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NONLINEAR PROJECTIONS AND GENERALIZED CONDITIONAL
EXPECTATIONS IN BANACH SPACES

Takashi Honda and Wataru Takahashi

Abstract. Let E be a smooth, strictly convex and reflexive Banach space, let
C∗ be a closed linear subspace of the dual space E∗ of E and let ΠC∗ be the
generalized projection of E∗ onto C∗. In this paper, we study the mapping
R defined by R = J−1ΠC∗J , where J is the normalized duality mapping
from E into E∗. We obtain some results which are related to conditional
expectations and martingales in the probability theory.

1. INTRODUCTION

Let E be a smooth Banach space and let E∗ be the dual space of E . The
function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for each x, y ∈ E , where J is the normalized duality mapping from E into E∗. Let
C be a nonempty closed convex subset of E and let T be a mapping from C into
itself. Then, T is called generalized nonexpansive if the set F (T ) of fixed points
of T is nonempty and

φ(Tx, y) ≤ φ(x, y)

for all x ∈ C and y ∈ F (T ); see Ibaraki and Takahashi [16]. Such nonlinear
operators are connected with resolvents of maximal monotone operators in Banach
spaces. When E is a smooth, strictly convex and reflexive Banach space and C is a
nonempty closed convex subset of E , Alber [2] also defined a nonlinear projection
ΠC of E onto C called the generalized projection. Motivated by Alber [2] and
Ibaraki and Takahashi [16], Kohsaka and Takahashi [27] proved the following
result: Let E be a smooth, strictly convex and reflexive Banach space, let C∗ be a
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nonempty closed convex subset of E∗ and let ΠC∗ be the generalized projection of
E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is a sunny generalized
nonexpansive retraction of E onto J−1C∗. Such retractions are related to conditional
expectations in the probability theory.

In this paper, motivated by Kohsaka and Takahashi [27], we study such retrac-
tions R = J−1ΠC∗J when C∗ is a closed linear subspace of the dual space E ∗ of
E . We first obtain some fundamental properties for such nonlinear retractions R.
Next, we study a relation between such a nonlinear retraction R and the metric pro-
jection. Finally, we obtain convergence theorems which are related to martingales
in the probability theory.

2. PRELIMINARIES

Throughout this paper, we assume that a Banach space E with the dual space E ∗

is real. We denote by N and R the sets of all positive integers and all real numbers,
respectively. We also denote by 〈x, x∗〉 the dual pair of x ∈ E and x∗ ∈ E∗.
A Banach space E is said to be strictly convex if ‖x + y‖ < 2 for x, y ∈ E
with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and x �= y. A Banach space E is said to be uniformly
convex if for any sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖xn + yn‖ = 2, limn→∞ ‖xn − yn‖ = 0 holds. A Banach space E is said
to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ E with ‖x‖ = ‖y‖ = 1. Moreover, E is said to have a Fréchet
differentiable norm if for each x ∈ E with ‖x‖ = 1, this limit is attained uniformly
for y ∈ E with ‖y‖ = 1. E is said to have a uniformly Gâteaux differentiable norm
if for each y ∈ E with ‖y‖ = 1, this limit is attained uniformly for x ∈ E with
‖x‖ = 1. Let E be a Banach space. With each x ∈ E , we associate the set

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
The multivalued operator J : E → E∗ is called the normalized duality mapping of
E . From the Hahn-Banach theorem, Jx �= ∅ for each x ∈ E . We know that E is
smooth if and only if J is single-valued. If E is strictly convex, then J is one-to-
one, i.e., x �= y ⇒ J(x) ∩ J(y) = ∅. If E is reflexive, then J is a mapping of E

onto E∗. So, if E is reflexive, strictly convex and smooth, then J is single-valued,
one-to-one and onto. In this case, the normalized duality mapping J∗ from E∗ into
E is the inverse of J , that is, J∗ = J−1. If E has a Fréchet differentiable norm,
then J is norm to norm continuous. If E has a uniformly Gâteaux differentiable
norm, then J is norm to weak∗ uniformly continuous on each bounded subset of
E; see [32] for more details. Let E be a smooth Banach space and let J be the
normalized duality mapping of E . We define the function φ : E × E → R by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2



Nonlinear Projections and Generalized Conditional Expectations in Banach Spaces 2171

for all x, y ∈ E . We also define the function φ∗ : E∗ × E∗ → R by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈x∗, J−1y∗〉 + ‖y∗‖2

for all x∗, y∗ ∈ E∗. It is easy to see that (‖x‖ − ‖y‖)2 ≤ φ(x, y) for all x, y ∈ E .
Thus, in particular, φ(x, y) ≥ 0 for all x, y ∈ E . We also know the following:

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉(2.1)

for all x, y, z ∈ E . It is easy to see that

φ(x, y) = φ∗(Jy, Jx)(2.2)

for all x, y ∈ E . If E is additionally assumed to be strictly convex, then

φ(x, y) = 0 ⇔ x = y.(2.3)

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E . For an arbitrary point x of E , the set

{z ∈ C : φ(z, x) = min
y∈C

φ(y, x)}

is always nonempty and a singletone. Let us define the mapping ΠC of E onto C

by z = ΠCx for every x ∈ E , i.e.,

φ(ΠCx, x) = min
y∈C

φ(y, x)

for every x ∈ E . Such ΠC is called the generalized projection of E onto C; see
Alber [2]. The following lemma is due to Alber [2] and Kamimura and Takahashi
[24].

Lemma 2.1. ([2, 24]). Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E and let (x, z) ∈ E × C. Then, the
following hold:

(a) z = ΠCx if and only if 〈y − z, Jx − Jz〉 ≤ 0 for all y ∈ C;
(b) φ(z, ΠCx) + φ(ΠCx, x) ≤ φ(z, x).

From this lemma, we can prove the following lemma.

Lemma 2.2. Let M be a closed linear subspace of a smooth, strictly convex
and reflexive Banach space E and let (x, z) ∈ E × M . Then, z = ΠMx if and
only if

〈J(x)− J(z), m〉 = 0 for any m ∈ M.

The following lemmas are due to Kamimura and Takahashi [24] and Aoyama,
Kohsaka and Takahashi [1].
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Lemma 2.3. ([24]). Let E be a smooth and uniformly convex Banach space
and let {xn} and {yn} be sequences of E such that {xn} or {yn} is bounded.
Then, limn φ(xn, yn) = 0 implies that limn ‖xn − yn‖ = 0.

Lemma 2.4. ([1]). Let E be a smooth and uniformly convex Banach space, let
{sn} be a convergent sequence of real numbers, and let {xn} be a sequence of E
such that

φ(xn, xm) ≤ |sn − sm|
for all m, n ∈ N. Then {xn} converges strongly.

