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ON A CLASS OF OPERATORS FROM WEIGHTED BERGMAN SPACES
TO SOME SPACES OF ANALYTIC FUNCTIONS

Zhi Jie Jiang

Abstract. Let D = {z € C: |z| < 1} be the open unit disk in the complex
plane C, H(D) be the space of all analytic functions on I, ¢ be an analytic
self-map of D and «w € H (D). Define operators by DW,, ., f = (u- fop)’ and
WouDf = (u- f op) for f € H(D). In this paper we characterize bounded
operators DW,, ,, and W, ,,D from weighted Bergman space to Zygmund-
type space, Bloch-type space and Bers-type space on the open unit disk. We
also give some sufficient and necessary conditions for these operators to be
compact operators in terms of inducing maps ¢ and w.

1. INTRODUCTION

LetD = {z € C: |z|] < 1} be the open unit disk in the complex plane C, H (D)
be the space of all analytic functions in D and dA(z) be the area measure on D. For
p € [1,00) and « € [—1, 00), the weighted Bergman space A% (D) = AL consists
of those functions f analytic in I such that

111 = [ 5P 2 dAG) < o

The weighted Bergman space Af, with the norm || - || 4» is a Banach space.
For 3 € [0, 00) the n-th weighted-tpye space consists of all f € H (D) such that

sup(1 — |21%)7] £ ()] < oo,
zeD

where n € Ny. For n = 0 the space is called the Bers-type space and is denoted by
AZ. With the norm
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1£llag = sup(1 = |21%)7] f(2)]
z€D

AZ is a Banach space. For n = 1 it is called the Bloch-type space B3°. Under the
norm

1fllBz = | £(0)] +sug(1 — 21711 (2)]
FAS
BF becomes a Banach space. Define
B ={f € BY : (0) =0},

Then B is a closed subspace of B3 For Bers-type spaces and Bloch-type spaces
on the unit disk or the unit ball and some operators on them, see, e.g., [1, 5, 6, 11,
13, 15, 18, 19] and the references therein.

When n = 2, we call the space the Zygmund-type space on the unit disk and
denote it by Zg°. If 3 = 0, it is called the Zygmund space. Recall that the
Zygmund-type space consists of all f € H(ID) such that

sup(1 — [2*)71f"(2)] < oo.
zeD
A natural norm on the Zygmund-type space can be defined as follows
£z = 1£(0)| + [ £'(0)] +81€15(1 — 121" (2)1.
With this norm the Zygmund-type space becomes a Banach space. We define

Z5o=A{f € 25 : f(0) = f'(0) = 0}.

Obviously, Z50 is a closed subspace of Z3. For Zygmund-type space on the unit
disk or unit baII and some operators on it can be found, e.g., in [8, 9, 10, 14].

Let ¢ : D — D be an analytic self-map of D and v € H(D). For f € H(D),
the weighted composition operator W, ,, is defined by

Wouf(2) = u(2)f(¢(2)), ze€D.

By using the weighted composition operator W, ,,, for f € H(ID) we define the
following two operators:

DWw,uf(z) = (’LL fo (P)/(z)v zeD
and
WouDf() = (u- ' og)(z), z€D.

If u=1onD, W,; = C, is called the composition operator. When ¢(z) = z,
W.. = M, is the multiplication operator. During the past few decades, weighted
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composition operators have been studied extensively on spaces of analytic functions
on the unit disk or the unit ball. For some recent results on these operators, see
[2, 4,9, 11, 13, 15, 18, 19].

If w=1onD,then DW,, = DC, and W, 1D = C,D are called the products
of differentiation and composition. Hibschweiler and Portnoy [7] considered the
behavior of the differentiation on the range of the composition operator on Hardy
or weighted Bergman spaces on the unit disk. Recently, Ohno [12] has studied the
products of differentiation and composition on Bloch and little Bloch spaces on the
unit disk. A natural problem is to investigate bounded or compact operators DW., ,,
and W, ,.D between two given spaces of analytic functions in terms of inducing
symbols ¢ and u. Here we characterize bounded operators DW.,, ,, and W, , D from
weighted Bergman space to Zygmund-type space, Bloch-type space and Bers-type
space on the open unit disk. We also give some sufficient and necessary conditions
for these operators to be compact operators.

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other. The notation a = b means that there is a
positive constant C' such that a/C < b < Ca.

2. AUXILIARY REsSuLTS

Here we quote and show several auxiliary results, which will be used in the
proofs of main theorems.

The following lemma is also right for the bounded operator W,, ,D : A%, — Zg.
Since the proof is standard, it is omitted (see, e.g., Proposition 3.11 in [3]).

Lemma 2.1. Suppose ¢ is an analytic self-map of D, v € H(D) and the
operator DW,,,, : Aq — Z§° is bounded, then the operator DW,,, : Ao — Z°
is compact if and only if for bounded sequence (f,)nen in AL such that f,, — 0
uniformly on every compact subset of D as n — oo it follows that

Jim [[DWo, ful 25 = 0.

Lemma 2.2. ([17, Theorem 3.1]). Suppose z € D, o > —1, then for ¢ > 0 we
have

1 (1 - Jw)e
— = — ~ __dA .
A= 2P) / 1= zapereri AW

Lemma 2.3. Suppose p > 1, o > —1 and w € D, then for ¢ > 0 the function

(1= w5
fwﬂf(z) = 1 20td
(1—zw) " »
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belongs to A% and || fu,¢ll4» < 1.

Proof. By an easy calculation and Lemma 2.2, we have
fulfy = [ a1 = 5)%aA)

(1—1zH°
+24pt
= (1—|w)" p/‘l zw‘2o¢+4+ptdA(z)

=

Lemma 2.4. ([17, Proposition 2.5]). Suppose p > 1, a > —1, then

fe)=(a+) [ %f( JaA(w)

for f € AL and z € D.
When n = 0, the following lemma was proved in [16, Theorem 2.1]. Here by
using the Jensen’s inequality we prove it for each n € N.

