TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 5, pp. 2213-2233, October 2011 This paper is available online at http://tjm.math.ntu.edu.tw/index.php/TJM

INTEGRAL REPRESENTATIONS AND GROWTH PROPERTIES FOR A CLASS OF SUPERFUNCTIONS IN A CONE

Lei Qiao* and Guan-Tie Deng

Abstract. An integral representation for a class of superfunctions, associated with the Schrödinger operator, is investigated. Meanwhile, growth properties of them are also proved outside of some exceptional sets.

1. INTRODUCTION AND MAIN RESULTS

Let \mathbf{R} and \mathbf{R}_+ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by $\mathbf{R}^n (n \ge 2)$ the *n*-dimensional Euclidean space. A point in \mathbf{R}^n is denoted by $P = (X, x_n), X = (x_1, x_2, \dots, x_{n-1})$. The Euclidean distance of two points P and Q in \mathbf{R}^n is denoted by |P - Q|. Also |P - O| with the origin O of \mathbf{R}^n is simply denoted by |P|. The boundary, the closure and the complement of a set \mathbf{S} in \mathbf{R}^n are denoted by $\partial \mathbf{S}, \overline{\mathbf{S}}$ and \mathbf{S}^c , respectively.

For $P \in \mathbf{R}^n$ and r > 0, let B(P, r) denote the open ball with center at P and radius r in \mathbf{R}^n . $S_r = \partial B(O, r)$.

We introduce a system of spherical coordinates (r, Θ) , $\Theta = (\theta_1, \theta_2, \dots, \theta_{n-1})$, in \mathbb{R}^n which are related to cartesian coordinates $(x_1, x_2, \dots, x_{n-1}, x_n)$ by

$$x_1 = r \left(\prod_{j=1}^{n-1} \sin \theta_j\right) \ (n \ge 2), \ x_n = r \cos \theta_1,$$

and if $n \geq 3$, then

$$x_{n-m+1} = r\left(\prod_{j=1}^{m-1}\sin\theta_j\right)\cos\theta_m \ (2 \le m \le n-1),$$

Received April 26, 2010, accepted June 15, 2010.

Key words and phrases: Stationary Schrödinger operator, Poisson a-integral, Green a-potential, Growth property, Integral representation, Cone.

Communicated by Alexander Vasiliev.

²⁰¹⁰ Mathematics Subject Classification: 35J10, 35J25.

Supported by SRFDP (No. 20100003110004) and NSF of China (No. 11071020). *Corresponding author.

where $0 \le r < +\infty$, $-\frac{1}{2}\pi \le \theta_{n-1} < \frac{3}{2}\pi$, and if $n \ge 3$, then $0 \le \theta_j \le \pi$ $(1 \le j \le n-2)$.

Let *D* be an arbitrary domain in \mathbb{R}^n and \mathcal{A}_a denote the class of nonnegative radial potentials a(P), i.e. $0 \leq a(P) = a(r)$, $P = (r, \Theta) \in D$, such that $a \in L^b_{loc}(D)$ with some b > n/2 if $n \geq 4$ and with b = 2 if n = 2 or n = 3.

If $a \in A_a$, then the stationary Schrödinger operator

$$Sch_a = -\Delta + a(P)I = 0,$$

where Δ is the Laplace operator and I is the identical operator, can be extended in the usual way from the space $C_0^{\infty}(D)$ to an essentially self-adjoint operator on $L^2(D)$ (see [14, Ch. 13]). We will denote it Sch_a as well. This last one has a Green's *a*-function $G_D^a(P,Q)$. Here $G_D^a(P,Q)$ is positive on D and its inner normal derivative $\partial G_D^a(P,Q)/\partial n_Q \geq 0$, where $\partial/\partial n_Q$ denotes the differentiation at Q along the inward normal into D. We denote this derivative by $PI_D^a(P,Q)$, which is called the Poisson *a*-kernel with respect to D.

We call a function $u \not\equiv -\infty$ that is upper semi-continuous in D a subfunction of the Schrödinger operator Sch_a if its values belong to the interval $[-\infty, \infty)$ and at each point $P \in D$ with 0 < r < r(P) the generalized mean-value inequality

$$u(P) \leq \int_{S(P,r)} u(Q) \frac{\partial G^a_{B(P,r)}(P,Q)}{\partial n_Q} d\sigma(Q)$$

is satisfied, where $G^a_{B(P,r)}(P,Q)$ is the Green *a*-function of Sch_a in B(P,r) and $d\sigma(Q)$ is a surface measure on the sphere $S(P,r) = \partial B(P,r)$.

The class of subfunctions in D is denoted by SbH(a, D). If $-u \in SbH(a, D)$, then we call u a superfunction and denote the class of superfunctions by SpH(a, D). If a function u is both subfunction and superfunction, it is, clearly, continuous and is called an a-harmonic function associated with the operator Sch_a . The class of a-harmonic functions is denoted by $H(a, D) = SbH(a, D) \cap SpH(a, D)$. In terminology we follow A. I. Kheyfits (see [10, 11]), E. F. Beckenbach (see [3]) and L. Nirenberg (see [13]). The class SbH(a, D) has been considered by various authors (see, for example, [4, 5, 15]). But a systematic study of subfunctions from the point of view of function theory began recently by B. Ya. Levin and A. I. Kheyfits (see [11]).

The unit sphere and the upper half unit sphere in \mathbf{R}^n are denoted by \mathbf{S}^{n-1} and \mathbf{S}^{n-1}_+ , respectively. For simplicity, a point $(1, \Theta)$ on \mathbf{S}^{n-1} and the set $\{\Theta; (1, \Theta) \in \Omega\}$ for a set $\Omega, \Omega \subset \mathbf{S}^{n-1}$, are often identified with Θ and Ω , respectively. For two sets $\Xi \subset \mathbf{R}_+$ and $\Omega \subset \mathbf{S}^{n-1}$, the set $\{(r, \Theta) \in \mathbf{R}^n; r \in \Xi, (1, \Theta) \in \Omega\}$ in \mathbf{R}^n is simply denoted by $\Xi \times \Omega$. In particular, the half space $\mathbf{R}_+ \times \mathbf{S}^{n-1}_+ = \{(X, x_n) \in \mathbf{R}^n; x_n > 0\}$ will be denoted by \mathbf{T}_n .

By $C_n(\Omega)$, we denote the set $\mathbf{R}_+ \times \Omega$ in \mathbf{R}^n with the domain Ω on \mathbf{S}^{n-1} $(n \ge 2)$. We call it a cone. Then T_n is a special cone obtained by putting $\Omega = \mathbf{S}_+^{n-1}$. We denote the sets $I \times \Omega$ and $I \times \partial \Omega$ with an interval on \mathbf{R} by $C_n(\Omega; I)$ and $S_n(\Omega; I)$. By $S_n(\Omega; r)$ we denote $C_n(\Omega) \cap S_r$. By $S_n(\Omega)$ we denote $S_n(\Omega; (0, +\infty))$, which is $\partial C_n(\Omega) - \{O\}$. Furthermore, we denote by dS_r the (n-1)-dimensional volume elements induced by the Euclidean metric on S_r .

We shall say that a set $E \subset C_n(\Omega)$ has a covering $\{r_j, R_j\}$ if there exists a sequence of balls $\{B_j\}$ with centers in $C_n(\Omega)$ such that $E \subset \bigcup_{j=0}^{\infty} B_j$, where r_j is the radius of B_j and R_j is the distance from the origin to the center of B_j .

From now on, we always assume $D = C_n(\Omega)$. For the sake of brevity, we shall write $G^a_{\Omega}(P,Q)$ instead of $G^a_{C_n(\Omega)}(P,Q)$, $PI^a_{\Omega}(P,Q)$ instead of $PI^a_{C_n(\Omega)}(P,Q)$, SpH(a) (resp. SbH(a)) instead of $SpH(a, C_n(\Omega))$ (resp. $SbH(a, C_n(\Omega))$) and H(a) instead of $H(a, C_n(\Omega))$.