Let D be a nonempty closed convex subset of a smooth Banach space E , let
T be a mapping from D into itself and let F (T ) be the set of fixed points of
T . Then, T is said to be generalized nonexpansive [16] if F (T ) is nonempty and
φ(Tx, u) ≤ φ(x, u) for all x ∈ D and u ∈ F (T ). Let C be a nonempty subset
of E and let R be a mapping from E onto C. Then R is said to be a retraction
if R2 = R. It is known that if R is a retraction from E onto C, then F (R) = C.
The mapping R is also said to be sunny if R(Rx + t(x − Rx)) = Rx whenever
x ∈ E and t ≥ 0. A nonempty subset C of a smooth Banach space E is said to be
a generalized nonexpansive retract (resp. sunny generalized nonexpansive retract)
of E if there exists a generalized nonexpansive retraction (resp. sunny generalized
nonexpansive retraction) R from E onto C. The following lemmas were proved by
Ibaraki and Takahashi [16].

Lemma 2.5. ([16]). Let C be a nonempty closed subset of a smooth and
strictly convex Banach space E and let R be a retraction from E onto C. Then,
the following are equivalent:

(a) R is sunny and generalized nonexpansive;
(b) 〈x− Rx, Jy − JRx〉 ≤ 0 for all (x, y) ∈ E × C.

Lemma 2.6. ([16]). Let C be a nonempty closed sunny and generalized nonex-
pansive retract of a smooth and strictly convex Banach space E . Then, the sunny
generalized nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.7. ([16]). Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C and let (x, z) ∈ E × C. Then, the following hold:

(a) z = Rx if and only if 〈x − z, Jy − Jz〉 ≤ 0 for all y ∈ C;
(b) φ(Rx, z) + φ(x, Rx) ≤ φ(x, z).

Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E . For an arbitrary point x of E , the set

{z ∈ C : ‖z − x‖ = min
y∈C

‖y − x‖}
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is always nonempty and a singletone. Let us define the mapping PC of E onto C

by z = PCx for every x ∈ E , i.e.,

‖PCx − x‖ = min
y∈C

‖y − x‖

for every x ∈ E . Such PC is called the metric projection of E onto C; see [32].
The following lemma is in [32].

Lemma 2.8. ([32]). Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E and let (x, z) ∈ E × C. Then,
z = PCx if and only if 〈y − z, J(x − z)〉 ≤ 0 for all y ∈ C.

An operator A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax �= ∅} and range
R(A) = ∪{Ax : x ∈ D(A)} is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0
for any (x, x∗), (y, y∗) ∈ A. An operator A is said to be strictly monotone if
〈x − y, x∗ − y∗〉 > 0 for any (x, x∗), (y, y∗) ∈ A (x �= y). A monotone operator
A is said to be maximal if its graph G(A) = {(x, x∗) : x∗ ∈ Ax} is not properly
contained in the graph of any other monotone operator. If A is maximal monotone,
then the set A−10 = {u ∈ E : 0 ∈ Au} is closed and convex (see [33] for more
details). Let J be the normalized duality mapping from E into E∗. Then, J is
monotone. If E is strictly convex, then J is one to one and strictly monotone. The
following theorem is well-known; for instance, see [32].

Theorem 2.1. Let E be a reflexive, strictly convex and smooth Banach space
and let A : E → 2E∗ be a monotone operator. Then A is maximal if and only if
R(J + rA) = E∗ for all r > 0. Further, if R(J +A) = E ∗, then R(J + rA) = E∗

for all r > 0.

3. GENERALIZED CONDITIONAL EXPECTATIONS

In this section, we discuss sunny generalized nonexpansive retractions which
are connected with conditional expectations in the probability theory. We start with
two theorems proved by Kohsaka and Takahashi [27].

Theorem 3.1. ([27]). Let E be a smooth, strictly convex and reflexive Banach
space, let C∗ be a nonempty closed convex subset of E ∗ and let ΠC∗ be the
generalized projection of E ∗ onto C∗. Then the mapping R defined by R =
J−1ΠC∗J is a sunny generalized nonexpansive retraction of E onto J −1C∗.

Theorem 3.2. ([27]). Let E be a smooth, reflexive and strictly convex Banach
space and let D be a nonempty subset of E . Then, the following conditions are
equivalent.

(1) D is a sunny generalized nonexpansive retract of E;
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(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Motivated by these theorems, we define the following nonlinear operator: Let E
be a reflexive, strictly convex and smooth Banach space and let J be the normalized
duality mapping from E onto E∗. Let Y ∗ be a closed linear subspace of the dual
space E∗ of E . Then, the generalized conditional expectation EY ∗ with respect to
Y ∗ is defined as follows:

EY ∗ := J−1ΠY ∗J,

where ΠY ∗ is the generalized projection from E∗ onto Y ∗. Such generalized condi-
tional expectations are deeply connected with conditional expectations in the prob-
ability theory; see [14].

Lemma 3.1. Let E be a reflexive, strictly convex and smooth Banach space.
Let Y be a closed linear subspace of E and let ΠY be the generalized projection
of E onto Y . Then, the following hold.

(1) ‖ΠY x‖ ≤ ‖x‖ for all x ∈ E;
(2) ΠY αx = αΠY x for any x ∈ E and α ∈ R.

Further, if X is a closed linear subspace of E such that X ⊂ Y , then

ΠXΠY = ΠX .

Proof. First, consider the function φ : E × E → R defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 − ‖y‖2

for x, y ∈ E . From Lemma 2.1, we have that for any x ∈ E and y ∈ Y ,

0 ≤ φ(y, x)− φ(y, ΠY x)

= ‖y‖2 − 2〈y, Jx〉+ ‖x‖2 − ‖y‖2 + 2〈y, JΠY x〉 − ‖ΠY x‖2

= 2〈y, JΠY x − Jx〉 + ‖x‖2 − ‖ΠY x‖2.

Putting y = 0 ∈ Y , we obtain 0 ≤ ‖x‖2−‖ΠY x‖2 and hence ‖ΠY x‖ ≤ ‖x‖. This
implies (1). Let us prove (2). It is obvious that ΠY 0 = 0. From Lemma 2.2, we
have that for any x ∈ E and α ∈ R with α �= 0,

y = ΠY x ⇔ 〈Jx − Jy, m〉 = 0, ∀m ∈ Y

⇔ α〈Jx − Jy, m〉 = 0, ∀m ∈ Y

⇔ 〈αJx − αJy, m〉 = 0, ∀m ∈ Y

⇔ 〈Jαx − Jαy, m〉 = 0, ∀m ∈ Y.
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Since Y is a closed linear subspace of E , we have αy ∈ Y . Then we obtain
αy = ΠY αx and hence αΠY x = ΠY αx. This implies (2). Let X be a closed
linear subspace of E such that X ⊂ Y and let x ∈ E . From Lemma 2.2, we have
〈Jx− JΠY x, y〉 = 0 for all y ∈ Y and 〈JΠY x− JΠXΠY x, z〉 = 0 for all z ∈ X .
Since X ⊂ Y , we have 〈Jx − JΠY x, z〉 = 0 for all z ∈ X . Then we have

0 = 〈Jx − JΠY x + JΠY x − JΠXΠY x, z〉
= 〈Jx − JΠXΠY x, z〉

for all z ∈ X . From ΠXΠY x ∈ X and the uniqueness of ΠXx, we obtain
ΠXΠY x = ΠXx. This implies ΠXΠY = ΠX .

