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INTEGRAL REPRESENTATIONS AND GROWTH PROPERTIES FOR A
CLASS OF SUPERFUNCTIONS IN A CONE

Lei Qiao* and Guan-Tie Deng

Abstract. An integral representation for a class of superfunctions, associated
with the Schrödinger operator, is investigated. Meanwhile, growth properties
of them are also proved outside of some exceptional sets.

1. INTRODUCTION AND MAIN RESULTS

Let R and R+ be the set of all real numbers and the set of all positive real
numbers, respectively. We denote by Rn(n ≥ 2) the n-dimensional Euclidean space.
A point in Rn is denoted by P = (X, xn), X = (x1, x2, . . . , xn−1). The Euclidean
distance of two points P and Q in Rn is denoted by |P − Q|. Also |P − O| with
the origin O of Rn is simply denoted by |P |. The boundary, the closure and the
complement of a set S in Rn are denoted by ∂S, S and Sc, respectively.

For P ∈ Rn and r > 0, let B(P, r) denote the open ball with center at P and
radius r in Rn. Sr = ∂B(O, r).

We introduce a system of spherical coordinates (r, Θ), Θ = (θ1, θ2, . . . , θn−1),
in Rn which are related to cartesian coordinates (x1, x2, . . . , xn−1, xn) by

x1 = r


n−1∏

j=1

sin θj


 (n ≥ 2), xn = r cos θ1,

and if n ≥ 3, then

xn−m+1 = r


m−1∏

j=1

sin θj


 cos θm (2 ≤ m ≤ n − 1),
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where 0 ≤ r < +∞, −1
2π ≤ θn−1 < 3

2π, and if n ≥ 3, then 0 ≤ θj ≤ π (1 ≤ j ≤
n − 2).

Let D be an arbitrary domain in Rn and Aa denote the class of nonnegative
radial potentials a(P ), i.e. 0 ≤ a(P ) = a(r), P = (r, Θ) ∈ D, such that a ∈
Lb

loc(D) with some b > n/2 if n ≥ 4 and with b = 2 if n = 2 or n = 3.
If a ∈ Aa, then the stationary Schrödinger operator

Scha = −∆ + a(P )I = 0,

where ∆ is the Laplace operator and I is the identical operator, can be extended
in the usual way from the space C∞

0 (D) to an essentially self-adjoint operator on
L2(D) (see [14, Ch. 13] ). We will denote it Scha as well. This last one has
a Green’s a-function Ga

D(P, Q). Here Ga
D(P, Q) is positive on D and its inner

normal derivative ∂Ga
D(P, Q)/∂nQ ≥ 0, where ∂/∂nQ denotes the differentiation

at Q along the inward normal into D. We denote this derivative by PIa
D(P, Q),

which is called the Poisson a-kernel with respect to D.
We call a function u �≡ −∞ that is upper semi-continuous in D a subfunction

of the Schrödinger operator Scha if its values belong to the interval [−∞,∞) and
at each point P ∈ D with 0 < r < r(P ) the generalized mean-value inequality

u(P ) ≤
∫

S(P,r)
u(Q)

∂Ga
B(P,r)(P, Q)

∂nQ
dσ(Q)

is satisfied, where Ga
B(P,r)(P, Q) is the Green a-function of Scha in B(P, r) and

dσ(Q) is a surface measure on the sphere S(P, r) = ∂B(P, r).
The class of subfunctions in D is denoted by SbH(a, D). If −u ∈ SbH(a, D),

then we call u a superfunction and denote the class of superfunctions by SpH(a, D).
If a function u is both subfunction and superfunction, it is, clearly, continuous and
is called an a-harmonic function associated with the operator Scha. The class
of a-harmonic functions is denoted by H(a, D) = SbH(a, D) ∩ SpH(a, D). In
terminology we follow A. I. Kheyfits (see [10, 11]), E. F. Beckenbach (see [3])
and L. Nirenberg (see [13]). The class SbH(a, D) has been considered by various
authors (see, for example, [4, 5, 15]). But a systematic study of subfunctions from
the point of view of function theory began recently by B. Ya. Levin and A. I.
Kheyfits (see [11]).

The unit sphere and the upper half unit sphere in Rn are denoted by Sn−1 and
Sn−1

+ , respectively. For simplicity, a point (1, Θ) on Sn−1 and the set {Θ; (1, Θ) ∈
Ω} for a set Ω, Ω ⊂ Sn−1, are often identified with Θ and Ω, respectively. For two
sets Ξ ⊂ R+ and Ω ⊂ Sn−1, the set {(r, Θ) ∈ Rn; r ∈ Ξ, (1, Θ) ∈ Ω} in Rn is
simply denoted by Ξ × Ω. In particular, the half space R+ × Sn−1

+ = {(X, xn) ∈
Rn; xn > 0} will be denoted by Tn.
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By Cn(Ω), we denote the set R+×Ω in Rn with the domain Ω on Sn−1(n ≥ 2).
We call it a cone. Then Tn is a special cone obtained by putting Ω = Sn−1

+ . We
denote the sets I ×Ω and I ×∂Ω with an interval on R by Cn(Ω; I) and Sn(Ω; I).
By Sn(Ω; r) we denote Cn(Ω)∩ Sr. By Sn(Ω) we denote Sn(Ω; (0, +∞)), which
is ∂Cn(Ω)−{O}. Furthermore, we denote by dSr the (n− 1)-dimensional volume
elements induced by the Euclidean metric on Sr.

We shall say that a set E ⊂ Cn(Ω) has a covering {rj, Rj} if there exists a
sequence of balls {Bj} with centers in Cn(Ω) such that E ⊂ ∪∞

j=0Bj , where rj is
the radius of Bj and Rj is the distance from the origin to the center of Bj .