For positive functions h_1 and h_2 , we say that $h_1 \leq h_2$ if $h_1 \leq Mh_2$ for some constant M > 0. If $h_1 \leq h_2$ and $h_2 \leq h_1$, we say that $h_1 \approx h_2$.

Let Ω be a domain on \mathbf{S}^{n-1} with smooth boundary. Consider the Dirichlet problem

$$(\Lambda_n + \lambda)\varphi = 0$$
 on Ω ,
 $\varphi = 0$ on $\partial\Omega$,

where Λ_n is the spherical part of the Laplace opera Δ_n

$$\Delta_n = \frac{n-1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} + \frac{\Lambda_n}{r^2}$$

We denote the least positive eigenvlaue of this boundary value problem by λ and the normalized positive eigenfunction corresponding to λ by $\varphi(\Theta)$, $\int_{\Omega} \varphi^2(\Theta) dS_1 = 1$. In order to ensure the existence of λ and a smooth $\varphi(\Theta)$. We put a rather strong assumption on Ω : if $n \geq 3$, then Ω is a $C^{2,\alpha}$ -domain $(0 < \alpha < 1)$ on \mathbf{S}^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see [8, p. 88-89] for the definition of $C^{2,\alpha}$ -domain).

For any $(1, \Theta) \in \Omega$, we have (see [12, p. 7-8])

$$\varphi(\Theta) \approx dist((1,\Theta), \partial C_n(\Omega)),$$

which yields that

(1.1)
$$\delta(P) \approx r\varphi(\Theta),$$

where $P = (r, \Theta) \in C_n(\Omega)$ and $\delta(P) = dist(P, \partial C_n(\Omega))$. Solutions of an ordinary differential equation

(1.2)
$$-Q''(r) - \frac{n-1}{r}Q'(r) + \left(\frac{\lambda}{r^2} + a(r)\right)Q(r) = 0, \quad 0 < r < \infty,$$

play on essential role in this paper. It is known (see, for example, [19]) that if the potential $a \in A_a$, then the equation (1.2) has a fundamental system of positive solutions $\{V, W\}$ such that V is nondecreasing with

$$0 \le V(0+) \le V(r) \ as \ r \to +\infty,$$

and W is monotonically decreasing with

$$+\infty = W(0+) > W(r) \searrow 0$$
 as $r \to +\infty$.

Let $u(r, \Theta)$ be a function on $C_n(\Omega)$. For any given $r \in \mathbf{R}_+$, The integral

$$\int_{\Omega} u(r,\Theta)\varphi(\Theta)dS_1$$

is denoted by $N_u(r)$, when it exists. The finite or infinite limit

$$\lim_{r \to \infty} V^{-1}(r) N_u(r)$$

is denoted by \mathcal{U}_u , when it exists.

We will also consider the class \mathcal{B}_a , consisting of the potentials $a \in \mathcal{A}_a$ such that there exists the finite limit $\lim_{r \to \infty} r^2 a(r) = k \in [0, \infty)$, and moreover, $r^{-1}|r^2 a(r) - k| \in L(1, \infty)$. If $a \in \mathcal{B}_a$, then the (sub)superfunctions are continuous (see [17]).

In the rest of paper, we assume that $a \in \mathcal{B}_a$ and we shall suppress this assumption for simplicity.

Denote

$$\iota_k^{\pm} = \frac{2 - n \pm \sqrt{(n-2)^2 + 4(k+\lambda)}}{2},$$

then the solutions to the equation (1.2) have the asymptotic (see [9])

(1.3)
$$V(r) \approx r^{\iota_k^+}, \ W(r) \approx r^{\iota_k^-}, \ \text{as } r \to \infty.$$

Remark 1. If a=0 and $\Omega = \mathbf{S}_{+}^{n-1}$, then $\iota_{0}^{+} = 1$, $\iota_{0}^{-} = 1-n$ and $\varphi(\Theta) = (2ns_{n}^{-1})^{1/2}$ $\cos\theta_{1}$, where s_{n} is the surface area $2\pi^{n/2} \{\Gamma(n/2)\}^{-1}$ of \mathbf{S}^{n-1} .

We denote the Green *a*-potential with a positive measure v on $C_n(\Omega)$ by

$$G^a_{\Omega}\nu(P) = \int_{C_n(\Omega)} G^a_{\Omega}(P,Q)d\nu(Q).$$

The Poisson *a*-integral $PI^a_{\Omega}\mu(P)$ (resp. $PI^a_{\Omega}[g](P) \neq +\infty$ $(P \in C_n(\Omega))$ of μ (resp. g) relative to $C_n(\Omega)$ is defined as follows

$$PI^a_{\Omega}\mu(P) = \frac{1}{c_n} \int_{S_n(\Omega)} PI^a_{\Omega}(P,Q)d\mu(Q),$$

Integral Representations and Growth Properties for a Class of Superfunctions in a Cone 2217

$$(\text{resp. } PI^a_\Omega[g](P) = \frac{1}{c_n} \int_{S_n(\Omega)} PI^a_\Omega(P,Q)g(Q)d\sigma_Q,)$$

where

$$PI_{\Omega}^{a}(P,Q) = \frac{\partial G_{\Omega}^{a}(P,Q)}{\partial n_{Q}}, \qquad c_{n} = \begin{cases} 2\pi & n=2, \\ (n-2)s_{n} & n\geq 3, \end{cases}$$

 μ is a positive measure on $\partial C_n(\Omega)$ (resp. g is a continuous function on $\partial C_n(\Omega)$ and $d\sigma_Q$ is the surface area element on $S_n(\Omega)$) and $\frac{\partial}{\partial n_Q}$ denotes the differentiation at Q along the inward normal into $C_n(\Omega)$.

We define the positive measure μ' on \mathbf{R}^n by

$$d\mu'(Q) = \begin{cases} t^{-1}W(t)\frac{\partial\varphi(\Phi)}{\partial n_{\Phi}}d\mu(Q) & Q = (t,\Phi) \in S_n(\Omega; (1,+\infty)), \\ 0 & Q \in \mathbf{R}^n - S_n(\Omega; (1,+\infty)). \end{cases}$$

Let ν be any positive measure $C_n(\Omega)$ such that $G^a_{\Omega}\nu(P) \not\equiv +\infty \ (P \in C_n(\Omega))$. The positive measure ν' on \mathbb{R}^n is defined by

$$d\nu'(Q) = \begin{cases} W(t)\varphi(\Phi)d\nu(Q) & Q = (t,\Phi) \in C_n(\Omega; (1,+\infty)), \\ 0 & Q \in \mathbf{R}^n - C_n(\Omega; (1,+\infty)). \end{cases}$$

So the positive measure ξ on \mathbf{R}^n is defined by

$$d\xi(Q) = \begin{cases} t^{-1}W(t)d\xi'(Q) & Q = (t,\Phi) \in \overline{C_n(\Omega;(1,+\infty))}, \\ 0 & Q \in \mathbf{R}^n - \overline{C_n(\Omega;(1,+\infty))}, \end{cases}$$

where

$$d\xi'(Q) = \begin{cases} \frac{\partial\varphi(\Phi)}{\partial n_{\Phi}}d\mu(Q) & Q = (t,\Phi) \in S_n(\Omega;(1,+\infty)), \\ t\varphi(\Phi)d\nu(Q) & Q = (t,\Phi) \in C_n(\Omega;(1,+\infty)). \end{cases}$$

Remark 2. Let a = 0 and $\Omega = \mathbf{S}^{n-1}_+$. Then

$$G^{0}_{\mathbf{S}^{n-1}_{+}}(x,y) = \begin{cases} \log|x-y^{*}| - \log|x-y| & n = 2, \\ |x-y|^{2-n} - |x-y^{*}|^{2-n} & n \ge 3, \end{cases}$$

where $y^* = (Y, -y_n)$, that is, y^* is the mirror image of $y = (Y, y_n)$ with respect to ∂T_n . Hence, for the two points $x = (X, x_n) \in T_n$ and $y = (Y, y_n) \in \partial T_n$, we have

$$PI_{\mathbf{S}_{+}^{n-1}}^{0}(x,y) = \frac{\partial}{\partial n_{y}} G_{\mathbf{S}_{+}^{n-1}}^{0}(x,y) = \begin{cases} 2|x-y|^{-2}x_{n} & n=2, \\ 2(n-2)|x-y|^{-n}x_{n} & n\geq 3. \end{cases}$$

