A NOTE ON CIRCULAR COLORINGS OF EDGE-WEIGHTED DIGRAPHS

Wu-Hsiung Lin ${ }^{1}$ and Hong-Gwa Yeh ${ }^{2}$

Abstract

An edge-weighted digraph (\vec{G}, ℓ) is a strict digraph \vec{G} together with a function ℓ assigning a real weight $\ell_{u v}$ to each arc $u v .(\vec{G}, \ell)$ is symmetric if $u v$ is an arc implies that so is $v u$. A circular r-coloring of (\vec{G}, ℓ) is a function φ assigning each vertex of \vec{G} a point on a circle of perimeter r such that, for each arc $u v$ of \vec{G}, the length of the arc from $\varphi(u)$ to $\varphi(v)$ in the clockwise direction is at least $\ell_{u v}$. The circular chromatic number $\chi_{c}(\vec{G}, \ell)$ of (\vec{G}, ℓ) is the infimum of real numbers r such that (\vec{G}, ℓ) has a circular r-coloring. Suppose that (\vec{G}, ℓ) is an edge-weighted symmetric digraph with positive weights on the arcs. Let T be a $\{0,1\}$-function on the arcs of \vec{G} with the property that $T(u v)+T(v u)=1$ for each arc $u v$ in \vec{G}. In this note we show that if $\sum_{u v \in E(\vec{C})} \ell_{u v} / \sum_{u v \in E(\vec{C})} T(u v) \leq r$ for each dicycle \vec{C} of \vec{G} satisfying $0<\left(\sum_{u v \in E(\vec{C})} \ell_{u v}\right) \bmod r<\max \left\{\ell_{x y}+\ell_{y x}: x y \in E(\vec{G})\right\}$, then (\vec{G}, ℓ) has a circular r-coloring. Our result generalizes the work of Zhu, J. Comb. Theory, Ser. B, 86 (2002), 109-113, and also strengthens the work of Mohar, J. Graph Theory, 43 (2003), 107-116.

1. Introduction

A graph G is called k-colorable if $V(G)$ can be colored by at most k colors so that adjacent vertices are colored by different colors. The chromatic number of G, denoted by $\chi(G)$, is the smallest k such that G is k-colorable. In 1962, Minty [5] proved his celebrated theorem that G is k-colorable if and only if G has an orientation ω such that, for any cycle C of G and any traversal of C (each cycle has two different directions for traversal), at least $|C| / k$ edges of C whose direction in

[^0]ω coincide with the direction of the traversal. Let us denote by $\left|C_{\omega}^{+}\right|$the number of edges of C whose direction in ω coincide with the direction of the traversal. We denote by $\mathcal{M}(G)$ the set of all cycles of G (including cycles of length 2 which are the same edge taken twice). With these notations, Minty's result can be restated as follows:

Theorem 1. (Minty's Theorem [5]). G is k-colorable if and only if G has an orientation ω such that

$$
\max _{C \in \mathcal{M}(G)} \frac{|C|}{\left|C_{\omega}^{+}\right|} \leq k .
$$

Here and hereafter, for a set $\mathcal{S} \subseteq \mathcal{M}(G), \max _{C \in \mathcal{S}}$ means that the maximum is over all cycle C in \mathcal{S} and over the two traversals of C.

Let $\mathcal{D}(G)$ (resp. $\mathcal{A}(G)$) denote the set of all (resp. acyclic) orientations of G. From Minty's theorem it follows immediately that, for a graph G,

$$
\begin{equation*}
\chi(G)=\left\lceil\min _{\omega \in \mathcal{D}(G)} \max _{C \in \mathcal{M}(G)} \frac{|C|}{\left|C_{\omega}^{+}\right|}\right\rceil \tag{1}
\end{equation*}
$$

We remark that equation (1) remains true, if $\mathcal{D}(G)$ is replaced by $\mathcal{A}(G)$.
In 1992, Tuza [7] showed that the statement of Theorem 1 remains true when $\mathcal{M}(G)$ is replaced by $\mathcal{T}(G, k)$, where $\mathcal{T}(G, k)$ denotes the set of all cycles C of length $|C| \equiv 1(\bmod k)$ in G. We state Tuza's result in the following theorem which improves 'if' part of Theorem 1.