Lemma 2.5. Suppose p > 1, a > —1, then there exists a positive constant C'
independent of f such that

11z

(1— 225

Proof. For f € A%, Lemma 2.4 shows that

@ f6)=(a+1) [ %f( dA(w)

©) IfMz)<c

for all z € D. Differentiating in (2) under the integral sign n times, we have

f(n / 1_"“)‘ ) f(w )dA(w).

(1 — zw)atnt2

Then
n — [w]?)*]f (w)]
?3) 7™M (2)] < Cq / 1_2w‘a+n+2 dA(w).
By Lemma 2.2, this implies
1 (1= [w?)®
— = [ ————~ _—dA(w).
“ A= = Jo T zwerm2 ()

From (4) and applying Jensen’s inequality in (3) and an elementary inequality, it
follows that
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(1= Pyeisep < co - sy [ L0 da )

b |L— zwjetnt?
©) 11,

<P Ha__
G FOL

where C' = 2(a+n+2)/pC - From (5), we obtain the desired result.
3. THE OpERATORS DW., ,, : AL — Z5° AND W, D Ab — Z5°

We first give the conditions for DW,,,, : Aa — Z5° and W, ,D : Aq — Z5°
to be bounded operators.

Theorem 3.1 Suppose ¢ is an analytic self-map of D and v € H (D), then the
operator DW,,, : Ah — ZF is bounded if and only if the following conditions
are satisfied:

(i) sup — L) < oo
2€D (1 — |p(2)[2)
. (1 B ‘2‘2)ﬂ " ! I " " .
(i) sup iz B9 (2) 4 30 ()¢ (2) + u(2) " (2)] < oo
2€D (1 — |p(2)[2)1 5
(1 |2?)°

(i) sup W (2)¢(2) + u(2)¢ (2)6(2)] < o0

9 at2
€D (1 — [p(2))*"

(1—121*)”
3tz

(iv) sup [u(2)l¢(2)]* < oo

€D (1 = Jp(2)?)

Moreover, if the operator DW, ,, : AL, — ngo is bounded, then

HDWso,uHA‘;HZEfO

(1= 12

= sup o 30 (2)9(2) + 3U ()9 (2) + ()¢ ()
€D (1 - [p(2)[1)' T
(6) (1 — ‘2‘2)ﬂ I ! 2 ! 1"
+sup e[V (¢ ()7 + u(2)e ()¢ (2)|
B (1= [p() [ ﬂ
psup — D 4 sup — LD
€D (1 [(2)[1)** €D (1 - |p(2)2) >

Proof. First suppose the operator DW,,,, : AL — Zg is bounded. Take
functions f(z) = z and f(z) = 1. Then
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sup.ep(1—[2*)7|u" (2)0(2) +3u (2)¢' (2) +3u/ (2)¢" (2) +u(2)9" (2) |

(7
< [[DWpuzlzg < CIDWo |
and
(8) sup(1 — [2[*)7[u"(2)| < |DWulllzg < C|DW,ull.

zeD

By these facts and the boundedness of ¢(z),

©) Sggﬂ — |21)2 134" (2)¢'(2) + 30/ ()" (2) + ul2)¢""(2)| < C| DWp -

Taking functions f(z) = 22 and f(z) = 23, we have
igg(l—\2\2)ﬂ|U"'(Z)<P(Z)2+6U"(2)<P'(Z)<P(Z)
(10) 460/ (2)¢"(2)p(2) +6u'(2)¢ (2)°
+6u(2)¢(2)¢" (2) +2u(2)¢" (2)¢(2) | < | DWpu2? | 25 < C DWopyull,
and
supep(1 — [2[%)7[u"” (2)0(2)® + 9u" (2) ' (2) ¢ (2)?
+18u/(2)p(2)¢(2)? + bu(2)¢' (2)°
+H18u(2)¢(2)@'(2)9" (2) + 9u'(2) " (2)i0(2) + Bu(2)p(2) %" ()|

< [DWouz?|ze < ClIDWoul-

(11)

By (8) and the boundedness of ¢(z),

(12) sug(l — [2[*)7|u" (2)|p(2) ] < C|DWyl,
ze

and

(13) sug(l — [2[*)7|u" ()| p(2) P < C|DWyp -
ze

From (9), (10), (12) and the boundedness of ¢(z), it follows that

(14) Slel]g(l — 2?1 (2)¢'(2)° + u(2)¢ ()" (2)| < CIDWopal.

Inequalities (9), (11), (13), (14) and the boundedness of (z) imply that
(15) sgg(l = [zP)[u(2)||[¢'(2)° < CIDW,ull.
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By Lemma 2.3 we know that for w € DD the function

foin = Ao
w — 2at4

(1= zp(w)) »
belongs to A7 and sup || fu | 4z, < C. Since DW,,,, : Aq — Z5° is bounded,
webD

ClIDWoull = [[DWeufullzg = sgg(l = [21)°|u"(2) fulo(2))

+3u”(2) f,(9(2)¢'(2) + 30/ (2) fiy(0(2)) ' (2)?
+3u/(2) £ (2(2))¢" (2) + 3u(2) fu,(#(2)) @' (2) " (2)
+u(2) £ (9(2)¢'(2)° + ul2) fi,(9(2)) " (2).