Remark 3. If $d\mu(Q) = |g(Q)| d\sigma_Q$ $(Q = (t, \Phi) \in S_n(\Omega))$, where g(Q) is a continuous function on $\partial C_n(\Omega)$, then we have

$$d\mu''(Q) = \begin{cases} |g(Q)|t^{-1}W(t)\frac{\partial\varphi(\Phi)}{\partial n_{\Phi}}d\sigma_Q & Q = (t,\Phi) \in S_n(\Omega;(1,+\infty)), \\ 0 & Q \in \mathbf{R}^n - S_n(\Omega;(1,+\infty)). \end{cases}$$

Remark 4. Let a = 0 and $\Omega = \mathbf{S}^{n-1}_+$. Then a positive measure δ on \mathbf{R}^n is defined by

$$d\delta(y) = \begin{cases} |y|^{-n} d\delta'(y) & y = (Y, y_n) \in \overline{T_n}, \\ 0 & y \in \mathbf{R}^n - \overline{T_n}, \end{cases}$$

where

$$d\delta'(y) = \begin{cases} d\mu(y) & y = (Y,0) \in \partial T_n, \\ y_n d\nu(y) & y = (Y,y_n) \in T_n. \end{cases}$$

Let $\epsilon > 0$, $\beta \ge 0$ and λ' be any positive measure on \mathbb{R}^n having finite total mass. For each $P = (r, \Theta) \in \mathbb{R}^n - \{O\}$, the maximal function $M(P; \lambda', \beta)$ is defined by

$$M(P; \lambda', \beta) = \sup_{0 < \rho < \frac{r}{2}} \frac{\lambda'(B(P, \rho))}{\rho^{\beta}}$$

The set $\{P = (r, \Theta) \in \mathbf{R}^n - \{O\}; M(P; \lambda', \beta)r^\beta > \epsilon\}$ is denoted by $E(\epsilon; \lambda', \beta)$.

Remark 5. If $\lambda'(\{P\}) > 0$ $(P \neq O)$, then $M(P; \lambda', \beta) = +\infty$ for any positive number β . So we can find $\{P \in \mathbb{R}^n - \{O\}; \lambda'(\{P\}) > 0\} \subset E(\epsilon; \lambda', \beta)$. As in T_n , Siegel-Talvila [16, Corollary 2.1] have proved

Theorem A. Let g be a measurable function on ∂T_n satisfying

(1.4)
$$\int_{\partial T_n} \frac{|g(y)|}{1+|y|^n} dy < \infty$$

Then the harmonic function $PI^{0}_{\mathbf{S}^{n-1}_{+}}[g](x) = \frac{1}{c_{n}} \int_{\partial T_{n}} PI^{0}_{\mathbf{S}^{n-1}_{+}}(x,y)g(y)dy$ satisfies $PI^{0}_{\mathbf{S}^{n-1}_{+}}[g] = o(|x| \sec^{n-1} \theta_{1})$ as $|x| \to \infty$ in T_{n} , where $PI^{0}_{\mathbf{S}^{n-1}_{+}}(x,y)$ is the general Poisson kernel for the *n*-dimensional half space, see Remark 2.

Now we state our first result.

Theorem 1. Let $0 \le \alpha \le n$, ϵ be a sufficiently small positive number and μ be a positive measure on $\partial C_n(\Omega)$ such that

$$PI^a_{\Omega}\mu(P) \not\equiv +\infty \ (P = (r, \Theta) \in C_n(\Omega)).$$

Then there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \mu', n - \alpha) \ (\subset C_n(\Omega))$ satisfying

(1.5)
$$\sum_{j=0}^{\infty} (\frac{r_j}{R_j})^{2-\alpha} V(\frac{R_j}{r_j}) W(\frac{R_j}{r_j}) < \infty,$$

such that

$$\lim_{r \to \infty, P \in C_n(\Omega) - E(\epsilon; \mu', n - \alpha)} V^{-1}(r) \varphi^{\alpha - 1}(\Theta) P I^a_{\Omega} \mu(P) = 0.$$

Corollary 1. Let μ be a positive measure on $S_n(\Omega)$ satisfying

(1.6)
$$\int_{S_n(\Omega)} \frac{1}{1 + tW^{-1}(t)} d\mu(Q) < \infty.$$

Then the generalized harmonic function $PI^a_{\Omega}\mu(P)$ satisfies

$$\lim_{r \to \infty, P \in C_n(\Omega)} V^{-1}(r) \varphi^{n-1}(\Theta) P I_{\Omega}^a \mu(P) = 0.$$

Our next aim is to be concerned with the solutions of the Dirichlet problem for the Schrödinger operator Sch_a on $C_n(\Omega)$ and the growth property of them.

Theorem 2. Let α , ϵ be defined as in Theorem 1 and g be a continuous function on $\partial C_n(\Omega)$ satisfying

(1.7)
$$\int_{1}^{\infty} t^{-1} V^{-1}(t) \left(\int_{\partial \Omega} |g(t,\Phi)| d_{\sigma_{\Phi}} \right) dt < +\infty,$$

where $d_{\sigma_{\Phi}}$ is the surface area element of $\partial\Omega$ at $\Phi \in \partial\Omega$. Then the function $PI_{\Omega}^{a}[g](P)$ $(P = (r, \Theta))$ satisfies

$$PI_{\Omega}^{a}[g] \in C^{2}(C_{n}(\Omega)) \cap C^{0}(C_{n}(\Omega)),$$

$$Sch_{a}PI_{\Omega}^{a}[g] = 0 \text{ in } C_{n}(\Omega),$$

$$PI_{\Omega}^{a}[g] = g \text{ on } \partial C_{n}(\Omega)$$

and there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \mu'', n - \alpha) (\subset C_n(\Omega)$, see Remark 3) satisfying (1.5) such that

(1.8)
$$\lim_{r \to \infty, P \in C_n(\Omega) - E(\epsilon; \mu'', n - \alpha)} V^{-1}(r) \varphi^{\alpha - 1}(\Theta) P I_{\Omega}^a[g](P) = 0.$$

Remark 6. In the case a = 0 and $\Omega = \mathbf{S}^{n-1}_+$, (1.7) is equivalent to (1.4) from (1.3). In the case $\alpha = n$, (1.5) is a finite sum, then the set $E(\epsilon; \mu'', 0)$ is a bounded set and (1.8) holds in $C_n(\Omega)$, which generalize Theorem A to the conical case.

Then we give a way to estimate the Green *a*-potential with measures on $C_n(\Omega)$. For a similar result, we refer the readers to the paper by B. Ya. Levin and A. I. Kheyfits [11, Corollary 6.1], who gave the growth properties of $G^a_{\Omega}\nu(P)$ at infinity in $C_n(\Omega)$ under the conditions

(1.9)
$$\int_{C_n(\Omega;(1,+\infty))} W(t)\varphi(\Phi)d\nu(Q) < +\infty$$

and

(1.10)
$$\int_{C_n(\Omega;(0,1))} V(t)\varphi(\Phi)d\nu(Q) < +\infty.$$

Theorem 3. Let $0 \le \alpha < n$, ϵ be defined as in Theorem 1 and ν be a positive measure on $C_n(\Omega)$ such that

(1.11)
$$G^a_{\Omega}\nu(P) \neq +\infty \ (P = (r,\Theta) \in C_n(\Omega)).$$

Then there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \nu', n-\alpha) (\subset C_n(\Omega))$ satisfying (1.5) such that

$$\lim_{r \to \infty, P \in C_n(\Omega) - E(\epsilon; \nu', n - \alpha)} V^{-1}(r) \varphi^{\alpha - 1}(\Theta) G^a_{\Omega} \nu(P) = 0.$$

Remark 7. By comparison the condition (1.11) is fairly briefer and easily applied. Moreover, $E(\epsilon; \nu', n-1)$ is a set of *a*-finite view in the sense of [11] (see [11, Definition 6.1] for the definition of *a*-finite view).