From now on, we always assume D = Cn(Ω). For the sake of brevity, we shall
write Ga

Ω(P, Q) instead of Ga
Cn(Ω)(P, Q), PIa

Ω(P, Q) instead of PIa
Cn(Ω)(P, Q),

SpH(a) (resp. SbH(a)) instead of SpH(a, Cn(Ω)) (resp. SbH(a, Cn(Ω))) and
H(a) instead of H(a, Cn(Ω)).

For positive functions h1 and h2, we say that h1 � h2 if h1 ≤ Mh2 for some
constant M > 0. If h1 � h2 and h2 � h1, we say that h1 ≈ h2.

Let Ω be a domain on Sn−1 with smooth boundary. Consider the Dirichlet
problem

(Λn + λ)ϕ = 0 on Ω,

ϕ = 0 on ∂Ω,

where Λn is the spherical part of the Laplace opera ∆n

∆n =
n − 1

r

∂

∂r
+

∂2

∂r2
+

Λn

r2
.

We denote the least positive eigenvlaue of this boundary value problem by λ and the
normalized positive eigenfunction corresponding to λ by ϕ(Θ),

∫
Ω ϕ2(Θ)dS1 = 1.

In order to ensure the existence of λ and a smooth ϕ(Θ). We put a rather strong
assumption on Ω: if n ≥ 3, then Ω is a C2,α-domain (0 < α < 1) on Sn−1

surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see
[8, p. 88-89] for the definition of C2,α-domain).

For any (1, Θ) ∈ Ω, we have (see [12, p. 7-8])

ϕ(Θ) ≈ dist((1, Θ), ∂Cn(Ω)),

which yields that

(1.1) δ(P ) ≈ rϕ(Θ),

where P = (r, Θ) ∈ Cn(Ω) and δ(P ) = dist(P, ∂Cn(Ω)).
Solutions of an ordinary differential equation

(1.2) −Q′′(r) − n − 1
r

Q′(r) +
(

λ

r2
+ a(r)

)
Q(r) = 0, 0 < r < ∞,



2216 Lei Qiao and Guan-Tie Deng

play on essential role in this paper. It is known (see, for example, [19]) that if
the potential a ∈ Aa, then the equation (1.2) has a fundamental system of positive
solutions {V, W} such that V is nondecreasing with

0 ≤ V (0+) ≤ V (r) as r → +∞,

and W is monotonically decreasing with

+∞ = W (0+) > W (r) ↘ 0 as r → +∞.

Let u(r, Θ) be a function on Cn(Ω). For any given r ∈ R+, The integral∫
Ω

u(r, Θ)ϕ(Θ)dS1,

is denoted by Nu(r), when it exists. The finite or infinite limit

lim
r→∞V −1(r)Nu(r)

is denoted by Uu, when it exists.
We will also consider the class Ba, consisting of the potentials a ∈ Aa such that

there exists the finite limit lim
r→∞ r2a(r) = k ∈ [0,∞), and moreover, r−1|r2a(r)−

k| ∈ L(1,∞). If a ∈ Ba, then the (sub)superfunctions are continuous (see [17]).
In the rest of paper, we assume that a ∈ Ba and we shall suppress this assump-

tion for simplicity.
Denote

ι±k =
2 − n ± √

(n − 2)2 + 4(k + λ)
2

,

then the solutions to the equation (1.2) have the asymptotic (see [9])

(1.3) V (r) ≈ rι+k , W (r) ≈ rι−k , as r → ∞.

Remark 1. If a=0 and Ω=Sn−1
+ , then ι+0 =1, ι−0 =1−n and ϕ(Θ)=(2ns−1

n )1/2

cosθ1, where sn is the surface area 2πn/2{Γ(n/2)}−1 of Sn−1.
We denote the Green a-potential with a positive measure v on Cn(Ω) by

Ga
Ων(P ) =

∫
Cn(Ω)

Ga
Ω(P, Q)dν(Q).

The Poisson a-integral PIa
Ωµ(P ) (resp. PIa

Ω[g](P )) �≡ +∞ (P ∈ Cn(Ω)) of µ
(resp. g) relative to Cn(Ω) is defined as follows

PIa
Ωµ(P ) =

1
cn

∫
Sn(Ω)

PIa
Ω(P, Q)dµ(Q),
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(resp. PIa
Ω[g](P ) =

1
cn

∫
Sn(Ω)

PIa
Ω(P, Q)g(Q)dσQ, )

where

PIa
Ω(P, Q) =

∂Ga
Ω(P, Q)
∂nQ

, cn =
{

2π n = 2,
(n − 2)sn n ≥ 3,

µ is a positive measure on ∂Cn(Ω) (resp. g is a continuous function on ∂Cn(Ω)
and dσQ is the surface area element on Sn(Ω)) and ∂

∂nQ
denotes the differentiation

at Q along the inward normal into Cn(Ω).
We define the positive measure µ′ on Rn by

dµ′(Q) =

{
t−1W (t)∂ϕ(Φ)

∂nΦ
dµ(Q) Q = (t, Φ) ∈ Sn(Ω; (1, +∞)),

0 Q ∈ Rn − Sn(Ω; (1, +∞)).

Let ν be any positive measure Cn(Ω) such that Ga
Ων(P ) �≡ +∞ (P ∈ Cn(Ω)).

The positive measure ν′ on Rn is defined by

dν′(Q) =

{
W (t)ϕ(Φ)dν(Q) Q = (t, Φ) ∈ Cn(Ω; (1, +∞)),
0 Q ∈ Rn − Cn(Ω; (1, +∞)).

So the positive measure ξ on Rn is defined by

dξ(Q) =

{
t−1W (t)dξ′(Q) Q = (t, Φ) ∈ Cn(Ω; (1, +∞)),

0 Q ∈ Rn − Cn(Ω; (1, +∞)),

where

dξ′(Q) =

{
∂ϕ(Φ)
∂nΦ

dµ(Q) Q = (t, Φ) ∈ Sn(Ω; (1, +∞)),

tϕ(Φ)dν(Q) Q = (t, Φ) ∈ Cn(Ω; (1, +∞)).