Theorem 2. (Tuza's Theorem [7]). Suppose k is an integer ≥ 2. Then G is k-colorable if and only if G has an orientation ω such that

$$
\max _{C \in \mathcal{T}(G, k)} \frac{|C|}{\left|C_{\omega}^{+}\right|} \leq k
$$

In 1988, as a natural refinement of the chromatic number $\chi(G)$, Vince [8] introduced the star chromatic number of a graph G and denoted it by $\chi^{*}(G)$. Later, Zhu [12] called it circular chromatic number and denoted it by $\chi_{c}(G)$. Let k and d be positive integers such that $k \geq 2 d$. A (k, d)-coloring of a graph G is a mapping $f: V(G) \rightarrow\{0,1, \ldots, k-1\}$ such that for any edge $x y$ of G, $d \leq|f(x)-f(y)| \leq k-d$. If G has a (k, d)-coloring, then we say that G is (k, d)-colorable. The circular chromatic number $\chi_{c}(G)$ of a graph G is defined as

$$
\chi_{c}(G)=\inf \{k / d: G \text { is }(k, d) \text {-colorable }\} .
$$

It was shown in [8] that the infimum in the definition of $\chi_{c}(G)$ is always attained, and hence the infimum can be replaced by minimum.

The circular chromatic number and its variations have received considerable attention in the past decade (see [9, 12, 14] and references therein). Vince [8]
showed that, for any graph $G, \chi(G)-1<\chi_{c}(G) \leq \chi(G)$. Furthermore, Goddyn, Tarsi and Zhang [3] proved the following generalization of equation (1) for circular chromatic number:

$$
\begin{equation*}
\chi_{c}(G)=\min _{\omega \in \mathcal{D}(G)} \max _{C \in \mathcal{M}(G)} \frac{|C|}{\left|C_{\omega}^{+}\right|} \tag{2}
\end{equation*}
$$

Equation (2) can be restated as follows:
Theorem 3. (Goddyn, Tarsi and Zhang's Theorem [3]). G is (k, d)-colorable if and only if G has an orientation ω such that

$$
\max _{C \in \mathcal{M}(G)} \frac{|C|}{\left|C_{\omega}^{+}\right|} \leq \frac{k}{d}
$$

Clearly, Theorem 1 is the special case $d=1$ of Theorem 3. Now, a natural question arises: Is there an analogue of Tuza's Theorem for the (k, d)-coloring. This question was answered in the affirmative by Zhu, who in [13] showed that the statement of Theorem 3 remains true if $\mathcal{M}(G)$ is replaced by $\mathcal{Z}(G, k, d)$, where $\mathcal{Z}(G, k, d)$ consists of cycles C of G such that $1 \leq d|C| \bmod k \leq 2 d-1$. We state Zhu's result in the following theorem. Notice that Theorem 4 improves 'if' part of Theorem 3 and generalizes Theorem 2.

Theorem 4. (Zhu's Theorem [13]). G is (k, d)-colorable if and only if G has an orientation ω such that

$$
\max _{C \in \mathcal{Z}(G, k, d)} \frac{|C|}{\left|C_{\omega}^{+}\right|} \leq \frac{k}{d}
$$

The theory of circular coloring of graphs has become an important branch of chromatic graph theory with many interesting results and applications (see [9, 10, $11,12,14]$ and references therein). Many variants and generalizations of the circular chromatic number were introduced by different authors. One of the most natural and important generalizations is to edge-weighted digraphs, which is introduced and studied by Mohar [6] in 2003.

An edge-weighted digraph (\vec{G}, ℓ) is a strict digraph \vec{G} together with a function ℓ assigning a real weight to each directed edge. For simplicity of notation, the directed edge (u, v) of \vec{G} is written as $u v$ and is called an arc, the weight of the arc $u v$ in (\vec{G}, ℓ) is written as $\ell_{u v}$.