It is known that a positive superharmonic function u(x) on T_n can be uniquely decomposed as

(1.12)
$$u(x) = d_1 x_n + c_n P I^0_{\mathbf{S}^{n-1}_+} \mu(x) + G^0_{\mathbf{S}^{n-1}_+} \nu(x),$$

where $d_1 \ge 0$, $d\mu$ is a positive measure on ∂T_n satisfying

$$\int_{\partial T_n} \frac{1}{1+|y|^n} d\mu(y) < \infty$$

and $d\nu$ is the Riesz associated measure of u(x).

Motivated by the above result, we give an integral representation of a positive superfunction in a cone. It must be pointed out that the integral representations of generalized harmonic functions in a half space were developed by A. I. Kheyfits (see [10]).

Theorem 4. Let $0 < u(P) \in SpH(a)$, then there exist a unique positive measure μ on $\partial C_n(\Omega)$ satisfying (1.6) and a unique positive measure ν on $C_n(\Omega)$ satisfying (1.9)-(1.10) such that

(1.13)
$$u(P) = \mathcal{U}_u V(r)\varphi(\Theta) + c_n P I^a_{\Omega} \mu(P) + G^a_{\Omega} \nu(P).$$

Integral Representations and Growth Properties for a Class of Superfunctions in a Cone 2221

Remark 8. V. S. Azarin treated the case a = 0 (see [2, Theorem 1]).

The following Theorem 5 follows readily from Theorems 1 and 3, which generalizes the growth properties of harmonic and superharmonic functions to the superfunctions on $C_n(\Omega)$.

Theorem 5. Let $0 \le \alpha < n$, ϵ be defined as in Theorem 1 and $u(P) \ (\not\equiv +\infty)$ $(P = (r, \Theta) \in C_n(\Omega))$ be defined by (1.13). Then there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \xi, n - \alpha) \ (\subset C_n(\Omega))$ satisfying (1.5) such that

$$\lim_{r \to \infty, P \in C_n(\Omega) - E(\epsilon;\xi, n - \alpha)} V^{-1}(r)\varphi^{\alpha - 1}(\Theta) \{ u(P) - \mathcal{U}_u V(r)\varphi(\Theta) \} = 0.$$

We remark that $E(\epsilon; \xi, n-1)$ is a set of *a*-finite view. As in T_n and a = 0 (cf. [7]), we have by Remarks 1, 4 and (1.3)

Corollary 2. Let ϵ be defined as in Theorem 1 and $u(x) \ (\not\equiv +\infty) \ (x = (X, x_n) \in T_n)$ be defined by (1.12). Then,

(i) there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \delta, n-1) \subset T_n$, see Remark 4) satisfying

$$\sum_{j=0}^{\infty} (\frac{r_j}{R_j})^{n-1} < \infty$$

such that

$$\lim_{|x| \to \infty, x \in T_n - E(\epsilon; \delta, n-1)} |x|^{-1} \{ u(x) - d_1 x_n \} = 0.$$

(ii) there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \delta, n) (\subset T_n)$ satisfying

$$\sum_{j=0}^{\infty} (\frac{r_j}{R_j})^n < \infty$$

such that

$$\lim_{|x| \to \infty, x \in T_n - E(\epsilon; \delta, n)} x_n^{-1} \{ u(x) - d_1 x_n \} = 0.$$

2. Some Lemmas

In our discussions, the following estimates for the kernel functions $PI_{\Omega}^{a}(P,Q)$, $G_{\Omega}^{a}(P,Q)$ and $\partial G_{\Omega,R}^{a}(P,Q)/\partial R$ are fundamental, which follow from [11] and [2, Lemma 4 and Remark].

Lemma 1.

(2.1)
$$PI^{a}_{\Omega}(P,Q) \approx t^{-1}V(t)W(r)\varphi(\Theta)\frac{\partial\varphi(\Phi)}{\partial n_{\Phi}},$$

(2.2) (resp.
$$PI_{\Omega}^{a}(P,Q) \approx V(r)t^{-1}W(t)\varphi(\Theta)\frac{\partial\varphi(\Phi)}{\partial n_{\Phi}}$$
,)

for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (t, \Phi) \in S_n(\Omega)$ satisfying $0 < \frac{t}{r} \le \frac{4}{5}$ (resp. $0 < \frac{r}{t} \le \frac{4}{5}$);

(2.3)
$$PI_{\Omega}^{0}(P,Q) \lesssim \frac{\varphi(\Theta)}{t^{n-1}} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} + \frac{r\varphi(\Theta)}{|P-Q|^{n}} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}},$$

 $\text{for any }P=(r,\Theta)\in C_n(\Omega) \text{ and any }Q=(t,\Phi)\in S_n(\Omega;(\tfrac{4}{5}r,\tfrac{5}{4}r)).$

Lemma 2.

$$(2.4) \qquad \qquad G^a_\Omega(P,Q)\approx V(t)W(r)\varphi(\Theta)\varphi(\Phi),$$

(2.5) (resp.
$$G^a_{\Omega}(P,Q) \approx V(r)W(t)\varphi(\Theta)\varphi(\Phi),$$
)

for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (t, \Phi) \in C_n(\Omega)$ satisfying $0 < \frac{t}{r} \le \frac{4}{5}$ (resp. $0 < \frac{r}{t} \le \frac{4}{5}$);

Further, for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (t, \Phi) \in C_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r))$, we have

(2.6)
$$G_{\Omega}^{0}(P,Q) \lesssim \frac{\varphi(\Theta)\varphi(\Phi)}{t^{n-2}} + \Pi_{\Omega}(P,Q),$$

where

$$\Pi_{\Omega}(P,Q) = \min\{\frac{1}{|P-Q|^{n-2}}, \frac{rt\varphi(\Theta)\varphi(\Phi)}{|P-Q|^n}\}.$$

Lemma 3. Let $G^a_{\Omega,R}(P,Q)$ be the Green *a*-function of the Schrödinger operator for $C_n(\Omega, (0, R))$, then

(2.7)
$$-\frac{\partial G^a_{\Omega,R}(P,Q)}{\partial R} \approx V(r) \{-W'(R)\}\varphi(\Theta)\varphi(\Phi)$$

for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (R, \Phi) \in S_n(\Omega; R)$.

Lemma 4. Let μ be a positive measure on $S_n(\Omega)$ such that there is a sequence of points $P_i = (r_i, \Theta_i) \in C_n(\Omega), r_i \to +\infty \ (i \to +\infty)$ satisfying $PI_{\Omega}^a \mu(P_i) < +\infty \ (i = 1, 2, ...)$. Then for a positive number l,

(2.8)
$$\int_{S_n(\Omega;(l,+\infty))} \frac{W(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) < +\infty$$

and

(2.9)
$$\lim_{R \to +\infty} \frac{W(R)}{V(R)} \int_{S_n(\Omega;(0,R))} \frac{V(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) = 0.$$

Proof. Take a positive number l satisfying $P_1 = (r_1, \Theta_1) \in C_n(\Omega)$, $r_1 \leq \frac{4}{5}l$. Then from (2.2), we have

$$V(r_1)\varphi(\Theta_1)\int_{S_n(\Omega;(l,+\infty))}\frac{W(t)}{t}\frac{\partial\varphi(\Phi)}{\partial n_{\Phi}}d\mu(Q) \lesssim \int_{S_n(\Omega)}PI^a_{\Omega}(P,Q)d\mu(Q) < +\infty,$$

which gives (2.8). For any positive number ϵ , from (2.8), we can take a number R_{ϵ} such that

$$\int_{S_n(\Omega;(R_{\epsilon},+\infty))} \frac{W(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) < \frac{\epsilon}{2}.$$

If we take a point $P_i = (r_i, \Theta_i) \in C_n(\Omega)$, $r_i \geq \frac{5}{4}R_{\epsilon}$, then we have from (2.1)

$$W(r_i)\varphi(\Theta_i)\int_{S_n(\Omega;(0,R_{\epsilon}])}\frac{V(t)}{t}\frac{\partial\varphi(\Phi)}{\partial n_{\Phi}}d\mu(Q)\lesssim\int_{S_n(\Omega)}PI^a_{\Omega}(P,Q)d\mu(Q)<+\infty.$$

If R $(R > R_{\epsilon})$ is sufficiently large, then

$$\frac{W(R)}{V(R)} \int_{S_{n}(\Omega;(0,R))} \frac{V(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) \\
\lesssim \frac{W(R)}{V(R)} \int_{S_{n}(\Omega;(0,R_{\epsilon}])} \frac{V(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) + \int_{S_{n}(\Omega;(R_{\epsilon},R))} \frac{W(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) \\
\lesssim \frac{W(R)}{V(R)} \int_{S_{n}(\Omega;(0,R_{\epsilon}])} \frac{V(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) + \int_{S_{n}(\Omega;(R_{\epsilon},+\infty))} \frac{W(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) \\
\lesssim \epsilon,$$

which gives (2.9).