Remark 2. Let a = 0 and Ω = Sn−1
+ . Then

G0
Sn−1

+
(x, y) =

{
log |x− y∗| − log |x − y| n = 2,

|x − y|2−n − |x − y∗|2−n n ≥ 3,

where y∗ = (Y,−yn), that is, y∗ is the mirror image of y = (Y, yn) with respect
to ∂Tn. Hence, for the two points x = (X, xn) ∈ Tn and y = (Y, yn) ∈ ∂Tn, we
have

PI0
Sn−1

+
(x, y) =

∂

∂ny
G0

Sn−1
+

(x, y) =

{
2|x− y|−2xn n = 2,

2(n− 2)|x− y|−nxn n ≥ 3.
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Remark 3. If dµ(Q) = |g(Q)|dσQ (Q = (t, Φ) ∈ Sn(Ω)), where g(Q) is a
continuous function on ∂Cn(Ω), then we have

dµ′′(Q) =

{
|g(Q)|t−1W (t)∂ϕ(Φ)

∂nΦ
dσQ Q = (t, Φ) ∈ Sn(Ω; (1, +∞)),

0 Q ∈ Rn − Sn(Ω; (1, +∞)).

Remark 4. Let a = 0 and Ω = Sn−1
+ . Then a positive measure δ on Rn is

defined by

dδ(y) =

{
|y|−ndδ′(y) y = (Y, yn) ∈ Tn,

0 y ∈ Rn − Tn,

where

dδ′(y) =

{
dµ(y) y = (Y, 0) ∈ ∂Tn,

yndν(y) y = (Y, yn) ∈ Tn.

Let ε > 0, β ≥ 0 and λ′ be any positive measure on Rn having finite total mass.
For each P = (r, Θ) ∈ Rn −{O}, the maximal function M(P ; λ′, β) is defined by

M(P ; λ′, β) = sup
0<ρ< r

2

λ′(B(P, ρ))
ρβ

.

The set {P = (r, Θ) ∈ Rn − {O}; M(P ; λ′, β)rβ > ε} is denoted by E(ε; λ′, β).

Remark 5. If λ′({P}) > 0 (P �= O), then M(P ; λ′, β) = +∞ for any positive
number β. So we can find {P ∈ Rn − {O}; λ′({P}) > 0} ⊂ E(ε; λ′, β).

As in Tn, Siegel-Talvila [16, Corollary 2.1] have proved

Theorem A. Let g be a measurable function on ∂Tn satisfying

(1.4)
∫

∂Tn

|g(y)|
1 + |y|n dy < ∞.

Then the harmonic function PI0
Sn−1

+

[g](x) = 1
cn

∫
∂Tn

PI0
Sn−1

+

(x, y)g(y)dy satisfies

PI0
Sn−1

+

[g] = o(|x| secn−1 θ1) as |x| → ∞ in Tn, where PI0
Sn−1

+

(x, y) is the general
Poisson kernel for the n-dimensional half space, see Remark 2.

Now we state our first result.

Theorem 1. Let 0 ≤ α ≤ n, ε be a sufficiently small positive number and µ
be a positive measure on ∂Cn(Ω) such that

PIa
Ωµ(P ) �≡ +∞ (P = (r, Θ) ∈ Cn(Ω)).
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Then there exists a covering {rj, Rj} of E(ε; µ′, n − α) (⊂ Cn(Ω)) satisfying

(1.5)
∞∑

j=0

(
rj

Rj
)2−αV (

Rj

rj
)W (

Rj

rj
) < ∞,

such that

lim
r→∞,P∈Cn(Ω)−E(ε;µ′,n−α)

V −1(r)ϕα−1(Θ)PIa
Ωµ(P ) = 0.

Corollary 1. Let µ be a positive measure on Sn(Ω) satisfying

(1.6)
∫

Sn(Ω)

1
1 + tW−1(t)

dµ(Q) < ∞.

Then the generalized harmonic function PIa
Ωµ(P ) satisfies

lim
r→∞,P∈Cn(Ω)

V −1(r)ϕn−1(Θ)PIa
Ωµ(P ) = 0.

Our next aim is to be concerned with the solutions of the Dirichlet problem for
the Schrödinger operator Scha on Cn(Ω) and the growth property of them.

Theorem 2. Let α, ε be defined as in Theorem 1 and g be a continuous function
on ∂Cn(Ω) satisfying

(1.7)
∫ ∞

1
t−1V −1(t)

(∫
∂Ω

|g(t, Φ)|dσΦ

)
dt < +∞,

where dσΦ
is the surface area element of ∂Ω at Φ ∈ ∂Ω. Then the function

PIa
Ω[g](P ) (P = (r, Θ)) satisfies

PIa
Ω[g] ∈ C2(Cn(Ω)) ∩ C0(Cn(Ω)),

SchaPIa
Ω[g] = 0 in Cn(Ω),

PIa
Ω[g] = g on ∂Cn(Ω)

and there exists a covering {rj, Rj} of E(ε; µ′′, n − α) (⊂ Cn(Ω), see Remark 3)
satisfying (1.5) such that

(1.8) lim
r→∞,P∈Cn(Ω)−E(ε;µ′′,n−α)

V −1(r)ϕα−1(Θ)PIa
Ω[g](P ) = 0.