By the calculation and taking z = w, it follows that

(16)

CNDWial 2 (1= o) — )y, 2
1-le@R) 1 -lp)P)"
o, POV e (@)
) (= R e
L33, 2C) U(Z)w’(z)w;(f) L1, 2 U(Z)w;(ZL
A= le@P™ S (1= lp2)P)*
4y P
(1- o))+
where
I — 20¢p—|—47 ly — l1(2a—;4 +p) and 15 — l1l2(2a—;4+2p)'

Then, by (17)

i - m‘g W), o s
A e@PTE e
+ QO(Z)’U,(Z)QO”/(Z) (1_‘2‘2)ﬂ 2"11,/”(2!)‘
g ORRT 1= lp(z))
U PRI ot o)l (2) + o) 216 )
(1= lp(2))
(== e ()

1P +i\ u(2)]|¢'(2)P.
(2

< CIDWoull +

+3lo

+l3
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For w € D, set

pu(e) = 20 (o)) 320+ 4+ 3p) (1 p(w) )
v a4+ 2 ( ( ))2;';;"—4 200+ 4+ 2p (1—2@)24—%
4 1= fe(w)] >3+i
(1 — zp(w))**
It is easy to check that
gu(p(w)) = ¢ w130 Juw(p(w)) =0, giy(p(w)) = 0 and g,/ (¢(w)) = 0.
(1 [p(w)))

By Lemma 2.3, we know that g, € A% and sup,,ep || 9wl 4» < co. From this, and
since DW,,,, : A% — Zgo is bounded, we obtain

(1_‘2‘2)ﬂ ///
(19) M—_Q‘ ( )‘ < HDWgoungZ‘x’ < CHDWSOuH
(1—|e(=)[2)
For w € D, taking
N et U Yl M €t 1 ) o A
(I—zp() 7 (A—zp@) T (1= 2p@)* >
L (1= lp(w)] )3+:—:;
T = )
we find
ha(p(w) = 0, Wy (o(w)) =0, Wi(p(w)) =0,
124 mg
W (p(w) = C—22
’ 0~ e

and hy, € Ag with sup,,ep [|hwll 4z < oo. Since DW,,, = Aq — Z5° is bounded,

1—|2]%)8 p(z 3
@0 RGN O < IDWeuhal 2y < CIDW,
— ()0 z P

For w € D, define

kw(z):_2a+4+3p(1—\<p( )\Z)Q—F 3a+6+4p (1 — [p(w)] )lﬁ
204+ 4+2p (1 _ o )) a+24p (1 zp(w) e
Cba+12+47p (1 Jp(w)[H)*" T lew)] )3+%
20 +4+2p (1 _ (w))“—t (1—z<p(w))3+2it4'
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Then
kw(p(w)) =0,  ky(p(w)) =0,  ky(p(w)) =0,

K (p(w) = C—2__
(1)) > 7

and k,, € Ag With sup,,cp ||kwl| 42 < oc. The boundedness of DW., ., implies that
1— 2\0 2

oy OolRCE
(1 =le(z)[?)"" »

Inequalities (18)-(21) imply that

o (Ll leC)

u'(2)¢'(2)* + U(Z)w’(Z)d’(Z)( < CDWo,ull-

3u”(2)¢ (2) +3u/(2)¢"(2) +U(Z)<P”’(Z)( <C[DWo,ull;

(I—lp(z))5
i.e. we have
(1= 122%le(2)]

sup
€D (1 —[p(2)]?)

Then for ¢ € (0,1),

ez |30 (2)9(2) + 3¢ (2)¢"(2) + U(Z)w’”(Z)‘ < CDWe,ull-

sup (1—[2[*° — |30 (2)¢' (2) + 3u/(2)¢" (2) + u(zw"'(z)(
{zle(2)>8} (1 — |p(2)]2) T
< C[DWoul,
and by (9),
(1—12»)" e Lo "
sup e B (¢ (2) + 30 ()¢ () + u(2)g (z)(

{zle(2)|<6} (1 — |p(2)[2)

SO sup (1= |73 ()¢ (2) 430/ (2) ¢ () ()" ()| < CIDWall
{z:lw(2)[<5}

from which it follows that

sup — T30 2) + 3006 (0) + u(2) )|
N
< CIDW, .

As the proof of inequality (23), by (15) and (20), we also have

1— |2]%)8
(24) sup ( | ‘)3+ﬁ
p

[u()|l¢'(2)]° < CIDWyul-
*€D (1 —Jp(2)[?)
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Similarly, by (14) and (21),
_12]2)8
25)  supsen —— 0 ~E o [V ()¢ () + ul2) ()¢ ()| < CUDWoou
—|p(z P
Hence conditions (4)-(iv) hold.
Moreover, by (19), (23), (24) and (25),

(1 |2]2)7

sup " (2)]
2€D (1 — |p(2)| 2);?
T CACECRSC
z — ez
0 (2)¢"( ;0 AlP) )l u(2)e ()0 ()
+u(z z)|+su o |u (2)e (2)"tul(z)e (2 z
¢ a fﬁ TlepEE Y N
z / 3
+ < C||DW,, 4|
L )3+l\ u(@)||¢'(2)P < C| DWW, |
By Lemma 2.5, for f € A% we have
IDW, . fll 25
= 1w fo @Y O+ I(u-f o o) O] +sup(1 ~ 2)°|(u- f o) (2)
— |(u- F o) ()] +|(u- fop)(0 |+su (1= 28" (2) F((2)
+3u” (2) f'(0(2))¢ (2) +3u( ) (¢ ( ))@'( )% 43U (2) f (p(2))¢" (2)
+3u(2) [ ((2))¢ (2)¢" (2)+u(2) [ (0(2))¢ (2) +u(z) f' (0(2))¢" ()]
(27) < CHfH (1 n sup (1 - |Z| 3u”(z)<p'(z)
R (1—|<P(2)| ot
+3u/ ()" () + u(=)¢” (2)|
(1_|Z|2)B / / 2 / 1z
+su ()¢ (2)2 + ul2) ()¢ (2)
“eb (1 _d@(lz)lg))ﬁﬂ z ¥ , ‘Tl ‘
—Z () ll¢/(2) s —“"g ens
2 (1 1o (z) ) PSS e S )

From conditions (i)-(iv) and (27), we conclude that DW,,, : AL — Zg° is
bounded. From (26) and (27), we also obtain the asymptotic relation (6).