Lemma 5. Let ν be a positive measure on $C_n(\Omega)$ such that there is a sequence of points $P_i = (r_i, \Theta_i) \in C_n(\Omega), r_i \to +\infty \ (i \to +\infty)$ satisfying $G^a_{\Omega}\nu(P_i) < +\infty$ $(i = 1, 2, \ldots; Q \in C_n(\Omega))$. Then for a positive number l,

$$\int_{C_n(\Omega;(l,+\infty))} W(t)\varphi(\Phi)d\nu(Q) < +\infty$$

and

$$\lim_{R \to +\infty} \frac{W(R)}{V(R)} \int_{C_n(\Omega;(0,R))} V(t)\varphi(\Phi) d\nu(Q) = 0.$$

Proof. In order to prove Lemma 5, We have only to use (2.4) and (2.5) instead of (2.1) and (2.2) respectively in the proof of Lemma 4.

Lemma 6. Let $\epsilon > 0$, $\beta \ge 0$ and λ' be any positive measure on \mathbb{R}^n having finite total mass. Then $E(\epsilon; \lambda', \beta)$ has a covering $\{r_j, R_j\}$ (j = 1, 2, ...) satisfying

$$\sum_{j=1}^{\infty} (\frac{r_j}{R_j})^{2-n+\beta} V(\frac{R_j}{r_j}) W(\frac{R_j}{r_j}) < \infty.$$

Proof. Set

$$E_j(\epsilon; \lambda', \beta) = \{ P = (r, \Theta) \in E(\epsilon; \lambda', \beta) : 2^j \le r < 2^{j+1} \} \ (j = 2, 3, 4, \ldots).$$

If $P = (r, \Theta) \in E_j(\epsilon; \lambda', \beta)$, then there exists a positive number $\rho(P)$ such that

$$(\frac{\rho(P)}{r})^{2-n+\beta}V(\frac{r}{\rho(P)})W(\frac{r}{\rho(P)}) \approx (\frac{\rho(P)}{r})^{\beta} \leq \frac{\lambda'(B(P,\rho(P)))}{\epsilon}.$$

Since $E_j(\epsilon; \lambda', \beta)$ can be covered by the union of a family of balls $\{B(P_{j,i}, \rho_{j,i}) : P_{j,i} \in E_k(\epsilon; \lambda', \beta)\}$ $(\rho_{j,i} = \rho(P_{j,i}))$. By the Vitali Lemma (see [18]), there exists $\Lambda_j \subset E_j(\epsilon; \lambda', \beta)$, which is at most countable, such that $\{B(P_{j,i}, \rho_{j,i}) : P_{j,i} \in \Lambda_j\}$ are disjoint and $E_j(\epsilon; \lambda', \beta) \subset \bigcup_{P_{j,i} \in \Lambda_j} B(P_{j,i}, 5\rho_{j,i})$.

So

$$\cup_{j=2}^{\infty} E_j(\epsilon; \lambda', \beta) \subset \cup_{j=2}^{\infty} \cup_{P_{j,i} \in \Lambda_j} B(P_{j,i}, 5\rho_{j,i}).$$

On the other hand, note that $\cup_{P_{j,i} \in \Lambda_j} B(P_{j,i}, \rho_{j,i}) \subset \{P = (r, \Theta) : 2^{j-1} \leq r < 2^{j+2}\}$, so that

$$\sum_{P_{j,i}\in\Lambda_{j}} \left(\frac{5\rho_{j,i}}{|P_{j,i}|}\right)^{2-n+\beta} V\left(\frac{|P_{j,i}|}{5\rho_{j,i}}\right) W\left(\frac{|P_{j,i}|}{5\rho_{j,i}}\right) \approx \sum_{P_{j,i}\in\Lambda_{j}} \left(\frac{5\rho_{j,i}}{|P_{j,i}|}\right)^{\beta}$$
$$\leq 5^{\beta} \sum_{P_{j,i}\in\Lambda_{j}} \frac{\lambda'(B(P_{j,i},\rho_{j,i}))}{\epsilon}$$
$$\leq \frac{5^{\beta}}{\epsilon} \lambda'(C_{n}(\Omega; [2^{j-1}, 2^{j+2}))).$$

Hence we obtain

$$\begin{split} \sum_{j=1}^{\infty} \sum_{P_{j,i} \in \Lambda_{j}} \left(\frac{\rho_{j,i}}{|P_{j,i}|}\right)^{2-n+\beta} V\left(\frac{|P_{j,i}|}{\rho_{j,i}}\right) W\left(\frac{|P_{j,i}|}{\rho_{j,i}}\right) &\approx \sum_{j=1}^{\infty} \sum_{P_{j,i} \in \Lambda_{j}} \left(\frac{\rho_{j,i}}{|P_{j,i}|}\right)^{\beta} \\ &\leq \sum_{j=1}^{\infty} \frac{\lambda'(C_{n}(\Omega; [2^{j-1}, 2^{j+2})))}{\epsilon} \\ &\leq \frac{3\lambda'(\mathbf{R}^{n})}{\epsilon}. \end{split}$$

Since $E(\epsilon; \lambda', \beta) \cap \{P = (r, \Theta) \in \mathbf{R}^n; r \geq 4\} = \bigcup_{j=2}^{\infty} E_j(\epsilon; \lambda', \beta)$. Then $E(\epsilon; \lambda', \beta)$ is finally covered by a sequence of balls $\{B(P_{j,i}, \rho_{j,i}), B(P_1, 6)\}$ $(j = 2, 3, \ldots; i = 1, 2, \ldots)$ satisfying

$$\sum_{j,i} (\frac{\rho_{j,i}}{|P_{j,i}|})^{2-n+\beta} V(\frac{|P_{j,i}|}{\rho_{j,i}}) W(\frac{|P_{j,i}|}{\rho_{j,i}}) \approx \sum_{j,i} (\frac{\rho_{j,i}}{|P_{j,i}|})^{\beta} \le \frac{3\lambda'(\mathbf{R}^n)}{\epsilon} + 6^{\beta} < +\infty,$$

where $B(P_1, 6)$ $(P_1 = (1, 0, ..., 0) \in \mathbf{R}^n)$ is the ball which covers $\{P = (r, \Theta) \in \mathbf{R}^n; r < 4\}$.

3. Proof of the Theorem 1

Take any point $P = (r, \Theta) \in C_n(\Omega; (R, +\infty)) - E(\epsilon; \mu', n-\alpha)$, where $R(\leq \frac{4}{5}r)$ is a sufficiently large number and ϵ is a sufficiently small positive number.