Remark 6. In the case a = 0 and Ω = Sn−1
+ , (1.7) is equivalent to (1.4) from

(1.3). In the case α = n, (1.5) is a finite sum, then the set E(ε; µ′′, 0) is a bounded
set and (1.8) holds in Cn(Ω), which generalize Theorem A to the conical case.
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Then we give a way to estimate the Green a-potential with measures on Cn(Ω).
For a similar result, we refer the readers to the paper by B. Ya. Levin and A. I.
Kheyfits [11, Corollary 6.1], who gave the growth properties of Ga

Ων(P ) at infinity
in Cn(Ω) under the conditions

(1.9)
∫

Cn(Ω;(1,+∞))
W (t)ϕ(Φ)dν(Q) < +∞

and

(1.10)
∫

Cn(Ω;(0,1))
V (t)ϕ(Φ)dν(Q) < +∞.

Theorem 3. Let 0 ≤ α < n, ε be defined as in Theorem 1 and ν be a positive
measure on Cn(Ω) such that

(1.11) Ga
Ων(P ) �≡ +∞ (P = (r, Θ) ∈ Cn(Ω)).

Then there exists a covering {rj, Rj} of E(ε; ν′, n−α) (⊂ Cn(Ω)) satisfying (1.5)
such that

lim
r→∞,P∈Cn(Ω)−E(ε;ν′,n−α)

V −1(r)ϕα−1(Θ)Ga
Ων(P ) = 0.

Remark 7. By comparison the condition (1.11) is fairly briefer and easily
applied. Moreover, E(ε; ν′, n− 1) is a set of a-finite view in the sense of [11] (see
[11, Definition 6.1] for the definition of a-finite view).

It is known that a positive superharmonic function u(x) on Tn can be uniquely
decomposed as

(1.12) u(x) = d1xn + cnPI0
Sn−1

+
µ(x) + G0

Sn−1
+

ν(x),

where d1 ≥ 0, dµ is a positive measure on ∂Tn satisfying∫
∂Tn

1
1 + |y|n dµ(y) < ∞

and dν is the Riesz associated measure of u(x).
Motivated by the above result, we give an integral representation of a positive

superfunction in a cone. It must be pointed out that the integral representations of
generalized harmonic functions in a half space were developed by A. I. Kheyfits
(see [10]).

Theorem 4. Let 0 < u(P ) ∈ SpH(a), then there exist a unique positive
measure µ on ∂Cn(Ω) satisfying (1.6) and a unique positive measure ν on Cn(Ω)
satisfying (1.9)-(1.10) such that

(1.13) u(P ) = UuV (r)ϕ(Θ) + cnPIa
Ωµ(P ) + Ga

Ων(P ).
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Remark 8. V. S. Azarin treated the case a = 0 (see [2, Theorem 1]).
The following Theorem 5 follows readily from Theorems 1 and 3, which gen-

eralizes the growth properties of harmonic and superharmonic functions to the su-
perfunctions on Cn(Ω).

Theorem 5. Let 0 ≤ α < n, ε be defined as in Theorem 1 and u(P ) ( �≡ +∞)
(P = (r, Θ) ∈ Cn(Ω)) be defined by (1.13). Then there exists a covering {rj, Rj}
of E(ε; ξ, n− α) (⊂ Cn(Ω)) satisfying (1.5) such that

lim
r→∞,P∈Cn(Ω)−E(ε;ξ,n−α)

V −1(r)ϕα−1(Θ){u(P )− UuV (r)ϕ(Θ)} = 0.

We remark that E(ε; ξ, n− 1) is a set of a-finite view.
As in Tn and a = 0 (cf. [7]), we have by Remarks 1, 4 and (1.3)

Corollary 2. Let ε be defined as in Theorem 1 and u(x) ( �≡ +∞) (x =
(X, xn) ∈ Tn) be defined by (1.12). Then,

(i) there exists a covering {rj, Rj} of E(ε; δ, n − 1) (⊂ Tn, see Remark 4)
satisfying

∞∑
j=0

(
rj

Rj
)n−1 < ∞

such that
lim

|x|→∞,x∈Tn−E(ε;δ,n−1)
|x|−1{u(x)− d1xn} = 0.

(ii) there exists a covering {rj, Rj} of E(ε; δ, n) (⊂ Tn) satisfying

∞∑
j=0

(
rj

Rj
)n < ∞

such that
lim

|x|→∞,x∈Tn−E(ε;δ,n)
x−1

n {u(x) − d1xn} = 0.

2. SOME LEMMAS

In our discussions, the following estimates for the kernel functions PIa
Ω(P, Q) ,

Ga
Ω(P, Q) and ∂Ga

Ω,R(P, Q)/∂R are fundamental, which follow from [11] and [2,
Lemma 4 and Remark].

Lemma 1.

(2.1) PIa
Ω(P, Q) ≈ t−1V (t)W (r)ϕ(Θ)

∂ϕ(Φ)
∂nΦ

,
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(2.2) (resp. PIa
Ω(P, Q) ≈ V (r)t−1W (t)ϕ(Θ)

∂ϕ(Φ)
∂nΦ

, )

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω) satisfying 0 < t
r ≤ 4

5
(resp. 0 < r

t ≤ 4
5 );

(2.3) PI0
Ω(P, Q) � ϕ(Θ)

tn−1

∂ϕ(Φ)
∂nΦ

+
rϕ(Θ)

|P − Q|n
∂ϕ(Φ)
∂nΦ

,

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω; ( 4
5r,

5
4r)).

Lemma 2.
(2.4) Ga

Ω(P, Q) ≈ V (t)W (r)ϕ(Θ)ϕ(Φ),

(2.5) (resp. Ga
Ω(P, Q) ≈ V (r)W (t)ϕ(Θ)ϕ(Φ), )

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Cn(Ω) satisfying 0 < t
r ≤ 4

5
(resp. 0 < r

t ≤ 4
5 );

Further, for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Cn(Ω; ( 4
5r,

5
4r)),

we have

(2.6) G0
Ω(P, Q) � ϕ(Θ)ϕ(Φ)

tn−2
+ ΠΩ(P, Q),

where
ΠΩ(P, Q) = min{ 1

|P − Q|n−2
,
rtϕ(Θ)ϕ(Φ)
|P − Q|n }.