Theorem 3.2 Suppose ¢ is an analytic self-map of D and v € H (D), then the
operator W, D : A, — ZF is bounded if and only if the following conditions
are satisfied:

(1= [2[%)°

1+L‘

(4) sup

€D (1= Je(2) )

(2)] < o0;
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(1— 2137

G sw 2 ()¢ (2) + () ()] < oo
2B (1 [p(2) )
(#4) sup (1= J2) lu(z)] < oo.

34 at2
€D (1 - [p(2) )+

Moreover, if the operator W, ,D : Aq — 255, is bounded, then

(1—1[2*"
1+%

WDl pp 200 = 4
IWeuDllag— 25, = sup - \@(Z)\Z)ﬂ |u” (2)]
(1—1z%)
(28) +sup PR lu(z)]
(1 — ‘2‘2)ﬂ I ! "
e |2u/(2)¢' (2) + u(2)¢"(2).

Proof. Suppose the operator W,, ,D : A% — Z3° is bounded. Taking functions
f(z) =z and f(z) = 22, we have
(29) igg(l = )| ()] < |WepuD2|| 232 < C| WD
and
(30) sg}g(l — [21%)P|u" (2)p(2) + 20/ (2)¢'(2) + u(2)¢"(2)| < C|WuDl.
Combing these facts with the boundedness of ¢(z), we have

(31) Sgg(l — |21)%120/(2)¢' () + u(2)¢"(2)| < C|Wou D).

Let the function f(z) = z3. Then

igg(l - \2\2)ﬂ|u”(z)<p(z)2 + 2u(z) + 4/ (2) @' (2)p(2) + 2u(z)<p”(z)<p(z)|

(32) < CW,uD|.
By (29), (31) and (32),

(33) sug(l =27 u(2)] < C[Wyu D).
FAS

For w € D, by Lemma 2.3 we know that the function

2

(1— \¢<w>\2>2“—?:
(1—zp(w)) 7

fuw(z) =
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belongs to A7 and sup || fu |4z, < C. Since W, D : Aq — Z5° is bounded,
webD

ClWeouD|| = [WeuD fullzg > Sgg“ — 21| (2) fu(p(2))

+2u'(2) i (0(2)) ' (2) + u(2) £ (9(2)) + u(2) £y (0 (2)) " (2)]-

Now write

(34)

_ 200+ 4 l1(2()¢—|—4+p) . l1l2(206+4+2p)

lh = , lg=——""andl3 .
p p p
Then
YIS/
ClIWpDl = (1~ o2y — 2
(1= o))
o ()
- ooy PEPVEE) G
(- @R - e
g, P2) u(z)e"(
2 +ﬁ7

In view of (35), we have

1— |2|2)8p(2)|2
1o L ED N ot () (2) 4+ u(2)(2)] < CIDW
(36) (1 - “P(Z)P) P
L ERP G, (= eRPle) ()
14282 3 3pafz -
(1 - leaP) 5 (1 P

For w € D, set

sl — 0= \@)j e \go(w)\?lﬁ - \w(w)\fﬁ
(1—zp(@)5 (=) ™5 (1 2pw)* T
, Lol
(1 - Zp(w))* %
Then
gulp(w) =0, gl (o) =0, gllp(w) =0,
(w)’
Yp(w) =C—2
o (1= lo(w) )5

and g, € At With sup,,cp 9wl 4z, < co. Since Wy, , D : A — Z5° is bounded,
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(1~ [P lo()?
(37) ()] < WDz < ClWouDl-
(1 |p(2) )5 Zﬁ

For w € D, set

b2y = 20 A3 (o)) 30+ 4+ 3p) (1 [p(w))*
w a+2 (1 - zp(w ))% 20+ 4+ 2p (1_ZW)Q+M
L A letw) >3+i
(1 - zp(w)**
It is easy to see that
(o) = 0. W, () =—— PO b (o)) =0 and A (p(w)) =0
(1= [p(w)))

By Lemma 2.3, we know that h,, € A%, and sup,,cp || hw | 42 < co. From this, and
since W, D : Aq — Z5° is bounded, we obtain

1—z»)”?
@) W) < WiDhullzy: < CIWyDI|
— ()0 z P

Inequalities (36), (37) and (38) imply that
(1= [21*)le(2)
(1= le(=)?)
i.e. we have
sup (L= 2l (2) P
€D (1 —[p(2)?)
Then for § € (0,1),

(39) W(2)¢(2) + u(2)¢"(2)| < CIW,u Dl

20/(2)¢/(2) + u()¢" ()| < CIW,p DIl

(1— ‘2‘2)5 , , "
sup 20/ (2)¢" (2) +u(z)ep (Z)‘ < ClWeuDll,
{=le(2)|>8} (1 — |p(2)[2)
and by (31),
_12)8

{zle(2)1<8} (1 — |p(2)?)

<C s (1= )2 ()0 (2) + u(2)9"(2)| < CIIWpu Dl
{z:lw(2)|<6}
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from which it follows that

(1-121)”
242

(40) sup
€D (1 - fe(2)[?)

As the proof of inequality (40), by (33) and (37), we have

(1-12»)”
3tz

2u/(2)¢(2) + u(2)¢"(2)| < CIWou D

(41) sup
€D (1 - Je(2)[?)

Similarly, by (29) and (38),

(1-12»)”
14 et2

u(2)] < Cl[WeuDll.

(42) sup
€D (1= Je(2) )

Therefore, conditions (4)-(iv) hold.
Moreover, from (40), (41) and (42), it follows that

|u”(2)] < C[WeuD.