For a positive real r, let S^{r} denote a circle with perimeter r centered at the origin of \mathcal{R}^{2}. In the obvious way, we can identify the circle S^{r} with the interval $[0, r)$. For $x, y \in S^{r}$, let $d_{r}(x, y)$ denote the length of the arc on S^{r} from x to y in the clockwise direction if $x \neq y$, and let $d_{r}(x, y)=0$ if $x=y$. A circular r-coloring of an edge-weighted digraph (\vec{G}, ℓ) is a function $\varphi: V(\vec{G}) \rightarrow S^{r}$ such
that $d_{r}(\varphi(u), \varphi(v)) \geq \ell_{u v}$ for each arc $u v$ in \vec{G}. The circular chromatic number $\chi_{c}(\vec{G}, \ell)$ of an edge-weighted digraph (\vec{G}, ℓ), recently introduced by Mohar [6], is defined as

$$
\chi_{c}(\vec{G}, \ell)=\inf \{r:(\vec{G}, \ell) \text { has a circular } r \text {-coloring }\}
$$

It was shown in [6] that the notion of $\chi_{c}(\vec{G}, \ell)$ generalizes several well-known optimization problems, such as the circular chromatic number [8, 12], the weighted circular colorings [1], the linear arboricity of a graph and the metric traveling salesman problem.

A digraph \vec{G} (resp. an edge-weighted digraph (\vec{G}, ℓ)) is said to be symmetric if $u v$ is an arc implies that so is $v u$. To each arc $u v$ in \vec{G} we may assign a number $T_{u v}$ of tokens. The nonnegative integer function T is called an initial marking of \vec{G}. An initial marking T of \vec{G} is said to be good if for each arc $u v$ of $\vec{G}, T_{u v}+T_{v u}=1$. Denote by $\mathcal{D}(\vec{G})$ the set of all good initial markings of \vec{G}. An edge-weighted digraph (\vec{G}, ℓ) equipped with an initial marking T is denoted by (\vec{G}, ℓ, T) and is called a timed marked graph. The token count (resp. weight) of a dicycle \vec{C} in (\vec{G}, ℓ, T) is defined as the value $\sum_{u v \in E(\vec{C})} T_{u v}$ (resp. $\sum_{u v \in E(\vec{C})} \ell_{u v}$) and is denoted by $|\vec{C}|_{T}$ (resp. $|\vec{C}|_{\ell}$), where $E(\vec{C})$ is the set of all arcs in \vec{C}. For a dipath \vec{P} in (\vec{G}, ℓ, T), the two values $|\vec{P}|_{T}$ and $|\vec{P}|_{\ell}$ are defined in the same way. Denote by $\mathcal{M}(\vec{G})$ the set of all dicycles in \vec{G}.

In 2003, Mohar [6, Theorem 5.2] proved the following generalization of equation (2) for edge-weighted symmetric digraph $\chi_{c}(\vec{G}, \ell)$ having positive weights on the arcs:

$$
\begin{equation*}
\chi_{c}(\vec{G}, \ell)=\min _{T \in \mathcal{D}(\vec{G})} \max _{\vec{C} \in \mathcal{M}(\vec{G})} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_{T}} \tag{3}
\end{equation*}
$$

Mohar [6, the last paragraph of Section 5] pointed out that equation (3) also holds for edge-weighted symmetric digraphs (\vec{G}, ℓ) having the property that $\ell_{u v} \geq 0$ and $\ell_{u v}+\ell_{v u} \neq 0$ for each arc $u v$ in \vec{G}.

For an edge-weighted symmetric digraph (\vec{G}, ℓ), denote by $L(\vec{G}, \ell)$ the maximum value of $\ell_{u v}+\ell_{v u}$ over all arcs $u v$ in \vec{G}. Equation (3) can be restated in Theorem 5, which generalizes Theorem 3.

Theorem 5. (Mohar's Theorem [6]). Let (\vec{G}, ℓ) be an edge-weighted symmetric digraph with positive weights on the arcs. Suppose that r is a real number with $r \geq L(\vec{G}, \ell)$. Then (\vec{G}, ℓ) has a circular r-coloring if and only if \vec{G} has a good initial marking T such that

$$
\max _{\vec{C} \in \mathcal{M}(\vec{G})} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_{T}} \leq r
$$

A certain natural question presents itself at this point: In Theorem 5, can $\mathcal{M}(\vec{G})$ be replaced by a subset of it? The purpose of this paper is to answer this question in
the affirmative. For an edge-weighted digraph (\vec{G}, ℓ) and a real number $r \geq L(\vec{G}, \ell)$, denote by $\mathcal{U}(\vec{G}, \ell, r)$ the set of all dicycles \vec{C} in \vec{G} with $0<|\vec{C}|_{\ell} \bmod r<L(\vec{G}, \ell)$. In Theorem 6, whose proof appears in Section, we show that the statement of Theorem 5 remains true if $\mathcal{M}(\vec{G})$ is replaced by $\mathcal{U}(\vec{G}, \ell, r)$.