Lemma 3. Let Ga
Ω,R(P, Q) be the Green a-function of the Schrödinger operator

for Cn(Ω, (0, R)), then

(2.7) −∂Ga
Ω,R(P, Q)

∂R
≈ V (r){−W ′(R)}ϕ(Θ)ϕ(Φ)

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (R, Φ) ∈ Sn(Ω; R).

Lemma 4. Let µ be a positive measure on Sn(Ω) such that there is a sequence of
points Pi = (ri, Θi) ∈ Cn(Ω), ri → +∞ (i → +∞) satisfying PIa

Ωµ(Pi) < +∞
(i = 1, 2, . . .). Then for a positive number l,

(2.8)
∫

Sn(Ω;(l,+∞))

W (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q) < +∞

and

(2.9) lim
R→+∞

W (R)
V (R)

∫
Sn(Ω;(0,R))

V (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q) = 0.
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Proof. Take a positive number l satisfying P1 = (r1, Θ1) ∈ Cn(Ω), r1 ≤ 4
5 l.

Then from (2.2), we have

V (r1)ϕ(Θ1)
∫

Sn(Ω;(l,+∞))

W (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q) �
∫

Sn(Ω)
PIa

Ω(P, Q)dµ(Q) < +∞,

which gives (2.8). For any positive number ε, from (2.8), we can take a number Rε

such that ∫
Sn(Ω;(Rε,+∞))

W (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q) <
ε

2
.

If we take a point Pi = (ri, Θi) ∈ Cn(Ω), ri ≥ 5
4Rε, then we have from (2.1)

W (ri)ϕ(Θi)
∫

Sn(Ω;(0,Rε])

V (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q) �
∫

Sn(Ω)
PIa

Ω(P, Q)dµ(Q) < +∞.

If R (R > Rε) is sufficiently large, then

W (R)
V (R)

∫
Sn(Ω;(0,R))

V (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q)

� W (R)
V (R)

∫
Sn(Ω;(0,Rε])

V (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q) +
∫

Sn(Ω;(Rε,R))

W (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q)

� W (R)
V (R)

∫
Sn(Ω;(0,Rε])

V (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q) +
∫

Sn(Ω;(Rε,+∞))

W (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q)

� ε,

which gives (2.9).

Lemma 5. Let ν be a positive measure on Cn(Ω) such that there is a sequence
of points Pi = (ri, Θi) ∈ Cn(Ω), ri → +∞ (i → +∞) satisfying Ga

Ων(Pi) < +∞
(i = 1, 2, . . . ; Q ∈ Cn(Ω)). Then for a positive number l,∫

Cn(Ω;(l,+∞))

W (t)ϕ(Φ)dν(Q) < +∞

and
lim

R→+∞
W (R)
V (R)

∫
Cn(Ω;(0,R))

V (t)ϕ(Φ)dν(Q) = 0.

Proof. In order to prove Lemma 5, We have only to use (2.4) and (2.5) instead
of (2.1) and (2.2) respectively in the proof of Lemma 4.

Lemma 6. Let ε > 0, β ≥ 0 and λ′ be any positive measure on Rn having
finite total mass. Then E(ε; λ′, β) has a covering {rj, Rj} (j = 1, 2, . . .) satisfying

∞∑
j=1

(
rj

Rj
)2−n+βV (

Rj

rj
)W (

Rj

rj
) < ∞.
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Proof. Set

Ej(ε; λ′, β) = {P = (r, Θ) ∈ E(ε; λ′, β) : 2j ≤ r < 2j+1} (j = 2, 3, 4, . . .).

If P = (r, Θ) ∈ Ej(ε; λ′, β), then there exists a positive number ρ(P ) such that

(
ρ(P )

r
)2−n+βV (

r

ρ(P )
)W (

r

ρ(P )
) ≈ (

ρ(P )
r

)β ≤ λ′(B(P, ρ(P )))
ε

.

Since Ej(ε; λ′, β) can be covered by the union of a family of balls {B(Pj,i, ρj,i) :
Pj,i ∈ Ek(ε; λ′, β)} (ρj,i = ρ(Pj,i)). By the Vitali Lemma (see [18]), there exists
Λj ⊂ Ej(ε; λ′, β), which is at most countable, such that {B(Pj,i, ρj,i) : Pj,i ∈ Λj}
are disjoint and Ej(ε; λ′, β) ⊂ ∪Pj,i∈ΛjB(Pj,i, 5ρj,i).

So
∪∞

j=2Ej(ε; λ′, β) ⊂ ∪∞
j=2 ∪Pj,i∈Λj B(Pj,i, 5ρj,i).

On the other hand, note that ∪Pj,i∈ΛjB(Pj,i, ρj,i) ⊂ {P = (r, Θ) : 2j−1 ≤ r <
2j+2}, so that∑

Pj,i∈Λj

(
5ρj,i

|Pj,i| )
2−n+βV (

|Pj,i|
5ρj,i

)W (
|Pj,i|
5ρj,i

) ≈
∑

Pj,i∈Λj

(
5ρj,i

|Pj,i| )
β

≤ 5β
∑

Pj,i∈Λj

λ′(B(Pj,i, ρj,i))
ε

≤ 5β

ε
λ′(Cn(Ω; [2j−1, 2j+2))).

Hence we obtain
∞∑

j=1

∑
Pj,i∈Λj

(
ρj,i

|Pj,i|)
2−n+βV (

|Pj,i|
ρj,i

)W (
|Pj,i|
ρj,i

) ≈

∞∑
j=1

∑
Pj,i∈Λj

(
ρj,i

|Pj,i| )
β

≤
∞∑

j=1

λ′(Cn(Ω; [2j−1, 2j+2)))
ε

≤ 3λ′(Rn)
ε

.