Using Lemma 3.1, we first prove the following theorem.

Theorem 3.3. . Let E be a reflexive, strictly convex and smooth Banach space.
Let Y ∗ be a closed linear subspace of the dual space E ∗. Then, the generalized
conditional expectation EY ∗ with respect to Y ∗ has the following properties:

(1) For any x ∈ E , Jx ∈ Y ∗ ⇔ x = EY ∗x. In particular, EY ∗0 = 0;

(2) ‖EY ∗x‖ ≤ ‖x‖ for all x ∈ E;

(3) For any x ∈ E , ‖EY ∗x‖ = ‖x‖ ⇔ Jx ∈ Y ∗;

(4) EY ∗αx = αEY ∗x for all x ∈ E and α ∈ R;

(5) For any x1, x2 ∈ E , EY ∗(x1 + x2) = EY ∗(EY ∗x1 + EY ∗x2).

Proof. Let J be the normalized duality mapping from E onto E∗. From
the definition of EY ∗ , we obtain JEY ∗x = ΠY ∗Jx for all x ∈ E . Let x ∈ E . If
Jx ∈ Y ∗, then we have ΠY ∗Jx = Jx and J−1ΠY ∗Jx = x. Then x is a fixed point
of EY ∗ . Conversely, if x = EY ∗x, then Jx = ΠY ∗Jx. Then we have Jx ∈ Y ∗.
Since 0 = J0 ∈ Y ∗, we obtain EY ∗0 = 0. This implies (1). From (1) in Lemma
3.1, we have ‖ΠY ∗x∗‖ ≤ ‖x∗‖ for all x∗ ∈ E∗. Then, we have

‖EY ∗x‖ = ‖JEY ∗x‖ = ‖ΠY ∗Jx‖ ≤ ‖Jx‖ = ‖x‖.

This implies (2). From Theorem 3.1, the generalized conditional expectation EY ∗ =
J−1ΠY ∗J with respect to Y ∗is a sunny generalized nonexpansive retraction from
E onto J−1Y ∗. Since EY ∗ is sunny, we have that

EY ∗ (EY ∗x + β (x − EY ∗x)) = EY ∗x

for any x ∈ E and β ≥ 0. So, we have from (2) that for any x ∈ E ,
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‖EY ∗x‖ =
∥∥∥∥EY ∗

(
EY ∗x +

1
2

(x − EY ∗x)
)∥∥∥∥

≤
∥∥∥∥EY ∗x +

1
2

(x − EY ∗x)
∥∥∥∥

=
∥∥∥∥EY ∗x + x

2

∥∥∥∥ .

For x ∈ E , assume ‖EY ∗x‖ = ‖x‖. Then, we have

‖EY ∗x‖ = ‖x‖ =
∥∥∥∥EY ∗x + x

2

∥∥∥∥ .

Since E is strictly convex, we have EY ∗x = x. From (1), we have Jx ∈ Y ∗.
Conversely, it is obvious that

Jx ∈ Y ∗ ⇒ EY ∗x = x ⇒ ‖EY ∗x‖ = ‖x‖.

This implies (3). From (2) in Lemma 3.1, we have ΠY ∗αx∗ = αΠY ∗x∗ for all
x∗ ∈ E∗ and α ∈ R. Then we have

EY ∗αx = J−1ΠY ∗Jαx

= J−1ΠY ∗αJx

= J−1αΠY ∗Jx

= αJ−1ΠY ∗Jx = αEY ∗x.

This implies (4). Since J∗ is onto and one-to-one, for any x1, x2 ∈ E there exist
x∗

1, x
∗
2 ∈ E∗ such that x1 = J∗x∗

1 and x2 = J∗x∗
2, where J∗ is J−1. For x∗1, x∗

2 ∈
E∗, let y∗1 = ΠY ∗x∗

1 and y∗2 = ΠY ∗x∗
2. Further, put

z∗ = ΠY ∗J−1
∗ (J∗y∗1 + J∗y∗2).

Then, from Lemma 2.2, we have that for any m∗ ∈ Y ∗,

〈J∗x∗
1 − J∗y∗1 , m∗〉 = 0 and 〈J∗x∗

2 − J∗y∗2 , m∗〉 = 0

and hence

〈J∗x∗
1 + J∗x∗

2 − (J∗y∗1 + J∗y∗2), m
∗〉 = 0.(3.1)

We also have that for any m∗ ∈ Y ∗,

〈J∗J−1
∗ (J∗y∗1 + J∗y∗2) − J∗z∗, m∗〉 = 0.
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This implies

〈J∗y∗1 + J∗y∗2 − J∗z∗, m∗〉 = 0.(3.2)

Then, from (3.1) and (3.2) we have

〈J∗x∗
1 + J∗x∗

2 − J∗z∗, m∗〉 = 0.

So, we obtain
〈J∗J−1

∗ (J∗x∗
1 + J∗x∗

2)− J∗z∗, m∗〉 = 0

for all m∗ ∈ Y ∗. Since z∗ ∈ Y ∗, we obtain z∗ = ΠY ∗J−1∗ (J∗x∗
1+J∗x∗

2). Therefore,

z∗ = ΠY ∗J−1
∗ (J∗y∗1 + J∗y∗2) = ΠY ∗J−1

∗ (J∗x∗
1 + J∗x∗

2).

Setting y1 = J∗y∗1 and y2 = J∗y∗2 , we have that

y∗1 = ΠY ∗x∗
1, y∗2 = ΠY ∗x∗

2 ⇔ y1 = J∗ΠY ∗J−1
∗ x1, y2 = J∗ΠY ∗J−1

∗ x2

⇔ y1 = J−1ΠY ∗Jx1, y2 = J−1ΠY ∗Jx2

⇔ y1 = EY ∗x1, y2 = EY ∗x2.

So, we have that

ΠY ∗J−1
∗ (J∗y∗1 + J∗y∗2) = ΠY ∗J−1

∗ (J∗x∗
1 + J∗x∗

2)
⇔ ΠY ∗J(y1 + y2) = ΠY ∗J(x1 + x2)

⇔ J−1ΠY ∗J(y1 + y2) = J−1ΠY ∗J(x1 + x2)
⇔ EY ∗(y1 + y2) = EY ∗(x1 + x2).

This implies that for any x1, x2 ∈ E ,

EY ∗(x1 + x2) = EY ∗(EY ∗x1 + EY ∗x2).

This completes the proof of (5).

