′i(x) + C(τ)|b|pi(x)

(see ([24, relation 3.14]). This inequality yields

(16)

∫
H

N∑
i=1

ai(x, ∂xiu)∂xiun dx

≤ 1
3

∫
H

N∑
i=1

|∂xiun|pi(x) dx + C

(
1
3

)∫
H

N∑
i=1

|ai(x, ∂xiu)|p′i(x) dx.

By (A2), ∫
H

N∑
i=1

ai(x, ∂xiun)∂xiu dx

≤ C1

∫
H

N∑
i=1

|∂xiu| dx + C1

∫
H

N∑
i=1

|∂xiun|pi(x)−1|∂xiu| dx,

where C1 = max{c1,i : i ∈ {1, 2, ...N}} and C1 = max{C1, 1}. Relying again
on (15), we arrive at

(17)

∫
H

N∑
i=1

ai(x, ∂xiun)∂xiu dx

≤ C1

∫
H

N∑
i=1

|∂xiu|dx + C1C

(
1

3C1

)∫
H

N∑
i=1

|∂xiu|pi(x)dx

+
1
3

∫
H

N∑
i=1

|∂xiun|pi(x)dx.
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Putting together (13), (14), (16) and (17) we obtain

1
3

∫
H

N∑
i=1

|∂xiun|pi(x) dx

≤ ε

6
+ C

(
1
3

)∫
H

N∑
i=1

|ai(x, ∂xiu)|p′i(x) dx

+C1

∫
H

N∑
i=1

|∂xiu|dx + C1C

(
1

3C1

)∫
H

N∑
i=1

|∂xiu|pi(x)dx

+
∫

H

N∑
i=1

|ai(x, ∂xiu)||∂xiu| dx.

Taking into account (A2), functions |ai(x, ∂xiu)|p′i(x), |∂xiu|, |∂xiu|pi(x) and |ai(x,

∂xiu)||∂xiu| belong to L1(Ω). Hence there exists 0 < δ ≤ δ1 such that if
meas(H) ≤ δ then

ε

6
≥ C

(
1
3

)∫
H

N∑
i=1

|ai(x, ∂xiu)|p′i(x) dx +

+C1

∫
H

N∑
i=1

|∂xiu|dx + C1C

(
1

3C1

)∫
H

N∑
i=1

|∂xiu|pi(x)dx +

+
∫

H

N∑
i=1

|ai(x, ∂xiu)||∂xiu| dx.

The combination of the previous two inequalities conducts us to

1
3

∫
H

N∑
i=1

|∂xiun|pi(x) dx ≤ ε

6
+

ε

6

and we can conclude that that the sequence
(∑N

i=1 |∂xiun|pi(x)
)

n
is uniformly

integrable in Ω, thus the proof of the first claim is complete.

Claim 2. The sequence
(∑N

i=1 |∂xiun − ∂xiu|pi(x)
)

n
converges in measure to

0 on Ω.
In order to prove the second claim, we need to show that

(18) lim
n→∞ |∂xiun − ∂xiu| = 0 for a.e. x ∈ Ω.

Relation (12) provides the existence of a subset U of Ω with meas(U) = 0 such
that
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lim
n→∞

N∑
i=1

[ai(x, ∂xiun)− ai(x, ∂xiu)] (∂xiun − ∂xiu) = 0 ∀x ∈ Ω \ U,

therefore, due to (A3), for all i ∈ {1, ..., N},
(19) lim

n→∞ [ai(x, ∂xiun) − ai(x, ∂xiu)] (∂xiun − ∂xiu) = 0 ∀x ∈ Ω \ U.

For i ∈ {1, ..., N} and x ∈ Ω \U , we deduce by (19) that there exists M > 0 such
that, for all n ∈ N,

ai(x, ∂xiun)∂xiun

≤ M + |ai(x, ∂xiun)||∂xiu| + |ai(x, ∂xiu)||∂xiun| + |ai(x, ∂xiu)||∂xiu|.
Using (A2) and (A4) in the above inequality we produce

|∂xiun|pi(x)

≤ M+c1,i(1+|∂xiun|pi(x)−1)|∂xiu|+|ai(x, ∂xiu)||∂xiun|+|ai(x, ∂xiu)||∂xiu|
from where we obtain that the sequence (∂xiun)n is bounded. Passing to a subse-
quence, there exists ξ = ξ(x) in R such that

∂xiunk
→ ξ when k → ∞.