Since E(ε; λ′, β) ∩ {P = (r, Θ) ∈ Rn; r ≥ 4} = ∪∞
j=2Ej(ε; λ′, β). Then

E(ε; λ′, β) is finally covered by a sequence of balls {B(Pj,i, ρj,i), B(P1, 6)} (j =
2, 3, . . . ; i = 1, 2, . . .) satisfying∑

j,i

(
ρj,i

|Pj,i| )
2−n+βV (

|Pj,i|
ρj,i

)W (
|Pj,i|
ρj,i

) ≈
∑
j,i

(
ρj,i

|Pj,i| )
β ≤ 3λ′(Rn)

ε
+ 6β < +∞,

where B(P1, 6) (P1 = (1, 0, . . . , 0) ∈ Rn) is the ball which covers {P = (r, Θ) ∈
Rn; r < 4}.
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3. PROOF OF THE THEOREM 1

Take any point P = (r, Θ) ∈ Cn(Ω; (R, +∞))−E(ε; µ′, n−α), where R(≤ 4
5r)

is a sufficiently large number and ε is a sufficiently small positive number.
Write

PIa
Ωµ(P ) = B1(P ) + B2(P ) + B3(P ),

where
B1(P ) =

1
cn

∫
Sn(Ω;(0, 4

5
r])

PIa
Ω(P, Q)dµ(Q),

B2(P ) =
1
cn

∫
Sn(Ω;( 4

5
r, 5

4
r))

PIa
Ω(P, Q)dµ(Q)

and
B3(P ) =

1
cn

∫
Sn(Ω;[ 5

4
r,∞))

PIa
Ω(P, Q)dµ(Q).

The relation Ga
Ω(P, Q) ≤ G0

Ω(P, Q) implies this inequality (see [1])

(3.1) PIa
Ω(P, Q) ≤ PI0

Ω(P, Q).

By (2.1), (2.2) and Lemma 4, we have the following growth estimates:

(3.2)
B1(P ) � V (r)ϕ(Θ)

W ( 4
5r)

V ( 4
5r)

∫
Sn(Ω;(0, 4

5
r])

V (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q)

� εV (r)ϕ(Θ).

(3.3)
B3(P ) � V (r)ϕ(Θ)

∫
Sn(Ω;[ 5

4
r,∞))

W (t)
t

∂ϕ(Φ)
∂nΦ

dµ(Q)

� εV (r)ϕ(Θ).

By (3.1) and (2.3), we write

B2(P ) � B21(P ) + B22(P ),

where
B21(P ) =

∫
Sn(Ω;( 4

5
r, 5

4
r))

V (t)ϕ(Θ)dµ′(Q)

and
B22(P ) =

∫
Sn(Ω;( 4

5
r, 5

4
r))

trϕ(Θ)
|P − Q|nW (t)

dµ′(Q).

We first have

(3.4) B21(P ) � εV (r)ϕ(Θ)
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from Lemma 4.
Next, we shall estimate B22(P ). Take a sufficiently small positive number d2

such that Sn(Ω; ( 4
5r,

5
4r)) ⊂ B(P, 1

2r) for any P = (r, Θ) ∈ Λ(d2), where
Λ(d2) = {P = (r, Θ) ∈ Cn(Ω); inf

z∈∂Ω
|(1, Θ)− (1, z)| < d2, 0 < r < ∞},

and divide Cn(Ω) into two sets Λ(d2) and Cn(Ω) − Λ(d2).
If P = (r, Θ) ∈ Cn(Ω) − Λ(d2), then there exists a positive d′

2 such that
|P − Q| ≥ d′2r for any Q ∈ Sn(Ω), and hence
(3.5) B22(P ) � εV (r)ϕ(Θ)

from Lemma 4.
We shall consider the case P ∈ Λ(d2). Now put

Hi(P ) = {Q ∈ Sn(Ω; (
4
5
r,

5
4
r)); 2i−1δ(P ) ≤ |P − Q| < 2iδ(P )}.

Since Sn(Ω) ∩ {Q ∈ Rn : |P − Q| < δ(P )} = ∅, we have

B22(P ) =
i(P )∑
i=1

∫
Hi(P )

trϕ(Θ)
|P − Q|nW (t)

dµ′(Q),

where i(P ) is a positive integer satisfying 2i(P )−1δ(P ) ≤ r
2 < 2i(P )δ(P ).

By (1.1) we have rϕ(Θ) � δ(P ) (P = (r, Θ) ∈ Cn(Ω)), and hence∫
Hi(P )

trϕ(Θ)
|P − Q|nW (t)

dµ′(Q) � r2−α

W (r)
ϕ1−α(Θ)

µ′(Hi(P ))
{2iδ(P )}n−α

for i = 0, 1, 2, . . . , i(P ).
Since P = (r, Θ) /∈ E(ε; µ′, n − α), we have

µ′(Hi(P ))
{2iδ(P )}n−α � µ′(B(P, 2iδ(P )))

{2iδ(P )}n−α

� M(P ; µ′, n − α) ≤ εrα−n (i = 0, 1, 2, . . . , i(P )− 1)

and
µ′(Hi(P )(P ))
{2iδ(P )}n−α

�
µ′(B(P, r

2))
( r
2)n−α

≤ εrα−n.

So

(3.6) B22(P ) � εV (r)ϕ1−α(Θ).

Combining (3.2)-(3.6), we finally obtain that if L is sufficiently large and ε

is a sufficiently small, then PIa
Ωµ(P ) = o(V (r)ϕ1−α(Θ)) as r → ∞, where

P = (r, Θ) ∈ Cn(Ω; (R, +∞))−E(ε;µ′, n−α). Finally, there exists an additional
finite ball B0 covering Cn(Ω; (0, R]), which together with Lemma 6, gives the
conclusion of Theorem 1.
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4. PROOF OF THE THEOREM 2

For any fixed P = (r, Θ) ∈ Cn(Ω), take a number R satisfying R > max(1, 5
4r).