Theorem 6. Let (\vec{G}, ℓ) be an edge-weighted symmetric digraph with positive weights on the arcs. Suppose that r is a real number with $r \geq L(\vec{G}, \ell)$. Then (\vec{G}, ℓ) has a circular r-coloring if and only if \vec{G} has a good initial marking T such that

$$
\max _{\vec{C} \in \mathcal{U}(\vec{G}, \ell, r)} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_{T}} \leq r
$$

Clearly, Theorem 6 improves 'if' part of Theorem 5. Moreover, Theorem 6 generalizes Theorem 4. To see this, we introduce an equivalent definition for circular chromatic number of graphs. For a real number $r \geq 1$, a circular r-coloring of a graph G is a function $f: V(G) \rightarrow[0, r)$ such that for any edge $x y$ of G, $1 \leq|f(x)-f(y)| \leq r-1$. It was known [12, 14] that

$$
\chi_{c}(G)=\inf \{r: G \text { has a circular } r \text {-coloring }\}
$$

It can readily be seen that G is (k, d)-colorable if and only if G has a circular k / d-coloring.

Given an undirected graph G, we can define a symmetric digraph, denoted by \vec{G}, on the same vertex set such that $u v$ is an edge of G if and only if $u v$ is an arc of \vec{G}. We say that such \vec{G} is the symmetric digraph derived from G. Denote by $(\vec{G}, \mathbf{1})$ the edge-weighted digraph with $\mathbf{1}_{u v}=1$ for each arc $u v$ of \vec{G}. Notice that $L(\vec{G}, \mathbf{1})=2$, and there is a natural bijection between cycles C of G (including cycles of length 2 which are the same edge taken twice) and dicycles \vec{C} of \vec{G}. Clearly, $0<|\vec{C}|_{\mathbf{1}} \bmod \frac{k}{d}<L(\vec{G}, \mathbf{1})$ if and only if $0<d|C| \bmod k<2 d$. For each orientation ω of G, we can associate a good initial marking T^{ω} of \vec{G} such that $T_{u v}^{\omega}=1$ for each arc $u v$ of ω. Conversely, for each good initial marking T of the symmetric digraph \vec{G}, we can associate an orientation ω^{T} of G such that $u v$ is an arc of ω^{T} if and only if $T_{u v}=1$. From our discussion above, it can readily be seen that Theorem 6 generalizes Theorem 4.

In 1996, Deuber and Zhu [1] introduced another natural generalization of circular chromatic number to vertex-weighted graphs. A vertex-weighted graph (G, λ) is a graph G with positive weight function λ on $V(G)$. A circular r-coloring of (G, λ) is a function $\phi: V(G) \rightarrow S^{r}$ which assigns each vertex of G an open arc of S^{r} such that $\phi(x) \cap \phi(y)=\emptyset$ for any edge $x y$ in G, and $\phi(v)$ has length at least $\lambda(v)$ for each vertex v of G. The circular chromatic number $\chi_{c}(G, \lambda)$ of a vertex-weighted graph (G, λ) is defined as

$$
\chi_{c}(G, \lambda)=\inf \{r:(G, \lambda) \text { has a circular } r \text {-coloring }\}
$$

It is clear that $\chi_{c}(G)=\chi_{c}(G, \mathbf{1})$, where $\mathbf{1}(v)=1$ for each vertex v of G. From the results in [1], one can conclude that

$$
\begin{equation*}
\chi_{c}(G, \lambda)=\min _{\omega \in \mathcal{D}(G)} \max _{C \in \mathcal{M}(G)} \frac{\sum_{v \in V(C)} \lambda(v)}{\left|C_{\omega}^{+}\right|} \tag{4}
\end{equation*}
$$

Given a vertex-weighted graph (G, λ), we construct an edge-weighted digraph (\vec{G}, ℓ) such that \vec{G} is the symmetric digraph derived from G and $\ell(u v)=\lambda(v)$ for each arc $u v$ of \vec{G}. From equations (3) and (4), we see that

$$
\chi_{c}(\vec{G}, \ell)=\min _{T \in \mathcal{D}(\vec{G})} \max _{\vec{C} \in \mathcal{M}(\vec{G})} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_{T}}=\min _{\omega \in \mathcal{D}(G)} \max _{C \in \mathcal{M}(G)} \frac{\sum_{v \in V(C)} \lambda(v)}{\left|C_{\omega}^{+}\right|}=\chi_{c}(G, \lambda)
$$

Notice that our construction above of (\vec{G}, ℓ) paralleled to the one given by Mohar in [6, page 108]. Equations (3) and (4) also give the following nice observation whose proof is straightforward, and we omit it.