Write

$$PI_{\Omega}^{a}\mu(P) = B_{1}(P) + B_{2}(P) + B_{3}(P),$$

where

$$B_{1}(P) = \frac{1}{c_{n}} \int_{S_{n}(\Omega;(0,\frac{4}{5}r])} PI_{\Omega}^{a}(P,Q)d\mu(Q),$$

$$B_{2}(P) = \frac{1}{c_{n}} \int_{S_{n}(\Omega;(\frac{4}{5}r,\frac{5}{4}r))} PI_{\Omega}^{a}(P,Q)d\mu(Q)$$

and

$$B_3(P) = \frac{1}{c_n} \int_{S_n(\Omega; [\frac{5}{4}r, \infty))} PI^a_{\Omega}(P, Q) d\mu(Q).$$

The relation $G^a_{\Omega}(P,Q) \leq G^0_{\Omega}(P,Q)$ implies this inequality (see [1])

$$(3.1) PI^a_{\Omega}(P,Q) \le PI^0_{\Omega}(P,Q).$$

By (2.1), (2.2) and Lemma 4, we have the following growth estimates:

(3.2)
$$B_{1}(P) \lesssim V(r)\varphi(\Theta) \frac{W(\frac{4}{5}r)}{V(\frac{4}{5}r)} \int_{S_{n}(\Omega;(0,\frac{4}{5}r])} \frac{V(t)}{t} \frac{\partial\varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) \\ \lesssim \epsilon V(r)\varphi(\Theta).$$

(3.3)
$$B_{3}(P) \lesssim V(r)\varphi(\Theta) \int_{S_{n}(\Omega; [\frac{5}{4}r, \infty))} \frac{W(t)}{t} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} d\mu(Q) \\ \lesssim \epsilon V(r)\varphi(\Theta).$$

By (3.1) and (2.3), we write

$$B_2(P) \lesssim B_{21}(P) + B_{22}(P),$$

where

$$B_{21}(P) = \int_{S_n(\Omega;(\frac{4}{5}r,\frac{5}{4}r))} V(t)\varphi(\Theta)d\mu'(Q)$$

and

$$B_{22}(P) = \int_{S_n(\Omega;(\frac{4}{5}r,\frac{5}{4}r))} \frac{tr\varphi(\Theta)}{|P-Q|^n W(t)} d\mu'(Q).$$

We first have

(3.4)
$$B_{21}(P) \lesssim \epsilon V(r)\varphi(\Theta)$$

from Lemma 4.

Next, we shall estimate $B_{22}(P)$. Take a sufficiently small positive number d_2 such that $S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r)) \subset B(P, \frac{1}{2}r)$ for any $P = (r, \Theta) \in \Lambda(d_2)$, where $\Lambda(d_2) = \{P = (r, \Theta) \in C_n(\Omega); \text{ inf } |(1, \Theta) - (1, z)| < d_2, 0 < r < \infty\},\$

$$\Lambda(d_2) = \{ P = (r, \Theta) \in C_n(\Omega); \inf_{z \in \partial \Omega} | (1, \Theta) - (1, z) | < d_2, \ 0 < r < \infty \}$$

and divide $C_n(\Omega)$ into two sets $\Lambda(d_2)$ and $C_n(\Omega) - \Lambda(d_2)$.

If $P = (r, \Theta) \in C_n(\Omega) - \Lambda(d_2)$, then there exists a positive d'_2 such that $|P - Q| \ge d'_2 r$ for any $Q \in S_n(\Omega)$, and hence

$$B_{22}(P) \lesssim \epsilon V(r)\varphi(\Theta)$$

from Lemma 4.

We shall consider the case $P \in \Lambda(d_2)$. Now put

$$H_i(P) = \{ Q \in S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r)); \ 2^{i-1}\delta(P) \le |P - Q| < 2^i\delta(P) \}.$$

Since $S_n(\Omega) \cap \{Q \in \mathbf{R}^n : |P - Q| < \delta(P)\} = \emptyset$, we have

$$B_{22}(P) = \sum_{i=1}^{i(P)} \int_{H_i(P)} \frac{tr\varphi(\Theta)}{|P-Q|^n W(t)} d\mu'(Q),$$

where i(P) is a positive integer satisfying $2^{i(P)-1}\delta(P) \leq \frac{r}{2} < 2^{i(P)}\delta(P)$. By (1.1) we have $r\varphi(\Theta) \leq \delta(P)$ $(P = (r, \Theta) \in C_n(\Omega))$, and hence

$$\int_{H_i(P)} \frac{tr\varphi(\Theta)}{|P-Q|^n W(t)} d\mu'(Q) \lesssim \frac{r^{2-\alpha}}{W(r)} \varphi^{1-\alpha}(\Theta) \frac{\mu'(H_i(P))}{\{2^i \delta(P)\}^{n-\alpha}}$$

for $i = 0, 1, 2, \dots, i(P)$.

Since $P = (r, \Theta) \notin E(\epsilon; \mu', n - \alpha)$, we have

$$\frac{\mu'(H_i(P))}{\{2^{i\delta}(P)\}^{n-\alpha}} \lesssim \frac{\mu'(B(P,2^{i\delta}(P)))}{\{2^{i\delta}(P)\}^{n-\alpha}}$$
$$\lesssim M(P;\mu',n-\alpha) \leq \epsilon r^{\alpha-n} \ (i=0,1,2,\ldots,i(P)-1)$$

and

$$\frac{\mu'(H_{i(P)}(P))}{\{2^i\delta(P)\}^{n-\alpha}} \lesssim \frac{\mu'(B(P, \frac{r}{2}))}{(\frac{r}{2})^{n-\alpha}} \leq \epsilon r^{\alpha-n}.$$

So

(3.6)
$$B_{22}(P) \lesssim \epsilon V(r) \varphi^{1-\alpha}(\Theta).$$

Combining (3.2)-(3.6), we finally obtain that if L is sufficiently large and ϵ is a sufficiently small, then $PI_{\Omega}^{a}\mu(P) = o(V(r)\varphi^{1-\alpha}(\Theta))$ as $r \to \infty$, where $P = (r, \Theta) \in C_{n}(\Omega; (R, +\infty)) - E(\epsilon; \mu', n - \alpha)$. Finally, there exists an additional finite ball B_{0} covering $C_{n}(\Omega; (0, R])$, which together with Lemma 6, gives the conclusion of Theorem 1.

4. PROOF OF THE THEOREM 2

For any fixed $P = (r, \Theta) \in C_n(\Omega)$, take a number R satisfying $R > \max(1, \frac{5}{4}r)$. By (1.7) and (2.2), we have

$$\frac{1}{c_n} \int_{S_n(\Omega;(R,+\infty))} PI^a_{\Omega}(P,Q) |g(Q)| d\sigma_Q$$

$$\lesssim V(r)\varphi(\Theta) \int_R^\infty t^{-1} V^{-1}(t) \left(\int_{\partial\Omega} |g(t,\Phi)| d_{\sigma_\Phi} \right) dt < \infty.$$

Thus $PI_{\Omega}^{a}[g](P)$ is finite for any $P \in C_{n}(\Omega)$. Since $PI_{\Omega}^{a}(P,Q)$ is an *a*-harmonic function of $P \in C_{n}(\Omega)$ for any $Q \in S_{n}(\Omega)$, $PI_{\Omega}^{a}[g](P) \in H(a)$.

Now we study the boundary behavior of $PI_{\Omega}^{a}[g](P)$. Let $Q' = (t', \Phi') \in \partial C_{n}(\Omega)$ be any fixed point and L be any positive number such that $L > \max\{t' + 1, \frac{4}{5}R\}$.

Set $\chi_{S(L)}$ is the characteristic function of $S(L) = \{Q = (t, \Phi) \in \partial C_n(\Omega), t \leq L\}$ and write

$$PI^a_{\Omega}[g](P) = PI^a_{\Omega,1}[g](P) + PI^a_{\Omega,2}[g](P),$$

where

$$PI_{\Omega,1}^{a}[g](P) = \frac{1}{c_n} \int_{S_n(\Omega;(0,\frac{5}{4}L])} PI_{\Omega}^{a}(P,Q)g(Q)d\sigma_Q$$

and

$$PI^a_{\Omega,2}[g](P) = \frac{1}{c_n} \int_{S_n(\Omega; (\frac{5}{4}L,\infty))} P^a_{\Omega}(P,Q)g(Q) d\sigma_Q.$$

Notice that $PI_{\Omega,1}^{a}[g](P)$ is the Poisson *a*-integral of $g(Q)\chi_{S(\frac{5}{4}L)}$, we have

$$\lim_{P \to Q', P \in C_n(\Omega)} PI^a_{\Omega,1}[g](P) = g(Q').$$

Since $\lim_{\Theta \to \Phi'} \varphi(\Theta) = 0$, $PI^a_{\Omega,2}[g](P) = O(V(r)\varphi(\Theta))$ and therefore tends to zero. So the function $PI^a_{\Omega}[g](P)$ can be continuously extended to $\overline{C_n(\Omega)}$ such that

$$\lim_{P \to Q', P \in C_n(\Omega)} PI^a_{\Omega}[g](P) = g(Q')$$

for any $Q' = (t', \Phi') \in \partial C_n(\Omega)$ from the arbitrariness of L. Further, (1.8) is the conclusion of Theorem 1. Thus we complete the proof of Theorem 2.