Corollary 3.1. Let n ∈ N with n ≥ 2 and let x1, x2, . . . , xn ∈ E . Then the
following holds:

EY ∗

(
n∑

i=1

xi

)
= EY ∗

(
n∑

i=1

EY ∗xi

)
.(3.3)

Proof. For n = 2, it is obvious from Theorem 3.3. We suppose that for some
k ≥ 2,

EY ∗

(
k∑

i=1

xi

)
= EY ∗

(
k∑

i=1

EY ∗xi

)
.
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Then we have

EY ∗

(
k+1∑
i=1

xi

)
= EY ∗

(
k∑

i=1

xi + xk+1

)

= EY ∗

(
EY ∗

k∑
i=1

xi + EY ∗xk+1

)

= EY ∗

(
EY ∗

k∑
i=1

EY ∗xi + EY ∗EY ∗xk+1

)

= EY ∗EY ∗

(
k+1∑
i=1

EY ∗xi

)
= EY ∗

(
k+1∑
i=1

EY ∗xi

)
.

By mathematical induction, (3.3) holds.

Corollary 3.2. Let E be a reflexive, strictly convex and smooth Banach space.
Let Y ∗ be a closed linear subspace of the dual space E ∗. Then the generalized
conditional expectation EY ∗ with respect to Y ∗ is linear when

y1, y2 ∈ J−1Y ∗ ⇒ y1 + y2 ∈ J−1Y ∗.

Proof. For x1, x2 ∈ E , we know that EY ∗x1, EY ∗x2 ∈ J−1Y ∗. Since
EY ∗x1 + EY ∗x2 ∈ J−1Y ∗, we have

EY ∗(x1 + x2) = EY ∗(EY ∗x1 + EY ∗x2) = EY ∗x1 + EY ∗x2.

From Theorem 3.3, we also have that EY ∗αx = αEY ∗x for all x ∈ E and α ∈ R.
So, EY ∗ is linear.

Theorem 3.4. Let E be a reflexive, strictly convex and smooth Banach space.
Let Y ∗

1 and Y ∗
2 be closed linear subspaces of the dual space E ∗ such that Y ∗

1 ⊂ Y ∗
2 .

Then, the following hold:
(1) (EY ∗

2
)−10 ⊂ (EY ∗

1
)−10;

(2) EY ∗
2
EY ∗

1
= EY ∗

1
;

(3) EY ∗
1
EY ∗

2
= EY ∗

1
.

Proof. From J0 = 0, we have that for any x ∈ E ,

x ∈ (EY ∗
2
)−10 ⇔ EY ∗

2
x = 0 ⇔ J−1ΠY ∗

2
Jx = 0 ⇔ ΠY ∗

2
Jx = 0.

Since Y ∗
1 ⊂ Y ∗

2 , from Lemma 3.1 we have ΠY ∗
1
Jx = ΠY ∗

1
ΠY ∗

2
Jx = ΠY ∗

1
0 = 0.

So, we have

ΠY ∗
1
Jx = 0 ⇔ J−1ΠY ∗

1
Jx = 0 ⇔ EY ∗

1
x = 0 ⇔ x ∈ (EY ∗

1
)−10.



Nonlinear Projections and Generalized Conditional Expectations in Banach Spaces 2179

This implies (EY ∗
2
)−10 ⊂ (EY ∗

1
)−10. So, (1) holds. For x ∈ E , we have

EY ∗
1
x ∈ J−1Y ∗

1 ⊂ J−1Y ∗
2 .

So, we have
EY ∗

2
EY ∗

1
x = EY ∗

1
x.

This implies (2). From Lemma 3.1, we have that for any x∗ ∈ E∗,

ΠY ∗
1
ΠY ∗

2
x∗ = ΠY ∗

1
x∗.

Then we have that for any x ∈ E ,

ΠY ∗
1
ΠY ∗

2
Jx = ΠY ∗

1
Jx ⇒ J−1ΠY ∗

1
JJ−1ΠY ∗

2
Jx

= J−1ΠY ∗
1
Jx ⇒ EY ∗

1
EY ∗

2
x

= EY ∗
1
x.

This implies (3).

4. ORTHOGONAL PROPERTIES OF EY ∗

Let E be a normed linear space and let x, y ∈ E . We say that x is orthogonal
to y in the sense of Birkhoff-James (or simply, x is BJ-orthogonal to y), denoted by
x ⊥ y, if

‖x‖ ≤ ‖x + λy‖
for all λ ∈ R; see [5, 21, 22, 23]. We know that for x, y ∈ E , x ⊥ y if and
only if there exists f ∈ J(x) with 〈y, f〉 = 0; see [32]. In general, x ⊥ y does
not imply y ⊥ x. An operator T of E into itself is called left-orthogonal (resp.
right-orthogonal) if for each x ∈ E , Tx ⊥ (x − Tx) (resp. (x − Tx) ⊥ Tx); see
[25].

Lemma 4.1. Let E be a normed linear space and let T be an operator of E

into itself such that

T (Tx + β(x − Tx)) = Tx(4.1)

for any x ∈ E and β ∈ R. Then, the following conditions are equivalent:

(1) ‖Tx‖ ≤ ‖x‖ for all x ∈ E;

(2) T is left-orthogonal.
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Proof. We prove (1) ⇒ (2). Since T (Tx + β(x − Tx)) = Tx for all x ∈ E

and β ∈ R, we have

‖Tx‖ = ‖T (Tx + β(x − Tx))‖
≤ ‖Tx + β(x − Tx)‖

for any x ∈ E and β ∈ R. This implies that for each x ∈ E , Tx ⊥ (x − Tx).
Next, we prove (2) ⇒ (1). Since T is left-orthogonal, we have

‖Tx‖ ≤ ‖Tx + λ(x− Tx)‖

for any x ∈ E and λ ∈ R. When λ = 1, we obtain ‖Tx‖ ≤ ‖x‖. This completes
the proof.

Using Lemma 4.1, we can prove the following theorem.

Theorem 4.1. Let E be a reflexive, strictly convex and smooth Banach space.
Let Y ∗ be a closed linear subspace of the dual space E ∗. Then, the generalized
conditional expectation EY ∗ with respect to Y ∗ is left-orthogonal, i.e., for any
x ∈ E ,

EY ∗x ⊥ (x − EY ∗x).

Proof. We show that EY ∗ satisfies (4.1). From the definition of ΠY ∗ , we
have that for any x ∈ E ,

〈J∗Jx − J∗ΠY ∗Jx, m∗〉 = 0, ∀m∗ ∈ Y ∗,

where J∗ is the normalized duality mapping of E∗ into E . This implies that

〈x − EY ∗x, m∗〉 = 0, ∀m∗ ∈ Y ∗.(4.2)

Let xt = EY ∗x + t(x−EY ∗x) for t ∈ R. Since JEY ∗x, JEY ∗xt ∈ Y ∗ and hence
JEY ∗x − JEY ∗xt ∈ Y ∗, from (4.2) we have

〈xt − EY ∗xt, JEY ∗x − JEY ∗xt〉 = 0(4.3)

and
〈x− EY ∗x, JEY ∗x − JEY ∗xt〉 = 0.

Since t(x − EY ∗x) = xt − EY ∗x, we have

0 = t〈x − EY ∗x, JEY ∗x − JEY ∗xt〉
= 〈t(x − EY ∗x), JEY ∗x − JEY ∗xt〉
= 〈xt − EY ∗x, JEY ∗x − JEY ∗xt〉.
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From this and (4.3) we obtain

〈EY ∗x − EY ∗xt, JEY ∗x − JEY ∗xt〉 = 0.