Observation 7. Let (G, λ) be a vertex-weighted graph with positive weights on the vertices. Suppose that r is a real number with $r \geq L(G, \lambda)$. Then (G, λ) has a circular r-coloring if and only if G has an orientation ω such that

$$
\max _{C \in \mathcal{U}(G, \lambda, r)} \frac{|C|_{\lambda}}{\left|C_{\omega}^{+}\right|} \leq r,
$$

where $|C|_{\lambda}=\sum_{v \in V(C)} \lambda(v), L(G, \lambda)=\max \{\lambda(u)+\lambda(v): u v \in E(G)\}$ and $\mathcal{U}(G, \lambda, r)=\left\{C \in \mathcal{M}(G): 0<|C|_{\lambda} \bmod r<L(G, \lambda)\right\}$.

2. The Proof of Theorem 6

In this section, we prove the main result of this note. As you will see in the proof below, our approach in fact gives a new proof of Theorem 5 (see [11] for another new proof) which was originally proved by Mohar [6] using a linear programming duality result of Hoffman [4] and Ghouila-Houri [2].

Proof of the 'if' part of Theorem 6. Suppose that (\vec{G}, ℓ) has a good initial marking T such that

$$
\begin{equation*}
\max _{\vec{C} \in \mathcal{U}(\vec{G}, \ell, r)} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_{T}} \leq r . \tag{5}
\end{equation*}
$$

Let G be the underlying graph of \vec{G} with a spanning tree \mathcal{T}. For two vertices x, y of G, clearly there is a unique (x, y)-path $v_{1} v_{2} \ldots v_{k}$ in \mathcal{T}. The (x, y)-dipath $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ in \vec{G} generated in this way is called the dipath of \vec{G} from x to y in \mathcal{T}. Fix a vertex s in G. We define a function $f_{\mathcal{T}}: V(\vec{G}) \rightarrow \mathcal{R}$ as follows:

- $f_{\mathcal{T}}(s)=0$;
- If x is a vertex other than s then $f_{\mathcal{T}}(x)=\sum_{e}\left(\ell_{e}-r \cdot T_{e}\right)$, where the summation is taken over all arcs e in the dipath of \vec{G} from s to x in \mathcal{T}.
The weight of \mathcal{T} is defined to be $\sum_{v \in V(\vec{G})} f_{\mathcal{T}}(v)$ and is denoted by $f(\mathcal{T})$. In the following, let \mathcal{T} be a spanning tree of G with the maximum weight.

Let φ be a function which assigns to each vertex v of \vec{G} a color $f_{\mathcal{T}}(v) \bmod r$ in $[0, r)$. For an arbitrary arc $x y$ of \vec{G}, we want to show that $d_{r}(\varphi(x), \varphi(y)) \geq \ell_{x y}$ and $d_{r}(\varphi(y), \varphi(x)) \geq \ell_{y x}$. In the following cases, we view \mathcal{T} as a rooted tree with root s. In this rooted tree, let x^{\prime} and y^{\prime} be the fathers of vertices x and y, respectively.

Case I. Suppose that x is not on the (s, y)-path of \mathcal{T} and y is not on the (s, x) path of \mathcal{T}. Let \mathcal{T}^{\prime} be the spanning tree of G obtained from \mathcal{T} by deleting the edge $x^{\prime} x$ and adding the edge $x y$. Then, by the maximality of \mathcal{T}, we have $f(\mathcal{T}) \leq f(\mathcal{T})$ which gives $f_{\mathcal{T}^{\prime}}(x) \leq f_{\mathcal{T}}(x)$, and hence $f_{\mathcal{T}}(y)+\ell_{y x}-r \cdot T_{y x} \leq f_{\mathcal{T}}(x)$ because y is the father of x in \mathcal{T}^{\prime}. By symmetry we also see that $f_{\mathcal{T}}(x)+\ell_{x y}-r \cdot T_{x y} \leq f_{\mathcal{T}}(y)$. Therefore

$$
\begin{equation*}
\ell_{y x}-r \cdot T_{y x} \leq f_{\mathcal{T}}(x)-f_{\mathcal{T}}(y) \leq r \cdot T_{x y}-\ell_{x y} . \tag{6}
\end{equation*}
$$