(1 - ‘2‘2)ﬂ "
B
(43) + sup (- ‘ZWQJ_Q 2/ (2)¢(2) + u(2)¢" (%)
€D (1 — |p(2)[2)**
(1—|z%)P
+§gg IR lu(2)| < C|Wyu D

By Lemma 2.5, for f € AL we have
IWeuD fllzge = [u(0)f(¢(0))] + [(u- f" o ¢)(0)]

+sup(l — ‘2‘2)5|u”(z)f’(<p(z))

zeD
+2u(2) f" (0(2)) @' (2) + u(2) [ (0(2)) + u(2) ' (0(2))¢" (2)|
44 (1 - ‘2‘2)ﬂ "
@Y <l (1 + 50 o
(1—z[»"
+su oz |u(z)|
< (1= o)
1—1z / / "
+§161]g M _(‘(P(Z‘)‘L))Q‘F% 2u'(2)¢' (2) + u(z)e (z)‘)

From conditions (i)-(iv) and (44), we prove that W,,,D : Aq — Z5° is bounded.
From (43) and (44), we also obtain the asymptotic relation (28).
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The following theorem characterizes the compact operator DW.,, ,, : A, — Zg.

Theorem 3.3 Suppose ¢ is an analytic self-map of D and v € H (D), then
the bounded operator DWW, ,, : A5, — Zz° is compact if and only if the following
conditions are satisfied:

. . (1 - ‘2‘2)5 "

1 lim —u"(2)| = 0;

. o

(i1)  lim (1= o) 3u”(2)¢' () + 3u/(2)¢" () + u(z)ap”’(z)‘ = 0;

PO (1= Jp(2) ) 5 |

im (1_‘2‘2)5 u/z /22 ulz /z //z .
@) AP ()| =0

: . (1—[z[»)° A3 —
(iv) o L u(2)|l¢'(2)]" = 0.

Proof. Suppose conditions (i)-(iv) hold. To prove that the operator DWW, ,, :
AP — Zg° is compact, by Lemma 2.1, it is enough to prove that if (f,)nen is a
bounded sequence in AL such that f,, — 0 uniformly on every compact subset of D
as n — 0o, then limp .o [|DWo,ufnllzg = 0. Let (fn)nen be a sequence in AL
with sup,,en || fnll a4z < M and f,, — 0 uniformly on every compact subset of I as
n — oQ.

By the assumptions of the theorem, we have that for any ¢ > 0, there exits a
constant § € (0, 1) such that § < |p(z)| < 1 implies that

_ [2]2)8
(45) ; Elm‘z)‘\?)) ()] < /a0t
(46) (1 - ‘2‘2)5 3u//(z)()0/(z) + 3u/(z)()0//(z) + u(z)()o///(z)‘ < 8/4M
(1 - lp(2)[2)' 5 ’
(47) (1 - ‘2‘2)5 ’LL/(Z)QO/(Z)2 —|—’LL(Z)Q0/(Z)Q0”(Z)‘ < 8/4M
(1—lp(2)[)* 5 ’
and
_ [2]2)8
() ; <‘1 ( ‘)“2)?%%_2 (I < e/an
1oz 3

Applying Lemma 2.5, this implies
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(49)

+3U( ) fale(2)e"(2) + u(2) 1 (@(Z)M”’(Z)\

+sup(l - |2%)713u'(2) £/ (0 (2))¢'(2)°

+3u(2) [ (0(2)) ' (2)¢"(2)| + sup(l - |2[%)7|u(z)

H (- fro @) (0) + [ fn o @)"(0)]
sup (1= |2*)°|u"(2) fal(2))]

{zeD:|p(2)|<5}

+ sup (1= 2|0 (2) fal0(2))]
{zeD:6<|p(2)|<1}

+  sup (1= z)7Bu(2)f
{zeD:|p(2)|<5}

) fr
+3u/(2) f,(0(2))¢"(2) + u(2) f.(0(2)) " (2)]

)
+ sup (1= 273" (2) fr((2))¢ (2)
{z€D:0<p(2)|<1} )

+3u/(2) f,(0(2))¢"(2) + u(2) f.(2(2))"(2)]

+ o osup (L= [2P)73u/(2) £ (0 (2)) ¢ ()
{z€D:lp(2)| <6}

+3u(2) [, ((2)) ' (2)¢"(2)]

+ sup (1= 1211734/ (2) £ (0(2))¢'(2)?
{z€D:0<[p(2)|<1}

+3u(2) [, ((2)) ' (2)¢"(2)|

+  sup (1= [z |u(2) £ (e(2) €' (2)°
{zeD:|p(2)|<5}

+ sup (1— |z ’6|u ”/(@(z))@/(z)g‘
{zeD:6<|p(2)|<1}

H(u- fo 0 @) (0)] + (- fn 0 9)"(0)]

<lzz s |ful2)]

{z€D:|z|<6} 3

1 n

Lo sup (1= 2 |u ( )‘anHA
{zema<le()l<1} (1 |p(2)[2) %

+L1  sup  |fh(2)]

Zhi Jie Jiang
HDWgo,uanZE"
= sup(L = %71 fu o @) ()] + (- S0 @) O+ (- fo00)"(0)
< sup(1=[2f) [ (2) al(p (2))] +50 (1= =) 30" (2) £ (0(2)) ¢ (2

' (e(2))¢' (2)°]

{2€D:|2|<6}
1—|z[%)°
+C sup 0 )1 =z |3 (2)¢'(2)
{zeD:a<le(2)|<1} (1 — |p(2)[2)' P
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+3u/(2)"(2) + u(z)<P”/(Z)‘an”Ag +Ly sup |f(2)]