5. PROOF OF THE THEOREM 3

For any point $P = (r, \Theta) \in C_n(\Omega; (R, +\infty)) - E(\epsilon; \nu', n-\alpha)$, where $R(\leq \frac{4}{5}r)$ is a sufficiently large number and ϵ is a sufficiently small positive number. Write

$$G_{\Omega}^{a}\nu(P) = U_{1}(P) + U_{2}(P) + U_{3}(P),$$

where

$$U_1(P) = \int_{C_n(\Omega;(0,\frac{4}{5}r])} G^a_{\Omega}(P,Q) d\nu(Q),$$
$$U_2(P) = \int_{C_n(\Omega;(\frac{4}{5}r,\frac{5}{4}r))} G^a_{\Omega}(P,Q) d\nu(Q)$$

and

$$U_3(P) = \int_{C_n(\Omega; [\frac{5}{4}r, \infty))} G^a_{\Omega}(P, Q) d\nu(Q).$$

If we use (2.4), (2.5) and Lemma 5 in place of (2.1), (2.2) and Lemma 2, we obtain the following growth estimates in the completely paralleled way to the proof of Theorem 1.

(5.1)
$$U_1(P) \lesssim \epsilon V(r)\varphi(\Theta).$$

 $U_3(P) \lesssim \epsilon V(r)\varphi(\Theta).$ (5.2)

By (2.6) and (3.1), we have

$$U_2(P) \le U_{21}(P) + U_{22}(P),$$

where

$$U_{21}(P) = \varphi(\Theta) \int_{C_n(\Omega;(\frac{4}{5}r, \frac{5}{4}r))} V(t) d\nu'(Q) \text{ and}$$
$$U_{22}(P) = \int_{C_n(\Omega;(\frac{4}{5}r, \frac{5}{4}r))} \Pi_{\Omega}(P, Q) d\nu(Q).$$

Then by Lemma 5, we immediately get

(5.3)
$$U_{21}(P) \lesssim \epsilon V(r)\varphi(\Theta).$$

To estimate $U_{22}(P)$, take a sufficiently small positive number c_2 independent of P such that

(5.4)
$$\Lambda(P) = \{(t, \Phi) \in C_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r)); \ |(1, \Phi) - (1, \Theta)| < c_2\} \subset B(P, \frac{r}{2})$$

and divide $C_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r))$ into two sets $\Lambda(P)$ and $\Lambda'(P)$, where $\Lambda'(P) = C_n(\Omega;$ $(\frac{4}{5}r,\frac{5}{4}r)) - \Lambda(P).$ Write

$$U_{22}(P) = U_{22}^{(1)}(P) + U_{22}^{(2)}(P),$$

where

$$U_{22}^{(1)}(P) = \int_{\Lambda(P)} \Pi_{\Omega}(P,Q) d\nu(Q) \text{ and } U_{22}^{(2)}(P) = \int_{\Lambda'(P)} \Pi_{\Omega}(P,Q) d\nu(Q).$$

There exists a positive c_2' such that $|P-Q| \geq c_2'r$ for any $Q \in \Lambda'(P),$ and hence

(5.5)

$$U_{22}^{(2)}(P) \lesssim \int_{C_n(\Omega;(\frac{4}{5}r,\frac{5}{4}r))} \frac{rt\varphi(\Theta)\varphi(\Phi)}{|P-Q|^n} d\nu(Q)$$

$$\lesssim V(r)\varphi(\Theta) \int_{C_n(\Omega;(\frac{4}{5}r,\infty))} d\nu'(Q)$$

$$\lesssim \epsilon V(r)\varphi(\Theta)$$

from Lemma 5.

Now we estimate $U_{22}^{(1)}(P)$. Set

$$I_i(P) = \{ Q \in \Lambda(P); \ 2^{i-1}\delta(P) \le |P-Q| < 2^i\delta(P) \},\$$

where $i = 0, \pm 1, \pm 2, ...$

Since $P = (r, \Theta) \notin E(\epsilon; \nu', n - \alpha)$ and hence $\nu'(\{P\}) = 0$ from Remark 5, we can divide $U_{22}^{(1)}(P)$ into $U_{22}^{(1)}(P) = U_{22}^{(11)}(P) + U_{22}^{(12)}(P)$, where

$$U_{22}^{(11)}(P) = \sum_{i=-\infty}^{-1} \int_{I_i(P)} \Pi_{\Omega}(P,Q) d\nu(Q) \text{ and } U_{22}^{(12)}(P) = \sum_{i=0}^{\infty} \int_{I_i(P)} \Pi_{\Omega}(P,Q) d\nu(Q) d$$

Since $\delta(Q) + |P - Q| \ge \delta(P)$, we have $tf_{\Omega}(\Phi) \gtrsim \delta(Q) \gtrsim 2^{-1}\delta(P)$ for any $Q = (t, \Phi) \in I_i(p)$ (i = -1, -2, ...). Then by (1.1)

$$\begin{split} \int_{I_i(P)} \Pi_{\Omega}(P,Q) d\nu(Q) &\lesssim \int_{I_i(P)} \frac{1}{|P-Q|^{n-2}W(t)\varphi(\Phi)} d\nu'(Q) \\ &\lesssim \frac{r^{2-\alpha}}{W(r)} \varphi^{1-\alpha}(\Theta) \frac{\nu'(B(P,2^i\delta(P)))}{\{2^i\delta(P)\}^{n-\alpha}} \\ &\lesssim V(r)\varphi^{1-\alpha}(\Theta)r^{n-\alpha}M(P;\nu',n-\alpha) \ (i=-1,-2,\ldots). \end{split}$$

Since $P = (r, \Theta) \notin E(\epsilon; \nu', n - \alpha)$, we obtain

(5.6)
$$U_{22}^{(11)}(P) \lesssim \epsilon V(r)\varphi^{1-\alpha}(\Theta)$$

By (5.4), we can take a positive integer i(P) satisfying $2^{i(P)-1}\delta(P) \leq \frac{r}{2} < 2^{i(P)}\delta(P)$ and $I_i(P) = \emptyset$ (i = i(P) + 1, i(P) + 2, ...). Since $rf_{\Omega}(\Theta) \leq \delta(P)$ $(P = (r, \Theta) \in C_n(\Omega))$, we have

$$\begin{split} \int_{I_i(P)} \Pi_{\Omega}(P,Q) d\nu'(Q) &\lesssim r\varphi(\Theta) \int_{I_i(P)} \frac{t}{|P-Q|^n W(t)} d\nu'(Q) \\ &\lesssim V(r) \varphi^{1-\alpha}(\Theta) r^{n-\alpha} \frac{\nu'(I_i(P))}{\{2^i \delta(P)\}^{n-\alpha}} \ (i=0,1,2,\ldots,i(P)). \end{split}$$

Since $P = (r, \Theta) \notin E(\epsilon; \nu', n - \alpha)$, we have

$$\frac{\nu'(I_i(P))}{\{2^{i}\delta(P)\}^{n-\alpha}} \lesssim \frac{\nu'(B(P,2^{i}\delta(P)))}{\{2^{i}\delta(P)\}^{n-\alpha}} \lesssim M(P;\nu',n-\alpha) < \epsilon r^{\alpha-n} \ (i=0,1,2,\ldots,i(P)-1)$$

and

$$\frac{\nu'(I_{i(P)}(P))}{\{2^i\delta(P)\}^{n-\alpha}} \lesssim \frac{\nu'(\Lambda(P))}{(\frac{r}{2})^{n-\alpha}} < \epsilon r^{\alpha-n}.$$

Hence we obtain

(5.7)
$$U_{22}^{(12)}(P) \lesssim \epsilon V(r)\varphi^{1-\alpha}(\Theta).$$

Combining (5.1)-(5.3) and (5.5)-(5.7), we finally obtain that if R is sufficiently large and ϵ is a sufficiently small, then $G^a_{\Omega}\nu(P) = o(V(r)\varphi^{1-\alpha}(\Theta))$ as $r \to \infty$, where $P = (r, \Theta) \in C_n(\Omega; (R, +\infty)) - E(\epsilon; \nu', n - \alpha)$. Finally, there exists an additional finite ball B_0 covering $C_n(\Omega; (0, R])$, which together with Lemma 6, gives the conclusion of Theorem 3.