Moreover, ai is a Carathéodory function, so
ai(x, ∂xiunk

) → ai(x, ξ) when k → ∞.

Then, replacing the sequence (∂xiun)n by its subsequence (∂xiunk
)k in (19) and

passing to the limit, we come to
[ai(x, ξ)− ai(x, ∂xiu)] (ξ − ∂xiu) = 0.

By (A3) and the uniqueness of the limit we deduce that
∂xiunk

→ ∂xiu when k → ∞.

Since the above arguments are valid for any subsequence of (un)n we obtain that
∂xiun → ∂xiu when n → ∞,

hence (18) holds and the proof of the second claim is complete.
Combining the statements of the two claims with Vitali’s convergence theorem

we establish that (11) takes place and, using (8), we get the strong convergence of
(un)n to u in E

The proof of Theorem 1 will follow the steps indicated by Theorem 2 and we
rely on Lemma 2 to show that I satisfies the Palais-Smale condition. Furthermore,
note that I(0) = 0 and the fact that Ai and F are even in the second variable implies
that I is even. We are now ready to prove our main theorem, under the reservation
that the calculus techniques are not completely new and some of the arguments used
are similar to some arguments used by [4]. However, for the completeness of the
proof, we must include them in our work.
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4. PROOF OF THE MAIN RESULT

Keeping in mind the statement of Theorem 2 and the above comments, we
arrange the proof into three parts, namely into three claims.

Claim 1. The energy functional I satisfies condition Palais-Smale.
Let (un)n ⊂ E be a sequence such that

(20) |I(un)| < K, ∀n ≥ 1,

where K is a positive constant, and

(21) I ′(un) → 0 when n → ∞.

To show that (un)n is bounded, we argue by contradiction and we assume that,
passing eventually to a subsequence still denoted by (un)n,

(22) ‖un‖→
p (·) → ∞ when n → ∞.

By relations (20), (21), (22) we have

1 + K + ‖un‖→
p (·) ≥ I(un)− 1

µ
〈I ′(un), un〉

≥
N∑

i=1

∫
Ω

[
Ai(x, ∂xiun) − 1

µ
ai(x, ∂xiun)∂xiun

]
dx

−
∫

Ω

[
F (x, un) − 1

µ
unf(x, un)

]
dx,

for sufficiently large n, where µ is the constant from (f3). Using (f3) we get

(23) 1 + K + ‖un‖→
p (·) ≥

N∑
i=1

∫
Ω

[
Ai(x, ∂xiun) − 1

µ
ai(x, ∂xiun)∂xiun

]
dx.

From (A4),
ai(x, ∂xiun)∂xiun ≤ pi(x) Ai(x, ∂xiun),

for all x ∈ Ω and all i ∈ {1, 2, ...N}, which implies

−1
µ

ai(x, ∂xiun)∂xiun ≥ −P+
+

µ
Ai(x, ∂xiun),

for all x ∈ Ω and all i ∈ {1, 2, ...N}. Introducing the previous inequality into
relation (23) we obtain

1 + K + ‖un‖→
p (·) ≥

(
1− P+

+

µ

)
N∑

i=1

∫
Ω

Ai(x, ∂xiun)dx.



2304 Maria-Magdalena Boureanu

From (A4) we also have

(24) Ai(x, ∂xiun) ≥ 1
P+

+

|∂xiun|pi(x),

for all x ∈ Ω and all i ∈ {1, 2, ...N}, thus

(25) 1 + K + ‖un‖→
p (·) ≥

(
1

P+
+

− 1
µ

)
N∑

i=1

∫
Ω
|∂xiun|pi(x) dx.