5 {z€D|2| <6}
.12
+C sup (1~ 2] )2 ﬁ|3u’(z)<p’(z)2
{z€D:8<p(2) <1} (1 — |p(2)[?) T
+3u(2) (2)¢"(2)| | full a2
+Ly sup  |f7(2)|
{z€D|2| <6} 5
1— |22
K s O @I )Pl
{zeD:0<|p(2)|<1} (1 — |p(2)]2)"
<lllzg  sup | fal2)| +Ce
{z€D|2| <6}
+Li sup |fA(2)|+ L sup |f1(2)]
{z€D:|2| <6} {z€D|2| <5}
+Ls  sup |FV(2)] (w0 @) (0)] + [(u- fno0)"(0)],
{z€D|2| <6}
where
Ly = sup(1 = [2)° |3/ (2)¢(2) + 30/ (2)¢" (2) + u(2)"'(2)],
zeD
Ly = sup(1 = |27 |/ (2)¢'(2)? + u(2)¢/ (2)¢"(2)|
zeD
and

Ly = sup(1 — |2[*)7u(2)[|¢'(2) .
zeD
Since {z € D : [2] < ¢} is compact, it follows that supy.cp;|.j<s} [fn(2)| — 0. By
Cauchy’ estimate, if f,, converges to 0 on every compact subset of D as n — oo,
then f/, f/ and f/"” converge to 0 on every compact subset of D as n — oo. Using
these facts, we have lim, .o [|[DWy o fr || zg =0. Therefore, DW,,,, : AL — 25
is compact.

Now we suppose that DW,,,, : AL — Zg° is compact. Let (z,)nen be a
sequence in D with |p(z,)| — 1 as n — oo. If such a sequence does not exist,
conditions (4)-(iv) are automatically satisfied.

Take

a+2
(L Jp(n) )7

(1—2p(z) 7

Then sup,ey || fnllaz < C and f,, — 0 uniformly on compacta of D as n — oc.
Since DW,,, + Ag — Z5° is compact, | DWy,ufullzge — 0 as n — oo. As the
proof of Theorem 3.1, we have

fal2) =




2112 Zhi Jie Jiang

( ‘z ‘ ﬂ‘g —)u//(zn)‘:o/(zn) +3 mu/(zn)@//(zn)

R O L A R CR FIE D
+ Qp(zn)u(z)gpm(zn) goufn”"" ( ‘Zn‘ )j‘u”/(zn)‘
(50) (1“‘“2”)‘22); 2 | 1— Jp(za)|?)
3ty LD TR )22 4 () (20 ()
(1= [p(za)[2)2F5
(1= [2al®)Plo () P s
+ ()|l ().
S le )
Set
pufz) = 20 AT (o) P) 7 300+ 44 3p) (1~ fe(en) P25
n a—+2 (1-z0(z ))%f1 20+ 4+ 2p (1—,2@)2—’—%
(1 - p(z) >
+ 2a+4
(1 — zp(zn) > 5
Then
gn(@(zn)) = ¢ =75 In(©(2)) = 0, gn(0(zn)) = 0 and g, (¢(zn)) = 0.
(1= lp(z)))

By Lemma 2.3, we know that g, € A% with sup,,cy [|gnll4» < oo and g, — 0
uniformly on every compact subset of D as n — oo. From this, and since DWW, ,, :
AP — Zgo is compact, we obtain

1—|z,
(51) ( ‘ ‘ ) = "U,/”(Zn)‘ < HDWgo,ugnHZEo — 0,
(1= lp(zn)?) 7
as n — oo.
Taking
at2 at2 at2
PR €l U 1) ) I €l - 1) ) S € el € ) G
n\%) = 2014 — {1214 — o 214
(1= 2¢(2 )) g (1—zp(za)) "7 (1= 2(z))*"
(1—Je(za)l3)*"
+ __‘__ )
(1= zp(z))*"
we have
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and h,, € Ag with sup,,c ||hnll 42 < oo and h,, — 0 uniformly on every compact
subset of D as n — oco. Since DW,,,, : AL — Zgo is compact,

1-— zn2 B Zn 3
G2 eIl e < IDW bz — 0.

at2
(1= Jp(zn)|2)F 5
as n — oQ.
Define
at2 at2
k() = 20 4T3 (- lp@?) T 30t 64 dp (1 fel) )"
n 20+ 4+ 2p (1_2()0(2”))%'—4 a+2+p (1_2()0(—2”))14—%'—4
at2 at2
C6a 124 T (L lez) DT (= ez
204420 (1 200z (1= 200t
Then , "
kn(‘P(Zn)) =0, kn(‘P(Zn)) =0, k), (‘P(Zn)) =0,
oCon)
k! (p(z) = C R TTry
(1= Jp(z))* "

and k,, € Ag with sup,,c ||kn|| 42 < oo and k, — 0 uniformly on every compact
subset of D as n — oo. The compactness of DWW, ,, implies that

- (A= lznl) () W (20) 0 (20)% + w(zn) @ (20) " (2
(53) (1 - “P(Zn)‘2)2+% ( n)@( n) T ( ”)(‘0( ”)‘P ( n)
=<

[DWe,uknl 252 — 0,

as n — oo.
Since |¢(z,)| — 1 as n — oo, then by (51), (52) and (53) we prove that
conditions (i), (é¢) and (iv) hold. Moreover, inequalities (50), (51), (52) and (53)
imply that
I (1_|2n|2)ﬁ|@(2$ 3u//(zn)()0/(zn) +3u/(zn)()0//(zn) _’_u(z)@///(zn)

(1—p(zn)|2) P
SN DWoufnllze + 1DWougnllze + [DWeouhallzge + (| DWpuknll 2z — 0

as n — oo, from which, and since |p(z,)| — 1 as n — oo, the condition (7i7) is
obtained. This completes the proof of the theorem.

Theorem 3.4 Suppose ¢ is an analytic self-map of D and v € H(D), then
the bounded operator W, , D : AL, — Zg° is compact if and only if the following
conditions are satisfied:

(1—11»)"
1+%

(7) lim

A (1
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_[2]2)8
(1 ‘ ‘ l_}_ﬁ|2u/(z)@/(z)+u(z)(p//(z)| ~0:

(i4) lim
PRI (1 - [o(2)]?)