Since E is strictly convex, we have EY ∗x = EY ∗xt, that is, EY ∗ satisfies (4.1).
From Theorem 3.3 and Lemma 4.1, EY ∗ is left-orthogonal.

Let Y be a nonempty subset of a Banach space E and let Y ∗ be a nonempty
subset of the dual space E∗. Then, we define the annihilator Y ∗

⊥ of Y ∗ and the
annihilator Y ⊥ of Y as follows:

Y ∗
⊥ = {x ∈ E : f(x) = 0 for all f ∈ Y ∗}

and
Y ⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ Y }.

The following theorem is related to Alber’s result [3].

Theorem 4.2. Let E be a reflexive, strictly convex and smooth Banach space
and let I be the identity operator of E into itself. Let Y ∗ be a closed linear subspace
of the dual space E ∗ and let EY ∗ be the generalized conditional expectation with
respect to Y ∗. Then, the mapping I − EY ∗ is the metric projection of E onto
Y ∗
⊥. Conversely, let Y be a closed linear subspace of E and let P Y be the metric

projection of E onto Y . Then, the mapping I − PY is the generalized conditional
expectation EY ⊥ with respect to Y ⊥, i.e., I − PY = EY ⊥ .

Proof. Let P = I − EY ∗ . From the definition of ΠY ∗ , we have that for any
x ∈ E ,

〈J∗Jx − J∗ΠY ∗Jx, m∗〉 = 0, ∀m∗ ∈ Y ∗

⇔ 〈x− EY ∗x, m∗〉 = 0, ∀m∗ ∈ Y ∗

⇔ 〈Px, m∗〉 = 0, ∀m∗ ∈ Y ∗.

Then, for any x ∈ E we have Px ∈ Y ∗
⊥. Since JEY ∗x ∈ Y ∗, from the definition

of Y ∗
⊥ we have that for any x ∈ E ,

〈JEY ∗x, m〉 = 0, ∀m ∈ Y ∗
⊥.

This implies that

〈J(x − Px), m〉 = 0, ∀m ∈ Y ∗
⊥.(4.4)

We know that Y ∗
⊥ is a closed linear subspace of E . Since Px ∈ Y ∗

⊥, (4.4) means
that the mapping P is the metric projection of E onto Y ∗

⊥. Next, let T = I − PY .
From the definition of PY we have that for any x ∈ E ,

〈J(x − PY x), m〉 = 0, ∀m ∈ Y

⇔ 〈J(Tx), m〉 = 0, ∀m ∈ Y.
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Then, for any x ∈ E , we have JTx ∈ Y⊥. Since PY x ∈ Y , from the definition of
Y ⊥ we have that for any x ∈ E ,

〈PY x, m∗〉 = 0, ∀m∗ ∈ Y ⊥.

This implies that

〈x − Tx, m∗〉 = 0, ∀m∗ ∈ Y ⊥.(4.5)

Since the annihilator Y ⊥ is a closed linear subspace in E ∗, from the definition of
EY ⊥ we have that for x ∈ E ,

y = EY ⊥x ⇔ Jy ∈ Y ⊥ and 〈x − y, m∗〉 = 0, ∀m∗ ∈ Y ⊥.

In fact, if y = EY ⊥x, we have Jy ∈ Y ⊥ and

〈x − y, m∗〉 = 〈J−1Jx − J−1ΠY ⊥Jx, m∗〉 = 0, ∀m∗ ∈ Y ⊥.

Conversely, if Jy ∈ Y⊥ and 〈x − y, m∗〉 = 0 for all m∗ ∈ Y ⊥, then we have
that Jy ∈ Y ⊥ and 〈J−1Jx − J−1Jy, m∗〉 = 0 for all m∗ ∈ Y ⊥. This implies
that Jy = ΠY ⊥Jx and hence y = J−1ΠY ⊥Jx = EY ⊥x. Since JTx ∈ Y ⊥ and
〈x−Tx, m∗〉 = 0 for all m∗ ∈ Y ⊥, we have Tx = EY ⊥x. So, we obtain T = EY ⊥

and hence I − PY = EY ⊥ .

Let E be a normed linear space and let Y1, Y2 ⊂ E be closed linear subspaces.
If Y1 ∩ Y2 = {0} and for any x ∈ E there exists a unique pair y1 ∈ Y1, y2 ∈ Y2

such that
x = y1 + y2,

and any element of Y1 is BJ-orthogonal to any element of Y2, i.e., y1 ⊥ y2 for any
y1 ∈ Y1, y2 ∈ Y2, then we represent the space E as

E = Y1 ⊕ Y2 and Y1 ⊥ Y2.

For an operator T of E into itself, the kernel of T is denoted by ker(T ), i.e.,

ker(T ) = {x ∈ E : Tx = 0}.

Using Theorem 4.2, we have the following theorem; see also [3, 4, 8, 25].

Theorem 4.3. Let E be a strictly convex, reflexive and smooth Banach space
and let Y ∗ be a closed linear subspace of the dual space E ∗ of E such that for any
y1, y2 ∈ J−1Y ∗, y1 + y2 ∈ J−1Y ∗. Then, J−1Y ∗ is a closed linear subspace of E

and the generalized conditional expectation E Y ∗ with respect to Y ∗ is a norm one
linear projection from E to J −1Y ∗. Further, the following hold:



Nonlinear Projections and Generalized Conditional Expectations in Banach Spaces 2183

(1) E = J−1Y ∗ ⊕ ker(EY ∗) and J−1Y ∗ ⊥ ker(EY ∗);

(2) I − EY ∗ is the metric projection of E onto ker(E Y ∗).

Proof. By the assumption, for any y1, y2∈J−1Y ∗, y1+y2∈J−1Y ∗. Further,
for y ∈ J−1Y ∗ and α ∈ R, we have from Jαy = αJy ∈ Y ∗ that αy ∈ J−1Y ∗. So,
J−1Y ∗ is a linear subspace of E . From Theorem 3.1, J−1Y ∗ is closed. Therefore,
J−1Y ∗ is a closed linear subspace of E . For any x, y ∈ E , we have EY ∗x, EY ∗y ∈
J−1Y ∗. Since J−1Y ∗ is a linear subspace of E , we have EY ∗x+EY ∗y ∈ J−1Y ∗.
From Theorem 3.3, we have that for any x, y ∈ E ,

EY ∗(x + y) = EY ∗(EY ∗x + EY ∗y)

= EY ∗x + EY ∗y.