6. PROOF OF THE THEOREM 4

For the *a*-harmonic function $\mathcal{U}_u V(r)\varphi(\Theta)$ on $C_n(\Omega)$, define

$$w(P) = u(P) - \mathcal{U}_u V(r)\varphi(\Theta).$$

Then $0 \le w(P) \in SpH(a)$ and

$$(6.1) \mathcal{U}_w = 0.$$

Apply the Riesz decomposition theorem (see [11]) to w(P) on $C_n(\Omega; (0, R))$, we obtain

$$\begin{split} w(P) &= \int_{S_n(\Omega;(0,R))} \frac{\partial G^a_{\Omega,R}(P,Q)}{\partial n_Q} d\mu_0 \\ &- \int_{S_n(\Omega;R)} \frac{\partial G^a_{\Omega,R}(P,Q)}{\partial R} dS_R + \int_{C_n(\Omega;(0,R))} G^a_{\Omega,R}(P,Q) d\nu_0 \\ &= w_1(P) + w_2(P) + w_3(P), \end{split}$$

where $d\mu_0$ is a positive measure on $S_n(\Omega)$, dS_R is the (n-1)-dimensional volume elements induced by the Euclidean metric on S_R , $d\nu_0$ is the Riesz measure of w(P).

First, we consider the case where $w(P) < +\infty$. Since $G^a_{\Omega,R}(P,Q) \to G^a_{\Omega}(P,Q)$ as $R \to \infty$, we have

$$w_1(P) \to c_n P I^a_\Omega \mu_0(P) < +\infty$$

and

$$w_3(P) \to G^a_\Omega \nu_0(P) < +\infty,$$

as $R \to \infty$.

By (6.1), we know that there exists a sequence of points $P_i = (r_i, \Theta_i) \in C_n(\Omega), r_i \to +\infty \ (i \to +\infty)$ such that

(6.2)
$$w(P_i) \lesssim V(r_i)\epsilon_i,$$

where $\epsilon_i \to 0$ as $i \to +\infty$.

Take $R_i = 2r_i$, then by Lemma 3 we have

$$w(P_i) \gtrsim -\int_{S_n(\Omega;R_i)} \frac{\partial G^a_{\Omega,R_i}((r_i,\Theta_i),(R_i,\Phi_i))}{\partial R} dS_{R_i}$$

$$\gtrsim V(r_i)\varphi(\Theta_i) \int_{S_n(\Omega;R_i)} \{-W'(R_i)\}\varphi(\Phi_i) dS_{R_i}$$

which, together with (6.1), gives that

(6.3)
$$I(R_i) \lesssim \epsilon_i,$$

where

$$I(R_i) = \int_{S_n(\Omega;R_i)} \{-W'(R_i)\}\varphi(\Phi_i)dS_{R_i}.$$

By virtue of (2.7) and (6.3), we obtain

(6.4)
$$w_2(P_i) \lesssim V(r_i)\varphi(\Theta_i)I(R_i) \lesssim V(r_i)\epsilon_i,$$

which converges to 0 as $r_i \to +\infty$.

Passing the limit as $i \to +\infty$, we have

(6.5)
$$w(P) = c_n P I^a_\Omega \mu_0(P) + G^a_\Omega \nu_0(P)$$

for all $P \in C_n(\Omega)$.

Secondly, we consider the case where $w(P) = +\infty$. In this case, the sum of $w_1(P)$ and $w_3(P)$ is infinite. We know that $w_2(P)$ is bounded by (6.4). As $R \to +\infty$, w(P) remains infinite. So (6.5) is proved under the condition $w(P) = +\infty$.

It is easy to see that the quantities $d\mu_0$ and $d\nu_0$ are same for the functions w(P) and u(P) respectively. So we denote them by $d\mu$ and $d\nu$ respectively for simplicity. Then we complete the proof of Theorem 4.

ACKNOWLEDGMENTS

The authors express their deep gratitude to Professor A. I. Kheyfits for his encouragement and many valuable suggestions concerning the preparation of the final version of this paper.

References

- 1. A. Ancona, First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, J. d'Anal. Math., 72 (1997), 45-92.
- 2. V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an *m*-dimensional cone, *Amer. Math. Soc. Translation*, **80** (1969), 119-138.
- 3. E. F. Beckenbach, Generalized convex functions, *Bull. Amer. Math. Soc.*, **43** (1937), 363-371.
- 4. L. Bragg and J. Dettman, Function theories for the Yukawa and Helmholtz equations, *Rocky Mountain J. Math.*, **25** (1995), 887-917.
- 5. M. Bramanti, Potential theory for stationary Schrödinger operators: a survey of results obtained with non-probabilistic methods, *Le Math.*, **47** (1992), 25-61.
- 6. R. Courant and D. Hilbert, *Methods of mathematical physics*, Vol. 1, Interscience Publishers, New York, 1953.
- 7. M. Essén, H. L. Jackson and P. J. Rippon, On minimally thin and rarefied sets in \mathbb{R}^p , $p \ge 2$, *Hiroshima Math. J.*, **15** (1985), 393-410.
- 8. D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, Springer Verlag, Berlin, 1977.
- 9. P. Hartman, Ordinary differential equations, Wiley, New York, London, Sydney, 1964.
- A. I. Kheyfits, The Riesz-Herglotz formula for generalized harmonic functions and their boundary behavior (Russian), *Dokl. Akad. Nauk SSSR*, **321** (1991), 263-265; translation in *Soviet Math. Dokl.*, **44** (1992), 688-691.
- 11. B. Ya. Levin and A. I. Kheyfits, *Asymptotic behavior of subfunctions of the stationary Schrödinger operator*, Preprint, http://arXiv/abs/math/021132896, 2002, p. 96.
- 12. C. Miranda, Partial differential equations of elliptic type, Springer, Berlin, 1970.
- 13. L. Nirenberg, Existence theorems in partial differential equations, NYU Notes, 1954.
- 14. M. Reed and B. Simon, *Methods of modern mathematical physics*, Vol. 3, Acad Press, London-New York-San Francisco, 1970.
- 15. A. Russakovskii, On asymptotic behavior of subfunctions of finite lower order of the Schrödinger operator, *Sib. Math. J.*, **30** (1989), 160-170.
- 16. D. Siegel and E. O. Talvila, Uniqueness for the *n*-dimensional half space Dirichlet problem, *Pacific J. Math.*, **175** (1996), 571-587.
- 17. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.
- E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970.

Integral Representations and Growth Properties for a Class of Superfunctions in a Cone 2233

19. G. M. Verzhbinskii and V. G. Maz'ya, Asymptotic behavior of solutions of elliptic equations of the second order close to a boundary. I, *Sibirsk. Mat. J.*, **12** (1971), 874-899.

Lei Qiao Department of Mathematics and Information Science Henan University of Economics and Law Zhengzhou 450002 P. R. China E-mail: qiaocqu@163.com

Guan-Tie Deng School of Mathematical Science Beijing Normal University Laboratory of Mathematics and Complex Systems MOE, Beijing 100875 P. R. China E-mail: denggt@bnu.edu.cn