(-2

342

(vit) lim lu(z)| = 0.

1 (1= [p(2))

Proof. First assume that conditions (i)-(iiz) hold. To prove that the operator
WouD @ AL — Zg° is compact, by Lemma 2.1, it is enough to certify that if
(fn)nen is a bounded sequence in A%, such that f,, — 0 uniformly on every compact
subset of D as n — oo, then lim, oo HWWDangEo = 0. Let (fn)nen be a
sequence in A%, with sup,,cy || fll 4z < M and f,, — 0 uniformly on every compact
subset of D as n — oc.

By the assumptions of the theorem, we have that for any ¢ > 0, there exits a
constant § € (0, 1) such that § < |p(z)| < 1 implies that

ERTENC
) oy <efa
_12[2)8
(55) a (‘1 ( ‘)“2))2+ﬁ ’2u'(z)<p'(z) + u(z)ap”(z)’ <e/3M,
and
_[22)8
(56) ; _(‘;(Z\ML))W_? ju(z)| < &/3M.

Lemma 2.5 implies that
IWeuD fnllz5 = sup(1 - 121)71(u- fr, 0 0)"(2)]
FAS
H(u- £, 00)0)| + [(u- f, 0 ©)'(0)]

< igg(l— \2\2)ﬂ|U”(2)fé(<P(2))|+§1€1§(1— |2%)7 |24/ () £ (9 (2))¢'(2)

+u(2) £/ (0(2))¢" (2)] + sup(1 = |2%)%Ju(2) £ ((2))]
H (- fr00)0) +[(u- £ 0 9)(0)]

< sup (=[P (2) frle(2)]
[2eD:|(2)|<0}

+ sup (1= 12271 (2) £} (e(2))]
{zeD:6<]p(2)|<1}

+sup (1= [2)7)20(2) £7/(0(2)) ¢ (2) Ful2) il (0 (2) " ()]
{z€D:|p(2)[<5}
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+ sup (1= |27 |20/ (2) £/ (0(2)) @' (2) + u(2) £ (0(2))¢" ()
{z€D:0<p(2)|<1}

+  sup (1= 2 u(2) £ (o(2)]
[2eD:l(2)|<0}

+ sup (L= |21 u(2) £ (¢(2))]
{ze]]]):6<|go(z)|<1}

(- fh 0 @)(0)] + |(u- £ 09)(0)]
< HUHZEO sup ‘f{l(z)‘
{z€Dx|2|<6}
(1= |23 (2)|
+C :
(zeD52Ie()1<1) (1 — [o(2) )1+¢”f Lz

+L1  sup |f(2)]

{z€D:|2| <6}
1—-|z
0 s Cl ;L! (2)¢'(2) + u(2)e" () fulL g
(zems<le(l<1) (1 — [p(2)[?)
L 1" C (1 — ‘z‘ )
fLo swp [SIAHC sw D @l
{z€D:|z|<6} {z€D:6<|p(2) |<1}( ‘ ( )‘ )
<ullzge  sup [fi(2)[+Ce+Ly  sup [f(2)[+L2  sup [f(2)]
{z€D:|z|<é} {z€D:|z|<6} {z€D:|z|<6}

+H (- f00) )+ [(u- £, 00)(0)],

where Ly = sup,ep(l |2[2)7[ 20/ (2) £7/(0(2))#'(2) + u(2) f1(¢(2)) " ()| and
Ly = sup,ep(1 — |2%)P|u(z)]. Since {z € D : || < 6} is compact, it follows that
SUP{.cmi|z|<s} | fn(2)] — 0. By Cauchy’ estimate, if f, converges to 0 on every
compact subset of D as n — oo, then f,, f// and f]" converge to 0 on every compact
subset of D as n — oo. Using these facts, we have lim,, HWWDanZEo =0,
i.e. Wy,D : Ag — Z5° is compact.

Now we assume that W, ,D : AL, — Zg is compact. Let (z,)nen be a
sequence in D with |p(z,)| — 1 as n — oo. If such a sequence does not exist,
conditions (¢)-(iiz) are automatically satisfied. Using the sequence (z;)nen We
define

fn( ) - (1 — ‘()O(Z—R)P)gaé .
(1 —zp(zn)) 7

Then sup,,ey || fnllaz < C and f,, — 0 uniformly on compacta of D as n — oc.
Since Wy, D : Ag — Z5° is compact, then [[W,,, quanoo —0asn — oo. As
the proof of Theorem 3. 2 we have
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(1 — ‘zn‘2)ﬂ‘§0('zn)‘2

Iz sz |2 ()¢ (2) + u(z) ¢ (2n)| < WD ful
gy (0l
(1= |zal®%l0(z)] | (1= 2Pl (za)
+ | ()| + 1 L fu(z0)-
(1 [o(z) )5 Y0 o))
Taking
gn(Z) a+2 a+2 at2
_ _(le)) +3<1—\so<z_n>\2>1;ﬂ_3<1—\so<z_n>\2>2;;
(59) (I—2p(z) 7 (=27 (1= zp(zn)* 7
(L= oz >3+f
T 1= o)
then
gn(0(zn)) =0, gn(0(zn) =0, gh(p(zs)) =0,
o)
9 ((20)) = C——F —
(1= lp(zn))**

and g, € Af with sup,,cy [|gwll 4z < oo and g, — 0 uniformly on compacta of D
as n — oo. Since Wy, D : A%, — Zgo is compact, then

1—|z,|? p P Zn 3
@0 el < WeuDlz 0
- ()0 Zn p
as n — oQ.
Setting
hn(z)
 2a+44+3p (1-p(z)) 7 | 3(2a+4+43p) (1— (2D
- _ 2a+44 [ 244
(61) a+2 (1—z<p(zn))% 2a+442p (1—z<p(zn))2+%
at2
(= fo(z) )
R 20044
(1— zp(zn)* 5
we also have
hap(za)) = 0, Wy(p(z0) = —— 20 W (o(2,)) = 0 and B(p(2)) = 0.
(1= p(w) )+

By Lemma 2.3, we know that h, € A% and sup,,ey |2 || 4» < co. From this, and
since W, D : AS, — Z°° is compact, we obtain

@ <‘ (‘Z)”“))Hi\ o/ (z)l[9(z0)] < Wi DLz — 0
o
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as n — oo.
From (60), (62) and since |¢(z,)| — 1 as n — oo, then conditions (7) and (7i%)
hold. Moreover, (58) (60), (62) and |¢(z,)| — 1 as n — oo show

(L= |znl®)?