By (1.7) and (2.2), we have

1
cn

∫
Sn(Ω;(R,+∞))

PIa
Ω(P, Q)|g(Q)|dσQ

� V (r)ϕ(Θ)
∫ ∞

R
t−1V −1(t)

(∫
∂Ω

|g(t, Φ)|dσΦ

)
dt < ∞.

Thus PIa
Ω[g](P ) is finite for any P ∈ Cn(Ω). Since PIa

Ω(P, Q) is an a-harmonic
function of P ∈ Cn(Ω) for any Q ∈ Sn(Ω), PIa

Ω[g](P ) ∈ H(a).
Now we study the boundary behavior of PIa

Ω[g](P ). Let Q′ = (t′, Φ′) ∈
∂Cn(Ω) be any fixed point and L be any positive number such that L > max{t′ +
1, 4

5R}.
Set χS(L) is the characteristic function of S(L) = {Q = (t, Φ) ∈ ∂Cn(Ω), t ≤

L} and write
PIa

Ω[g](P ) = PIa
Ω,1[g](P ) + PIa

Ω,2[g](P ),

where
PIa

Ω,1[g](P ) =
1
cn

∫
Sn(Ω;(0, 5

4
L])

PIa
Ω(P, Q)g(Q)dσQ

and
PIa

Ω,2[g](P ) =
1
cn

∫
Sn(Ω;( 5

4
L,∞))

P a
Ω(P, Q)g(Q)dσQ.

Notice that PIa
Ω,1[g](P ) is the Poisson a-integral of g(Q)χS( 5

4
L), we have

lim
P→Q′,P∈Cn(Ω)

PIa
Ω,1[g](P ) = g(Q′).

Since lim
Θ→Φ′

ϕ(Θ) = 0, PIa
Ω,2[g](P ) = O(V (r)ϕ(Θ)) and therefore tends to zero.

So the function PIa
Ω[g](P ) can be continuously extended to Cn(Ω) such that

lim
P→Q′,P∈Cn(Ω)

PIa
Ω[g](P ) = g(Q′)

for any Q′ = (t′, Φ′) ∈ ∂Cn(Ω) from the arbitrariness of L. Further, (1.8) is the
conclusion of Theorem 1. Thus we complete the proof of Theorem 2.

5. PROOF OF THE THEOREM 3

For any point P = (r, Θ) ∈ Cn(Ω; (R, +∞))−E(ε; ν′, n−α), where R(≤ 4
5r)

is a sufficiently large number and ε is a sufficiently small positive number.
Write
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Ga
Ων(P ) = U1(P ) + U2(P ) + U3(P ),

where
U1(P ) =

∫
Cn(Ω;(0, 4

5
r])

Ga
Ω(P, Q)dν(Q),

U2(P ) =
∫

Cn(Ω;( 4
5
r, 5

4
r))

Ga
Ω(P, Q)dν(Q)

and
U3(P ) =

∫
Cn(Ω;[ 5

4
r,∞))

Ga
Ω(P, Q)dν(Q).

If we use (2.4), (2.5) and Lemma 5 in place of (2.1), (2.2) and Lemma 2, we
obtain the following growth estimates in the completely paralleled way to the proof
of Theorem 1.

(5.1) U1(P ) � εV (r)ϕ(Θ).

(5.2) U3(P ) � εV (r)ϕ(Θ).

By (2.6) and (3.1), we have

U2(P ) ≤ U21(P ) + U22(P ),

where
U21(P ) = ϕ(Θ)

∫
Cn(Ω;( 4

5
r, 5

4
r))

V (t)dν′(Q) and

U22(P ) =
∫

Cn(Ω;( 4
5
r, 5

4
r))

ΠΩ(P, Q)dν(Q).

Then by Lemma 5, we immediately get

(5.3) U21(P ) � εV (r)ϕ(Θ).

To estimate U22(P ), take a sufficiently small positive number c2 independent
of P such that

(5.4) Λ(P ) = {(t, Φ) ∈ Cn(Ω; (
4
5
r,

5
4
r)); |(1, Φ)− (1, Θ)| < c2} ⊂ B(P,

r

2
)

and divide Cn(Ω; ( 4
5r,

5
4r)) into two sets Λ(P ) and Λ′(P ), where Λ′(P ) = Cn(Ω;

( 4
5r, 5

4r)) − Λ(P ).
Write

U22(P ) = U
(1)
22 (P ) + U

(2)
22 (P ),

where

U
(1)
22 (P ) =

∫
Λ(P )

ΠΩ(P, Q)dν(Q) and U
(2)
22 (P ) =

∫
Λ′(P )

ΠΩ(P, Q)dν(Q).
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There exists a positive c′2 such that |P − Q| ≥ c′2r for any Q ∈ Λ′(P ), and
hence

(5.5)

U
(2)
22 (P ) �

∫
Cn(Ω;( 4

5
r, 5

4
r))

rtϕ(Θ)ϕ(Φ)
|P − Q|n dν(Q)

� V (r)ϕ(Θ)
∫

Cn(Ω;( 4
5
r,∞))

dν′(Q)

� εV (r)ϕ(Θ)

from Lemma 5.
Now we estimate U

(1)
22 (P ). Set

Ii(P ) = {Q ∈ Λ(P ); 2i−1δ(P ) ≤ |P − Q| < 2iδ(P )},

where i = 0,±1,±2, . . ..
Since P = (r, Θ) /∈ E(ε; ν′, n − α) and hence ν ′({P}) = 0 from Remark 5,

we can divide U
(1)
22 (P ) into U

(1)
22 (P ) = U

(11)
22 (P ) + U

(12)
22 (P ), where

U
(11)
22 (P )=

−1∑
i=−∞

∫
Ii(P )

ΠΩ(P, Q)dν(Q) and U
(12)
22 (P )=

∞∑
i=0

∫
Ii(P )

ΠΩ(P, Q)dν(Q).