So, EY ∗ is linear. Since ‖EY ∗x‖ ≤ ‖x‖ for all x ∈ E and ‖EY ∗y‖ = ‖y‖ for all
y ∈ J−1Y ∗, we have ‖EY ∗‖ = 1. Then, EY ∗ is a norm one linear projection of
E onto J−1Y ∗. Let us show (1) and (2). We first show that E = J−1Y ∗ ⊕ Y ∗

⊥
and J−1Y ∗ ⊥ Y ∗

⊥. Note that J−1Y ∗ ∩ Y ∗
⊥ = {0}. In fact, let u ∈ J−1Y ∗ ∩ Y ∗

⊥.
Then, we have Ju ∈ Y ∗ and u ∈ Y ∗

⊥. So, we have ‖u‖2 = 〈Ju, u〉 = 0. Then,
J−1Y ∗ ∩ Y ∗

⊥ = {0}. Further, we have J−1Y ∗ ⊥ Y ∗
⊥. In fact, let u ∈ J−1Y ∗ and

v ∈ Y ∗
⊥. Then, Ju ∈ Y ∗ and v ∈ Y ∗

⊥. So, 〈Ju, v〉 = 0. This implies J−1Y ∗ ⊥ Y ∗
⊥.

Let us show E = J−1Y ∗ ⊕ Y ∗
⊥. From the definition of ΠY ∗ , we have that for any

x ∈ E and m ∈ Y ∗,

〈x − EY ∗x, m〉 = 〈J−1Jx − J−1ΠY ∗Jx, m〉 = 0.

So, for any x ∈ E we have x − EY ∗x ∈ Y ∗
⊥. We also have that for any x ∈ E ,

x = EY ∗x + x − EY ∗x.

Further, since EY ∗x ∈ J−1Y ∗, x−EY ∗x ∈ Y ∗
⊥ and J−1Y ∗ ∩ Y ∗

⊥ = {0}, we have

E = J−1Y ∗ ⊕ Y ∗
⊥.

Finally, setting Y = {x−EY ∗x : x∈E}, we shall show Y = ker(EY ∗) = Y ∗
⊥. For

any x∈E , we have EY ∗(x−EY ∗x)=EY ∗x−EY ∗EY ∗x=EY ∗x−EY ∗x=0. So, we
have Y ⊂ker(EY ∗). Conversely, for any y∈ker(EY ∗) we have EY ∗y=0 and hence
y = y−EY ∗y ∈ Y . So, we have ker(EY ∗) ⊂ Y . Then ker(EY ∗) = Y . Next, we
show ker(EY ∗) = Y ∗

⊥. Since for any x ∈ E , x−EY ∗x ∈ Y ∗
⊥, we have ker(EY ∗) =

Y ⊂ Y ∗
⊥ . Conversely, for any y ∈ Y∗

⊥, we have y = EY ∗y + y − EY ∗y = 0 + y.
Since EY ∗y, 0 ∈ J−1Y ∗, y−EY ∗y, y ∈ Y ∗

⊥ and E = J−1Y ∗⊕Y ∗
⊥ , we have EY ∗y

= 0. This implies Y ∗
⊥ ⊂ ker(EY ∗). So, we have Y ∗

⊥ = ker(EY ∗). This completes
the proof of (1). From Theorem 4.2 , we know that I−EY ∗ is the metric projection
of E onto Y ∗

⊥ . Since Y ∗
⊥=ker(EY ∗), we have (2). This completes the proof.
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5. ORTHOGONAL MAXIMAL MONOTONE OPERATORS

Let E be a Banach space and let B ⊂ E∗×E be a maximal monotone operator
with domain D(B) and range R(B). Then, B is said to be orthogonal if

〈x∗, x〉 = 0 for any x∗ ∈ D(B) and x ∈ Bx∗.

Theorem 5.1. Let E be a reflexive, strictly convex and smooth Banach space.
Let Y ∗ be a closed linear subspace of the dual space E ∗ and let EY ∗ be the
generalized conditional expectation with respect to Y ∗. Then, the operator B ⊂
E∗ × E defined by

B = {(JEY ∗x, x− EY ∗x) : x ∈ E}
is orthogonal maximal monotone.

Proof. We first show that B is monotone. We have that for any x, y ∈ E ,

〈J(EY ∗x) − J(EY ∗y), x− EY ∗x − (y − EY ∗y)〉
= 〈JJ−1ΠY ∗Jx − JJ−1ΠY ∗Jy, x − J−1ΠY ∗Jx − (y − J−1ΠY ∗Jy)〉
= 〈ΠY ∗Jx − ΠY ∗Jy, x − J−1ΠY ∗Jx − (y − J−1ΠY ∗Jy)〉
= 〈ΠY ∗Jx − ΠY ∗Jy, J−1Jx − J−1ΠY ∗Jx − (J−1Jy − J−1ΠY ∗Jy)〉
= 〈ΠY ∗Jx − ΠY ∗Jy, J−1Jx − J−1ΠY ∗Jx〉
+ 〈ΠY ∗Jx − ΠY ∗Jy,−(J−1Jy − J−1ΠY ∗Jy)〉
≥ 0.

So, B is monotone. Next, we show the maximality of B. Since

{J−1JEY ∗x + BJEY ∗x : x ∈ E} = {EY ∗x + x − EY ∗x) : x ∈ E}
= {x : x ∈ E} = E,

we have R(J−1 + B) = E . Then, from Theorem 2.1 the operator B is maximal.
For any x ∈ E , we know that JEY ∗x ∈ Y ∗. Further, we have that for any x ∈ E

and m ∈ Y ∗,

〈x − EY ∗x, m〉 = 〈J−1Jx − J−1ΠY ∗Jx, m〉 = 0.

So, for any x ∈ E we have x − EY ∗x ∈ Y ∗
⊥. Then, we have that for any x ∈ E ,

〈JEY ∗x, x− EY ∗x〉 = 0. Therefore, the operator B is orthogonal.

If B ⊂ E∗ × E is a maximal monotone operator with domain D(B) and range
R(B), then for λ > 0 and x ∈ E∗, we can define the resolvent Jλx of B as follows:

Jλx = {y ∈ E : x ∈ y + λBJy}.
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We know from Ibaraki and Takahashi [16] that Jλ : E → E is a single valued
mapping. So, we call Jλ the generalized resolvent of B for λ > 0. We also denote
the resolvent Jλ by

Jλ = (I + λBJ)−1.

We know that D(Jλ) = R(I + λBJ) and R(Jλ) = D(BJ).

Theorem 5.2. Let E be a reflexive, strictly convex and smooth Banach space
and let B ⊂ E∗ × E be an orthogonal maximal monotone operator. For λ > 0,
let Jλ be the generalized resolvent of B for λ > 0. Then, the following properties
hold:

(1) ‖Jλx‖ ≤ ‖x‖ for any x ∈ E ,
(2) 0 ∈ (BJ)−10,
(3) Jλ is left-orthogonal, i.e., Jλx ⊥ (x − Jλx) for all x ∈ E .

Proof. Let λ > 0. Since B is maximal, then R(J−1 + λB) = E . So, for any
y ∈ E , there exists x∗ ∈ E∗ such that y ∈ J−1x∗ + λBx∗. From assumptions of
E , for such x∗ ∈ E∗ there exists an exactly one element x ∈ E such that x∗ = Jx.
We also know that

y ∈ J−1x∗ + λBx∗ ⇔ y ∈ J−1Jx + λBJx

⇔ y ∈ x + λBJx.