L |20 () (2) + ) (o)
P

(63) (1 = le(zn)[?)
< WeuDfullzge + W uDgnllzg + [WeuDha| 2 — 0

as n — oo. Therefore, the condition (i4) is obtained.
From Theorems 3.1-3.4, the following corollaries hold.

Corollary 3.5 Suppose ¢ is an analytic self-map of D, then the operator DC',, :
AL — Z3° is bounded if and only if the following conditions are satisfied:

. (1 — ‘2‘2)ﬂ "
(i) s 167 (2)] < o0
€ (1= o))
.. (1- ‘2‘2)ﬂ ’ "
(i) sup FETRRIECI ' (2l (2)] < o0,
_1.2)8
(i74) sup (1= J2) I’ (2)]? < 0.

34 at2
€D (1 [p(2) )

Moreover, if the operator DC,, : A%, — Z/Cfo is bounded, then

(1= ]21)°
IDCylL gz, = s ]
0T (1 (o))
1—1z|?)”?
(64) sup — D1
B (1 [p()1)7
2\B8
— |z )
rsup— 0D

D (1— [(2)[2)"*

Corollary 3.6 Suppose ¢ is an analytic self-map of D, then the bounded op-
erator DC,, : A, — Zg° is compact if and only if the following conditions are
satisfied:

] 3 (1 — ‘2‘2)ﬂ " A
! A G e 0
(i) lim (1—1[2*"

2 /Z 1 p :07
lp(2)|—1 (1 _ “P(Z)‘2)2+% “P( )H‘P ( )‘
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(1= ]2
=l =0
P

(iii) lim
PRI (1~ p(2)]?)
Corollary 3.7 Suppose ¢ is an analytic self-map of D, then the operator C' , D :

AL — Zg° is bounded if and only if the following conditions are satisfied:

. (1 — ‘2‘2)5 1"

(i sup =z |¢(2)] < oo
B pepr )

’ (1= Jz)”

(i) su —
B (1= [

Moreover, if the operator C,D : A%, — ng’o is bounded, then

(1_‘2‘2)5 "
(65) CoDll 4z, =sup o] (2)[+sup ;
O D (1-|p(2) > 2D (1-[p(2)]?)

Corollary 3.8 Suppose ¢ is an analytic self-map of D, then the bounded op-
erator C,D : A% — 235 is compact if and only if the following conditions are
satisfied:

(1-121%)”
3pat2s

' . (1—1z|?)" , o
" |s0(1;)rln—>1 (1- “P(Z)‘Q)%—% |90 (z)| =0;
(1) lim -l _,

PRI (1= [(2)[2)2 5

4. AN APPENDIX

In this section, we formulate several results of the operator DW,, ,. We also
can give similar results of the operator W, ,.D. Here we omit them.

Theorem 4.1 Suppose ¢ is an analytic self-map of D and v € H(D), then
the bounded operator DW, ,, : A, — B3 is bounded if and only if the following
conditions are satisfied:

. (1 B ‘2‘2)5 "
(i) sup —r(2)] < oo
€D (1 - ()
(i) sup — Lo/ (2) + () ()] < oo
€8 (1 - p(2)[) "+
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(- |2%)°

ootz ‘U(Z)HSOI(Z)P < 0.
p

(4i7) sup
€D (1 —[p(2)]?)

Moreover, if the operator DWW, ,, : AL, — Bgfo is bounded, then

(1—]2%)7

DWoallar g = |
IDWeull az—55, sup o)) : Lu (2)]
(1127 N2
(66) sup PR |u(2)]]¢'(2)
poup— By a2
b (1-Jp(2)[2)

Theorem 4.2 Suppose ¢ is an analytic self-map of D and v € H(D), then
the bounded bounded operator DW, ,, : AL — B is compact if and only if the
following conditions are satisfied:

' . (1—1z|?)" , o
('L) |SO(1;)I|H_)1 (1 _ ‘4,0(2)‘2)% "U, (Z)‘ = 0;
(i) lim (1- ‘Z‘Q)ﬂ |2u/(z)()0/(z) + u(Z)(,O”(Z)‘ —0
A1 (1~ fo(z) ) v
_|212)8
(iii) lim (1—]z] )2+ﬁ‘ DI =0

le()=1 (1 — |p(2)[2)* 7

Theorem 4.3 Suppose ¢ is an analytic self-map of D and v € H(D), then
the bounded operator DWW, ,, : A5 — AZ is bounded if and only if the following
conditions are satisfied:

(1— 2137

(4) sup —[/(2)| < oo
<D (1= [p()) 5

. (12 '
(i) sup —u(2)||¢'(2)]| < 0.

8 0 ey I
Moreover,

(1= |2[35u/(2)] (1—21)°lu(z)|]¢'(2))
(67) [[DWopull 42— 400 <sup —— + sup —.
BT (-l e (- lp() T
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Theorem 4.4 Suppose ¢ is an analytic self-map of D and v € H(D), then
the bounded bounded operator DWW, ,, : A%, — AF is compact if and only if the
following conditions are satisfied:

. . (1- ‘2‘2)5 /

7 lim —|u'(2)] = 0;

Y A (1 P

. . (1- ‘2‘2)5 / _
" o 1 oy IR =0
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