For every n, let us denote by In1 , In2 the indices sets

In1 = {i ∈ {1, 2, ...N} : |∂xiun|pi(·) ≤ 1}
and

In2 = {i ∈ {1, 2, ...N} : |∂xiun|pi(·) > 1}.
Using (4), (5), (6) and (25) we infer

1 + K + ‖un‖→
p (·) ≥

(
1

P+
+

− 1
µ

)∑
i∈In1

|∂xiun|P
+
+

pi(·) +
∑

i∈In2

|∂xiun|P
−
−

pi(·)


≥
(

1
P+

+

− 1
µ

) N∑
i=1

|∂xiun|P
−
−

pi(·) −
∑

i∈In1

|∂xiun|P
−
−

pi(·)


≥
(

1
P+

+

− 1
µ

)(
N∑

i=1

|∂xiun|P
−
−

pi(·) − N

)
.

By the generalized mean inequality or the Jensen inequality applied to the convex
function a : R+ → R+, a(t) = tP

−
− , P−

− > 1 we get

1 + K + ‖un‖→
p (·) ≥

(
1

P+
+

− 1
µ

)‖un‖P−
−

→
p (·)

NP−
−−1

− N

 .

Dividing by ‖un‖P−
−

→
p (·) in the above relation and passing to the limit as n → ∞

we obtain a contradiction, hence (un)n is bounded in E . The fact that E is reflexive
yields the existence of a u0 ∈ E such that, up to a subsequence, (un)n converges
weakly to u0 in E . It remains to show that (un)n converges strongly to u0 in E .

Since q+ < P �− = P−,∞ , the embedding E ↪→ Lq(·)(Ω) is compact, which
implies that (un) converges strongly to u0 in Lq(·)(Ω). By (f2) and the Hölder-type
inequality (3),

(26)
∣∣∣∣∫

Ω
f(x, un)(un − u0)dx

∣∣∣∣ ≤ 2c2

∣∣∣|un|q(x)−1
∣∣∣

q(·)
q(·)−1

|un − u0|q(·).
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By (26), (7) and the strong convergence of (un)n to u0 in Lq(·)(Ω), we deduce

(27) lim
n→∞

∫
Ω

f(x, un)(un − u0)dx = 0.

By (21) we deduce
lim
n→∞ <I ′(un), un − u0 >=0,

that is

(28)
lim

n→∞

(∫
Ω

N∑
i=1

ai(x, ∂xiun)(∂xiun − ∂xiu0)dx

−
∫

Ω
f(x, un)(un − u0)dx

)
= 0.

Joining together (27) and (28), we find that

lim
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xiun)(∂xiun − ∂xiu0)dx = 0.

The statement of Lemma 2 completes the proof of the first claim.

Claim 2. There exist ρ, r > 0 such that I(u) ≥ r > 0, for any u ∈ E with
‖u‖→

p (·) = ρ.
Note that, by (24),

(29) I(u) ≥ 1
P+

+

∫
Ω

N∑
i=1

|∂xiu|pi(x)dx−
∫

Ω

F (x, u)dx, for all u ∈ E.

For ρ < 1 we consider u ∈ E such that ‖u‖→
p (·) = ρ < 1. Thus |∂xiu|pi(·) < 1 and,

by (6),

(30)
∫

Ω

N∑
i=1

|∂xiu|pi(x)dx ≥
N∑

i=1

|∂xiu|
P+

+

pi(·) ,

for all u ∈ E with ‖u‖→
p (·) < 1.

Again, by the generalized mean inequality or the Jensen inequality applied to
the convex function b : R

+ → R
+, b(t) = tP

+
+ , P+

+ > 1, we come to

(31)
N∑

i=1

|∂xiu|
P+

+

pi(·) ≥ N


N∑

i=1
|∂xiu|pi(·)

N


P+

+

.

By (30) and (31) there exists k0 > 0 such that
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(32)
1

P+
+

∫
Ω

N∑
i=1

|∂xiu|pi(x)dx ≥ k0 ‖u‖P+
+

→
p (·),

for all u ∈ E with ‖u‖→
p (·) < 1.