Then, for any y ∈ E , there exists x ∈ E such that y ∈ x + λBJx. We obtain
D(Jλ) = E . So, we have that for any x ∈ E ,

x ∈ (BJ)−10 ⇔ 0 ∈ BJx

⇔ 0 ∈ λBJx

⇔ x ∈ x + λBJx

⇔ x = Jλx.

For any x ∈ E and λ > 0, we have from definition of Jλx that x ∈ Jλx+λBJJλx.
So, we have that for z ∈ BJJλx with x = Jλx + λz,

‖Jλx‖‖x‖ ≥ 〈JJλx, x〉
= 〈JJλx, Jλx + λz〉
= 〈JJλx, Jλx〉 + λ〈JJλx, z〉
= 〈JJλx, Jλx〉 = ‖Jλx‖2.

Then, we have ‖Jλx‖ ≤ ‖x‖. This implies (1). Since 0 ∈ D(Jλ), we have
‖Jλ0‖ = 0. So, we obtain Jλ0 = 0 and 0 ∈ (BJ)−10. This implies (2). Let us
show (3). We have
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〈JJλx, x− Jλx〉 = 〈JJλx, x〉 − 〈Jλx, JJλx〉
= ‖Jλx‖2 − ‖Jλx‖2 = 0.

So, we obtain that for β ∈ R,

‖Jλx‖‖Jλx + β(x − Jλx)‖ ≥ 〈JJλx, Jλx + β(x − Jλx)〉
= ‖Jλx‖2 + β〈JJλx, x− Jλx〉
= ‖Jλx‖2.

Then, we obtain ‖Jλx+β(x−Jλx)‖ ≥ ‖Jλx‖ for all β ∈ R. From this, we obtain
that Jλx ⊥ (x− Jλx). This implies (3).

6. GENERALIZED MARTINGALES

Let E be a reflexive, strictly convex and smooth Banach space and let J be the
normalized duality mapping from E onto E∗. Let {Y ∗

n } be a sequence of closed
linear subspaces of the dual space E ∗ such that

Y ∗
1 ⊆ Y ∗

2 ⊆ · · · ⊆ E∗

and let {xn} be a sequence of elements of E . Then, a sequence {xn, Y ∗
n } is said to

be adapted if Jxn ∈ Y ∗
n for all n ≥ 1. A sequence {an, Y ∗

n } is predictable if a1 = 0
and Jan ∈ Y ∗

n−1 for n ≥ 2. A sequence {xn, Y ∗
n } is a generalized martingale if it

satisfies the following:

1. Jxn ∈ Y ∗
n for all n ≥ 1;

2. EY ∗
n
xn+1 = xn for all n ≥ 1.

Theorem 6.1. Let E be a reflexive, strictly convex and smooth Banach space.
Let {Y ∗

n } be a sequence of closed linear subspaces of the dual space E ∗ such that

Y ∗
1 ⊆ Y ∗

2 ⊆ · · · ⊆ E∗

and for any n ≥ 2 and for any ỹ ∈ J −1Y ∗
n−1,

J−1Y ∗
n − ỹ = J−1Y ∗

n(6.1)

and let {xn, Y ∗
n } be an adapted sequence in E with x1 = 0. Then, there exist a gen-

eralized martingale {mn, Y ∗
n } with m1 = 0 and a predictable sequence {an, Y ∗

n }
such that for every n ≥ 1, Doob’s decomposition [13, 34]

xn = mn + an(6.2)

holds. Further, this decomposition is unique.
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Proof. When n = 1, the equation (6.2) holds. To use an inductive method,
suppose that for some k ∈ N,

xk = mk + ak,(6.3)

where {mn, Y ∗
n }n≤k with m1 = 0 is a generalized martingale and {an, Y ∗

n }n≤k is
a predictable sequence. From assumptions of {Y ∗

n }, for any y∗ ∈ Y ∗
k and ak ∈

J−1Y ∗
k−1 we can find an element y ∈ J−1Y ∗

k such that

y∗ = ΠY ∗
k
J(y − ak).(6.4)

In fact, from y∗ ∈ Y ∗
k we have J−1y∗ ∈ J−1Y ∗

k . From (6.1), there exists an
element y ∈ J−1Y ∗

k such that y − ak = J−1y∗. So, we have J(y − ak) = y∗ and
hence y∗ = ΠY ∗

k
y∗ = ΠY ∗

k
J(y − ak). We know that EY ∗

k
(xk+1 − xk) ∈ J−1Y ∗

k .
So, taking y∗ ∈ Y ∗

k such that J−1y∗ = EY ∗
k
(xk+1 − xk), from (6.4) we can find

y = ak+1 ∈ J−1Y ∗
k such that

EY ∗
k
(xk+1 − xk) = J−1y∗ = J−1ΠY ∗

k
J(ak+1 − ak) = EY ∗

k
(ak+1 − ak).

Then, we can get ak+1 in J−1Y ∗
k such that

EY ∗
k
(xk+1 − xk) = EY ∗

k
(ak+1 − ak).

Putting mk+1 := xk+1 − ak+1, we have

EY ∗
k
(mk+1) = EY ∗

k
(xk+1 − ak+1)

= EY ∗
k

(xk+1 − ak+1 + ak − ak)

= EY ∗
k

(
EY ∗

k
xk+1 − EY ∗

k
(ak+1 − ak) − EY ∗

k
ak

)
= EY ∗

k

(
EY ∗

k
xk+1 − EY ∗

k
(xk+1 − xk)− EY ∗

k
ak

)
= EY ∗

k
(xk+1 − xk+1 + xk − ak)

= EY ∗
k

(xk − ak)

= EY ∗
k

(mk) = mk.

From assumptions of {Y ∗
n }, we have mk+1 ∈ J−1Y ∗

k+1. Then we have

xk+1 = mk+1 + ak+1,(6.5)

where {mn, Y ∗
n }n≤k+1 with m1 = 0 is a generalized martingale and {an}n≤k+1 is

a predictable sequence.
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To show the uniqueness, we use the mathematical induction. When n = 1, the
decomposition is unique. We suppose that for a fixed k ∈ N, the decomposition is
unique for n ≤ k. If there exists another decomposition for n = k + 1

xk+1 = m̃k+1 + ãk+1,(6.6)

where {m̃n, Y ∗
n }n≤k+1 is a generalized martingale and {ãn}n≤k+1 is a predictable

sequence such that for n ≤ k, m̃n = mn and ãn = an. We have

ãk+1 = EY ∗
k
(ãk+1)

= EY ∗
k

(xk+1 − m̃k+1)

= EY ∗
k

(
EY ∗

k
xk+1 − EY ∗

k
m̃k+1

)
= EY ∗

k

(
EY ∗

k
xk+1 − mk

)
= EY ∗

k

(
EY ∗

k
xk+1 − EY ∗

k
mk+1

)
= EY ∗

k
(xk+1 − mk+1)

= EY ∗
k

(ak+1) = ak+1.