If $T_{x y}=1$ then we have $\ell_{y x} \leq f_{\mathcal{T}}(x)-f_{\mathcal{T}}(y) \leq r-\ell_{x y}$. If $T_{x y}=0$ then we have $\ell_{x y} \leq f_{\mathcal{T}}(y)-f_{\mathcal{T}}(x) \leq r-\ell_{y x}$. In either case, clearly we have $d_{r}(\varphi(x), \varphi(y)) \geq \ell_{x y}$ and $d_{r}(\varphi(y), \varphi(x)) \geq \ell_{y x}$.

Case II. Suppose that either the (s, y)-path of \mathcal{T} contains x or the (s, x)-path of \mathcal{T} contains y. It suffices to consider the case that y is on the (s, x)-path of \mathcal{T}. Let \vec{P} be the dipath of \vec{G} from y to x in \mathcal{T} and $\vec{C}=\vec{P}+x y$ be the dicycle of \vec{G} consisting of \vec{P} and the arc $x y$. Using the same method as in the previous case, we have

$$
\begin{equation*}
\ell_{y x}-r \cdot T_{y x} \leq f_{\mathcal{T}}(x)-f_{\mathcal{T}}(y) \tag{7}
\end{equation*}
$$

Clearly we also have $f_{\mathcal{T}}(x)-f_{\mathcal{T}}(y)=|\vec{P}|_{\ell}-r|\vec{P}|_{T}$. Denote by ρ the value $|\vec{P}|_{\ell} \bmod r$. Let us consider the following two subcases.

Subcase II(a). If $\rho<\ell_{y x}$ or $\rho>r-\ell_{x y}$, since $|\vec{C}|_{\ell}=|\vec{P}|_{\ell}+\ell_{x y}$, then we have $0<|\vec{C}|_{\ell} \bmod r=\left(\rho+\ell_{x y}\right) \bmod r<\ell_{x y}+\ell_{y x} \leq L(\vec{G}, \ell)$. By inequality (5), we have $|\vec{C}|_{\ell} /|\vec{C}|_{T} \leq r$ which is equivalent to $|\vec{P}|_{\ell}-r|\vec{P}|_{T} \leq r \cdot T_{x y}-\ell_{x y}$, and hence $f_{\mathcal{T}}(x)-f_{\mathcal{T}}(y) \leq r \cdot T_{x y}-\ell_{x y}$. Putting this together with inequality (7), we arrive at inequalities (6), and hence $d_{r}(\varphi(x), \varphi(y)) \geq \ell_{x y}$ and $d_{r}(\varphi(y), \varphi(x)) \geq \ell_{y x}$.

Subcase II(b). If $\ell_{y x} \leq \rho \leq r-\ell_{x y}$, we still have $d_{r}(\varphi(x), \varphi(y))=\left(f_{\mathcal{T}}(y)-\right.$ $\left.f_{\mathcal{T}}(x)\right) \bmod r=r-\rho \geq \ell_{x y}$ and $d_{r}(\varphi(y), \varphi(x))=\left(f_{\mathcal{T}}(x)-f_{\mathcal{T}}(y)\right) \bmod r=$ $\rho \geq \ell_{y x}$.

This completes the proof of the 'if' part.
Proof of the 'only if' part of Theorem 6. Suppose that (\vec{G}, ℓ) has a circular r-coloring $\varphi: V(\vec{G}) \rightarrow[0, r)$. We will show that \vec{G} has a good initial marking T such that $\left.\max _{\vec{C} \in \mathcal{M}(\vec{G})}|\vec{C}|_{\ell}| | \vec{C}\right|_{T} \leq r$, which is a stronger result than what we state in Theorem 6. Define a mapping T which assigns to each arc $x y$ of \vec{G} a value from $\{0,1\}$ such that $T(x y)=1$ as $\varphi(x)>\varphi(y)$, and $T(x y)=0$ as $\varphi(x)<\varphi(y)$. Clearly, T is a good initial marking of \vec{G} such that $|\vec{C}|_{T}>0$ for each dicycle \vec{C} in \vec{G} and $\varphi(x)+\ell_{x y} \leq \varphi(y)+r \cdot T_{x y}$ for each arc $x y$ in \vec{G}.