Keeping in mind Remark 1 and using (f2) we obtain,

F (x, s) ≤ c2

∫ |s|

0
|t|q(x)−1dt ≤ c2

q−
|s|q(x) ≤ c2

q−
(
|s|q− + |s|q+

)
,

for all x ∈ Ω and s ∈ R. Thus

(33)
∫

Ω
F (x, u)dx ≤ c2

q−
(
|u|q−

q− + |u|q+

q+

)
for all u ∈ E.

Since
E ↪→ Lq−(Ω), E ↪→ Lq+

(Ω)
continuously we have that there exists a positive constant k1 such that, using (33),∫

Ω
F (x, u)dx ≤ k1‖u‖q−

→
p (·) for all u ∈ E with ‖u‖→

p (·) < 1.

Combining the above relation with (32) and (29) we have

I(u) ≥ k0 ‖u‖P+
+

→
p (·) − k1 ‖u‖q−

→
p (·) for all u ∈ E with ‖u‖→

p (·) < 1,

where k0 = 1

P+
+ N

P+
+ −1

. Therefore,

I(u) ≥ ‖u‖P+
+

→
p (·)

(
k0 − k1 ‖u‖q−−P+

+
→
p (·)

)
for all u ∈ E with ‖u‖→

p (·) < 1.

We denote by g : [0, 1] → R the function defined by

g(t) = k0 − k1 tq
−−P+

+

and we point out the fact that g is positive in a neighborhood of the origin. Since we
can choose 0 < ρ < 1 sufficiently small, the proof of our second claim is complete.

Claim 3.
For any finite dimensional subspace Ẽ ⊂ E there exists R = R(Ẽ) > 0 such

that
I(u) ≤ 0 for all u ∈ Ẽ \ BR(Ẽ).

By conditions (A1) and (A2),

0≤Ai(x, s)≤c1,i

∫ |s|

0

(
1+|t|pi(x)−1

)
dt=c1,i

(
|s|+ |s|pi(x)

pi(x)

)
for all x∈Ω, s∈R,
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and we obtain

(34) 0 ≤ J(v) ≤ C1

∫
Ω

N∑
i=1

|∂xiv| dx +
C1

P−
−

∫
Ω

N∑
i=1

|∂xiv|pi(x) dx for all v ∈ E.

Let Ẽ ⊂ E be a finite dimensional subspace, u ∈ Ẽ \ {0} and t > 1. Then, by
(34),

J(tu) ≤ C1

∫
Ω

N∑
i=1

|∂xi(tu)| dx +
C1

P−
−

∫
Ω

N∑
i=1

|∂xi(tu)|pi(x) dx

and by Remark 1 we infer that

I(tu) ≤ C1 t

∫
Ω

N∑
i=1

|∂xiu| dx +
C1 tP

+
+

P−
−

N∑
i=1

∫
Ω
|∂xiu|pi(x) dx− c3 tµ∫

Ω
|u|µ dx → −∞ as t → ∞,

since µ > P+
+ > 1.

Notice that, for all R > 0,

sup
‖u‖→

p (·)=R, u∈Ẽ

I(u) = sup
‖tu‖→

p (·)=R, tu∈Ẽ

I(tu) = sup
‖tu‖→

p (·)=R, u∈Ẽ

I(tu)

and combining the above two relations we get

sup
‖u‖→

p (·)=R, u∈Ẽ

I(u) → −∞ as R → ∞.

Therefore we can choose R0 > 0 sufficiently large such that ∀R ≥ R0 and ∀u ∈ Ẽ

with ‖u‖→
p (·) = R we have I(u) ≤ 0. Thus

I(u) ≤ 0 for all u ∈ Ẽ \ BR0

and the proof of our final claim is complete.
Finally, taking into account the three claims and using the symmetric mountain-

pass theorem of Ambrosetti and Rabinowitz we deduce the existence of an un-
bounded sequence of weak solutions to problem (1).
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21. O. Kováčik and J. Rákosn ík, On spaces Lp(x) and W k,p(x), Czechoslovak Math. J.,
41 (1991), 592-618.
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25. M. Mihăilescu and G. Moroşanu, Existence and multiplicity of solutions for an
anisotropic elliptic problem involving variable exponent growth conditions, Applica-
ble Analysis, 89 (2010), 257-271.
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