Then, there exists a unique decomposition for n = k + 1. This completes the
proof.

Lemma 6.1. Let E be a reflexive and strictly convex Banach space with a
Fréchet differentiable norm. Let Y be a closed linear subspaces of E . Then the
generalized projection ΠY of E onto Y is norm to weak continuous. Moreover,
let the dual E ∗ have a Fréchet differentiable norm. Then, ΠY is norm to norm
continuous.

Proof. Let {xn} be a sequence in E such that xn → x ∈ E . Since {xn}
is bounded, from Lemma 2.1 the sequence {ΠY xn} ⊂ Y is bounded. Then, there
exists y0 ∈ Y such that ΠY xni ⇀ y0 as i → ∞. From the assumption, we have
Jxni → Jx as i → ∞. So, we have

|〈ΠY xni , xni〉 − 〈y0, Jx〉| = |〈ΠY xni − y0 + y0, xni〉 − 〈y0, Jx〉|
= 〈ΠY xni − y0, Jxni〉 − 〈y0, Jxni − Jx〉|
→ 0

as i → ∞. Then, we have 〈ΠY xni , Jxni〉 → 〈y0, Jx〉 as i → ∞. From the lower
semicontinuity of the norm, we have
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(6.7)

lim infi→∞ φ(ΠY xni , xni)

= lim inf
i→∞

(‖ΠY xni‖2 − 2〈ΠY xni , Jxni〉 + ‖xni‖2
)

≥ ‖y0‖2 − 2〈y0, Jx〉+ ‖x‖2

= φ(y0, x).

On the other hand, from definition of ΠY we have that for any y ∈ Y , φ(ΠY xni , xni)
≤ φ(y, xni). Then, we have

(6.8)

lim infi→∞ φ(ΠY xni , xni) ≤ lim inf
i→∞

φ(y, xni)

= lim inf
i→∞

(‖y‖2 − 2〈y, Jxni〉 + ‖xni‖2
)

= ‖y‖2 − 2〈y, x〉+ ‖x‖2

= φ(y, x)

for any y ∈ Y . From (6.7) and (6.8),

φ(y0, x) = min
y∈Y

φ(y, x).(6.9)

Then we have ΠY x = y0. Every weakly convergent subsequence of {ΠY xn}
converges to the unique point ΠY x weakly. Then, {ΠY xn} converges to ΠY x

weakly.
Moreover, if E∗ has a Fréchet differentiable norm, then E has the Kadec-Klee

property. To show ΠY xn → ΠY x, it is sufficient to prove ‖ΠY xn‖ → ‖y0‖
as n → ∞. Since ΠY xn ⇀ y0 and hence y0 ∈ Y , from Lemma 2.1 we have
φ(ΠY xn, xn) ≤ φ(y0, xn) for every n ∈ N. Since xn → x and ΠY xn ⇀ y0, as in
(6.7) we have

φ(y0, x) ≤ lim inf
n→∞ φ(ΠY xn, xn)

≤ lim sup
n→∞

φ(ΠY xn, xn)

≤ lim
n→∞φ(y0, xn) = φ(y0, x).

Hence, we obtain

‖y0‖2 − 2〈y0, Jx〉 + ‖x‖2 = φ(y0, x)
= lim

n→∞ φ(ΠY xn, xn)

= lim
n→∞

(‖ΠY xn‖2 − 2〈ΠY xn, Jxn〉+ ‖xn‖2
)

= lim
n→∞ ‖ΠY xn‖2 − 2〈y0, Jx〉+ ‖x‖2.

Then ‖ΠY xn‖ → ‖y0‖ holds. So, ΠY xn → y0 = ΠY x and hence ΠY is norm-to-
norm continuous.
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Theorem 6.2. Let E be a uniformly convex and uniformly smooth Banach space
and let {Y ∗

n } be a family of closed linear subspaces Y ∗
n , n ≥ 1, of the dual space

E∗ such that
Y ∗

1 ⊆ Y ∗
2 ⊆ · · · ⊆ E∗.

Then, a generalized martingale {xn, Y ∗
n } in E converges strongly if and only if

there exits an element x ∈ E such that

xn = EY ∗
n
x.

Proof. We suppose that a generalized martingale {xn, Y ∗
n } in E converges to

x ∈ E in norm. The mappings J , J−1 and ΠY ∗
n

are norm to norm continuous.
From Theorem 3.4, we have that for n ∈ N,

EY ∗
n
xn+2 = EY ∗

n
EY ∗

n+1
xn+2

= EY ∗
n
xn+1 = xn.

Further, we have

EY ∗
n
xn+3 = EY ∗

n
EY ∗

n+2
xn+3

= EY ∗
n
xn+2 = xn.

Similarly, we can show that

EY ∗
n
xm = xn

for all m, n ∈ N with m ≥ n. Since xm → x as m → ∞, we have that for any
n ∈ N,

EY ∗
n
xm = J−1ΠY ∗

n
Jxm → J−1ΠY ∗

n
Jx = EY ∗

n
x

as m → ∞. Then, for a fixed n ∈ N,

EY ∗
n
x = lim

m→∞ EY ∗
n
xm = xn.

Conversely, suppose that there exists an element x ∈ E such that

xn = EY ∗
n
x = J−1ΠY ∗

n
Jx.

Then, we have Jxn = ΠY ∗
n
Jx ∈ Y ∗

n . Further, we have

EY ∗
n
xn+1 = J−1ΠY ∗

n
Jxn+1 = J−1ΠY ∗

n
ΠY ∗

n+1
Jx = xn.

So, {xn, Y ∗
n } is a generalized martingale.

Since {Y ∗
n } is a sequence of sets in E∗ such that
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Y ∗
1 ⊆ Y ∗

2 ⊆ · · · ⊆ E∗,

the sequence {ΠY ∗
n
Jx} converges strongly. In fact, we have that for any n ∈ N

and x ∈ E ,
φ∗(ΠY ∗

n+1
Jx, Jx) ≤ φ∗(ΠY ∗

n
Jx, Jx).

So, limn→∞ φ∗(ΠY ∗
n
Jx, Jx) exists. Since for any m, n ∈ N with m ≥ n,

φ∗(ΠY ∗
m

Jx, Jx) + φ∗(ΠY ∗
n
Jx, ΠY ∗

m
Jx) ≤ φ∗(ΠY ∗

n
Jx, Jx),

we have

φ∗(ΠY ∗
n
Jx, ΠY ∗

m
Jx) ≤ φ∗(ΠY ∗

n
Jx, Jx) − φ∗(ΠY ∗

m
Jx, Jx).

From Lemma 2.4, {ΠY ∗
n
Jx} is a Cauchy sequence in E∗. So, {ΠY ∗

n
Jx} converges

strongly to some y∗ ∈ E∗. Since J−1 is continuous, we have

xn = J−1ΠY ∗
n
Jx → J−1y∗.

This completes the proof.
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