Since δ(Q) + |P − Q| ≥ δ(P ), we have tfΩ(Φ) � δ(Q) � 2−1δ(P ) for any
Q = (t, Φ) ∈ Ii(p) (i = −1,−2, . . .). Then by (1.1)∫

Ii(P )
ΠΩ(P, Q)dν(Q) �

∫
Ii(P )

1
|P − Q|n−2W (t)ϕ(Φ)

dν′(Q)

� r2−α

W (r)
ϕ1−α(Θ)

ν′(B(P, 2iδ(P )))
{2iδ(P )}n−α

� V (r)ϕ1−α(Θ)rn−αM(P ; ν′, n − α) (i = −1,−2, . . .).

Since P = (r, Θ) /∈ E(ε; ν′, n − α), we obtain

(5.6) U
(11)
22 (P ) � εV (r)ϕ1−α(Θ).

By (5.4), we can take a positive integer i(P ) satisfying 2i(P )−1δ(P ) ≤ r
2 <

2i(P )δ(P ) and Ii(P ) = ∅ (i = i(P ) + 1, i(P ) + 2, . . .).
Since rfΩ(Θ) � δ(P ) (P = (r, Θ) ∈ Cn(Ω)), we have∫

Ii(P )

ΠΩ(P, Q)dν′(Q) � rϕ(Θ)
∫

Ii(P )

t

|P − Q|nW (t)
dν′(Q)

� V (r)ϕ1−α(Θ)rn−α ν′(Ii(P ))
{2iδ(P )}n−α

(i = 0, 1, 2, . . . , i(P )).
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Since P = (r, Θ) /∈ E(ε; ν′, n − α), we have

ν′(Ii(P ))
{2iδ(P )}n−α � ν′(B(P, 2iδ(P )))

{2iδ(P )}n−α

� M(P ; ν′, n − α) < εrα−n (i = 0, 1, 2, . . . , i(P )− 1)

and
ν′(Ii(P )(P ))
{2iδ(P )}n−α

� ν′(Λ(P ))
( r
2 )n−α

< εrα−n.

Hence we obtain

(5.7) U
(12)
22 (P ) � εV (r)ϕ1−α(Θ).

Combining (5.1)-(5.3) and (5.5)-(5.7), we finally obtain that if R is sufficiently
large and ε is a sufficiently small, then Ga

Ων(P ) = o(V (r)ϕ1−α(Θ)) as r → ∞,
where P = (r, Θ) ∈ Cn(Ω; (R, +∞)) − E(ε; ν′, n − α). Finally, there exists an
additional finite ball B0 covering Cn(Ω; (0, R]), which together with Lemma 6,
gives the conclusion of Theorem 3.

6. PROOF OF THE THEOREM 4

For the a-harmonic function UuV (r)ϕ(Θ) on Cn(Ω), define

w(P ) = u(P ) − UuV (r)ϕ(Θ).

Then 0 ≤ w(P ) ∈ SpH(a) and

(6.1) Uw = 0.

Apply the Riesz decomposition theorem (see [11]) to w(P ) on Cn(Ω; (0, R)),
we obtain

w(P ) =
∫

Sn(Ω;(0,R))

∂Ga
Ω,R(P, Q)
∂nQ

dµ0

−
∫

Sn(Ω;R)

∂Ga
Ω,R(P, Q)
∂R

dSR +
∫

Cn(Ω;(0,R))

Ga
Ω,R(P, Q)dν0

= w1(P ) + w2(P ) + w3(P ),

where dµ0 is a positive measure on Sn(Ω), dSR is the (n−1)-dimensional volume
elements induced by the Euclidean metric on SR, dν0 is the Riesz measure of w(P ).

First, we consider the case where w(P ) < +∞. Since Ga
Ω,R(P, Q) → Ga

Ω(P, Q)
as R → ∞, we have

w1(P ) → cnPIa
Ωµ0(P ) < +∞
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and
w3(P ) → Ga

Ων0(P ) < +∞,

as R → ∞.
By (6.1), we know that there exists a sequence of points Pi = (ri, Θi) ∈

Cn(Ω), ri → +∞ (i → +∞) such that

(6.2) w(Pi) � V (ri)εi,

where εi → 0 as i → +∞.
Take Ri = 2ri, then by Lemma 3 we have

w(Pi) � −
∫

Sn(Ω;Ri)

∂Ga
Ω,Ri

((ri, Θi), (Ri, Φi))
∂R

dSRi

� V (ri)ϕ(Θi)
∫

Sn(Ω;Ri)
{−W ′(Ri)}ϕ(Φi)dSRi,

which, together with (6.1), gives that

(6.3) I(Ri) � εi,

where
I(Ri) =

∫
Sn(Ω;Ri)

{−W ′(Ri)}ϕ(Φi)dSRi.

By virtue of (2.7) and (6.3), we obtain

(6.4) w2(Pi) � V (ri)ϕ(Θi)I(Ri) � V (ri)εi,

which converges to 0 as ri → +∞.
Passing the limit as i → +∞, we have

(6.5) w(P ) = cnPIa
Ωµ0(P ) + Ga

Ων0(P )

for all P ∈ Cn(Ω).
Secondly, we consider the case where w(P ) = +∞. In this case, the sum of

w1(P ) and w3(P ) is infinite. We know that w2(P ) is bounded by (6.4). As R →
+∞, w(P ) remains infinite. So (6.5) is proved under the condition w(P ) = +∞.

It is easy to see that the quantities dµ0 and dν0 are same for the functions w(P )
and u(P ) respectively. So we denote them by dµ and dν respectively for simplicity.
Then we complete the proof of Theorem 4.
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