Let $\hat{C}=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right) \in \mathcal{M}(\vec{G})$ such that $|\hat{C}|_{\ell} /|\hat{C}|_{T}=\max _{\vec{C} \in \mathcal{M}(\vec{G})}$ $|\vec{C}|_{\ell} /|\vec{C}|_{T}$, where $v_{k+1}=v_{1}$ and $v_{i} v_{i+1}$ is an arc for $i=1,2, \ldots, k$. From the result proved in the previous paragraph, we see that $\varphi\left(v_{i}\right)+\ell_{v_{i} v_{i+1}} \leq \varphi\left(v_{i+1}\right)+r \cdot T_{v_{i} v_{i+1}}$ for $i=1,2, \ldots, k$. Adding up both side of the k inequalities separately, we get

$$
|\hat{C}|_{\ell}=\sum_{i=1}^{k} \ell_{v_{i} v_{i+1}} \leq \varphi\left(v_{k+1}\right)-\varphi\left(v_{1}\right)+r \cdot \sum_{i=1}^{k} T_{v_{i} v_{i+1}}=r \cdot|\hat{C}|_{T},
$$

and hence $\max _{\vec{C} \in \mathcal{M}(\vec{G})}|\vec{C}|_{\ell} /|\vec{C}|_{T} \leq r$, that completes the proof of the 'only if' part.

References

1. W. Deuber and X. Zhu, Circular coloring of weighted graphs, J. Graph Theory, $\mathbf{2 3}$ (1996), 365-376.
2. A. Ghouila-Houri, Sur l'existence d'un flot ou d'une tension prenant ses valeurs dans un groupe abélien, C. R. Acad Sciences, 250 (1960), 3931-3932.
3. L. A. Goddyn, M. Tarsi and C. Q. Zhang, On (k, d)-colorings and fractional nowhere zero flows, J. Graph Theory, 28 (1998), 155-161.
4. A. J. Hoffman, Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, in: Combinatorial Analysis: Proc. of the Tenth Symp. in Appl. Math. of the AMS, (R. Bellman and M. Hall Jr., eds.), Amer Math Soc, 1960, pp. 113-128.
5. G. J. Minty, A theorem on n-coloring the points of a linear graph, Amer. Math. Monthly, 69 (1962), 623-624.
6. B. Mohar, Circular colorings of edge-weighted graphs, J. Graph Theory, 43 (2003), 107-116.
7. Z. Tuza, Graph coloring in linear time, J. Comb. Theory, Ser. B, 55 (1992), 236-243.
8. A. Vince, Star chromatic number, J. Graph Theory, 12 (1988), 551-559.
9. Hong-Gwa Yeh and Xuding Zhu, Resource-sharing system scheduling and circular chromatic number, Theoretical Computer Science, 332 (2005), 447-460.
10. Hong-Gwa Yeh, A method to obtain lower bounds for circular chromatic number, Taiwanese J. Math., 12 (2008), 997-1005.
11. Hong-Gwa Yeh, A connection between circular colorings and periodic schedules, Discrete Math., 157 (2009), 1663-1668.
12. Xuding Zhu, Circular chromatic number: a survey, Discrete Math., 229 (2001), 371410.
13. Xuding Zhu, Circular colouring and orientation of graphs, J. Comb. Theory, Ser. B, 86 (2002), 109-113.
14. Xuding Zhu, Recent developments in circular colouring of graphs, in: Topics in Discrete Mathematics, (M. Klazar, J. Kratochvil, J. Matousek, R. Thomas and P. Valtr, eds.), Springer, 2006, pp. 497-550.

Wu-Hsiung Lin
Department of Mathematics
National Taiwan University
Taipei 100, Taiwan
Hong-Gwa Yeh
Department of Mathematics
National Central University
Chungli, Taoyuan 320, Taiwan
E-mail: hgyeh@math.ncu.edu.tw

[^0]: Received January 20, 2010, accepted May 20, 2010.
 Communicated by Hung-Lin Fu.
 2010 Mathematics Subject Classification: 05C15.
 Key words and phrases: Circular chromatic number, Digraph.
 ${ }^{1}$ Partially supported by the National Science Council under grant NSC95-2115-M-002-013-MY3.
 ${ }^{2}$ Partially supported by the National Science Council under grant NSC97-2628-M-008-018-MY3.

