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POSITIVE SOLUTIONS FOR A PREDATOR-PREY INTERACTION
MODEL WITH HOLLING-TYPE FUNCTIONAL RESPONSE AND

DIFFUSION

Yunfeng Jia, Jianhua Wu and Hong-Kun Xu*

Abstract. We deal with a predator-prey interaction model with Holling-type
monotonic functional response and diffusion and which is endowed with a sec-
ond homogeneous boundary condition. Via spectrum analysis and bifurcation
theory, we investigate the local and global bifurcation solutions of the model
which emanate from a positive constant solution by taking the growth rate as
a bifurcation parameter. Basing on the fixed point index theory, we prove the
existence of positive steady-state solutions of the model.

1. INTRODUCTION

Both mathematicians and ecologists are concerned with the dynamics of bio-
logical populations via the partial differential equation method, in particular, of the
reaction-diffusion systems derived from the interactions among several species which
have extensively been investigated recently. Predator-prey models are however an
important branch of the reaction-diffusion systems (see, for example, [3, 4, 5, 11,
12, 14, 17, 20, 24]). In predator-prey models, functional responses of the predator to
the prey density play a critical role, which refers to the change in the density of prey
attached per time unit and predator unit as the prey density changes. In general,
the functional response, denoted by p(u), is monotone (see [4, 6, 7, 9, 10]) and
continuously differentiable on [0,∞). Examples of functional response functions
are

p(u) =
au

b
, p(u) =

au

b+ u
, p(u) =

au2

b+ u2
, p(u) =

au2

b+ ru+ u2
,

where a, b, r are positive constants, with a denoting the maximal growth rate of
species, and b the half-saturation constant. These functional responses are usually
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said to be of Holling-type I, II, III and IV, respectively. The dynamics of Holling-type
predator-prey models are interesting and have therefore been extensively studied. For
more details of response functions, the reader can consult the references [2, 5, 8,
10, 20].

In [1, 5], the authors used the Holling-type II response p(u) = au
b+u for studying

the dynamic behavior of the system of the ordinary differential equations (ODEs)

(1.1)


ut = r1u(1 − u

k
) − auv

b+ u
, t > 0,

vt = r2v(1− v

cu
), t > 0,

where the variables u and v represent the concentrations or densities of the two
species (and so are usually assumed to be non-negative), the constants r1 and r2 are
the birth rates of u and v respectively, k is the prey environmental carrying capacity,
c is a measure of the food quality of prey for conversion into predator births, a is
the maximum number of prey that can be eaten by a predator per time unit, and b
is the saturation value that corresponds to the number of prey necessary to achieve
one half of the maximum rate a. All these parameters r1, r2, c, k, a, b are assumed
to be positive.

Mathematical properties and ecological meaning of the ODE model (1.1) have
been investigated qualitatively and numerically in order to explain mutual interac-
tions between populations such as mite and spider mite, lynx and hare, sparrow
and sparrow hawk, and so on. A lot of interesting phenomena, such as stable limit
cycles, semi-stable limit cycles, bifurcations, global stability of constant positive
solutions and of periodic solutions have also been studied (see [1, 4, 5, 13, 23]).

Note that the densities of prey and predator are spatially inhomogeneous in a
bounded domain Ω ⊂ R

N with smooth boundary. Thus, instead of (1.1), we are led
to the following reaction-diffusion system

(1.2)



ut − d1∆u = r1u(1 − u

k
) − auv

b+ u
, x ∈ Ω, t > 0,

vt − d2∆v = r2v(1− v

cu
), x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u = u0 ≥ 0, �≡ 0, v = v0 ≥ 0, �≡ 0, x ∈ Ω, t = 0,

where d1, d2 denote the diffusion rates of u, v, respectively, and ∂n is the derivative
in the direction of outer normal to ∂Ω.

The main purpose of this paper is to study the positive steady-state solutions
of (1.2), that is, the existence of nonconstant positive classical solutions of the
following elliptic system
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(1.3)


−d1∆u = r1u(1 − u

k
) − auv

b+ u
, x ∈ Ω,

−d2∆v = r2v(1− v

cu
), x ∈ Ω,

∂nu = ∂nv = 0, x ∈ ∂Ω.

In [21], the authors investigated system (1.3) for a simplified version. They gave
a priori estimates of the upper and lower bounds, the non-existence and existence of
positive non-constant solutions of the model. However the existence conditions for
positive solutions in the literature seem complicated. In the present paper, we shall
focus our attention on the local and global bifurcation solutions which emanate from
a positive constant solution by taking the growth rate as a bifurcation parameter.
Furthermore, we also discuss the stability of the constant positive solution. The
existence result of positive steady-state solutions of the model is proved via the
fixed point index theory.

The organization of this paper is as follows. In Section 2, we analyze the long
time behavior of system (1.2). Section 3 is devoted to the stability of the unique
constant positive solution. The existence and the structure of bifurcation solutions
emanating from the constant positive solution are investigated in Section 4. Finally,
in Section 5, by using the fixed point index theory, we prove the existence of positive
steady-state solutions of the model.

2. LONG TIME BEHAVIOR OF SOLUTIONS OF SYSTEM (1.2)

For system (1.2), we analyze the long time behavior of its solutions.

Theorem 2.1. Suppose that (u, v) satisfies (1.2). Then, for any ε > 0, the
rectangle [0, k+ ε) × [0, ck+ ε) is a global attractor for all solutions of (1.2) in
R

2.

Proof. Since (u, v) = (u(x, t), v(x, t)) is a solution of (1.2), u satisfies
ut − d1∆u ≤ r1u(1 − u

k
), x ∈ Ω, t > 0,

∂nu = 0, x ∈ ∂Ω, t > 0,

u = u0 ≥ 0, �≡ 0, x ∈ Ω, t = 0.

Let z1(t) be a solution of the ODE system{
z′1(t) = r1z1(1− z1

k
), t > 0,

z1(t) = maxx∈Ω u0(x, t), t = 0.

Then limt→∞ z1(t) = k. From the comparison principle of parabolic equations, it
follows that u(x, t) ≤ z1(t); hence

lim sup
t→+∞

max
x∈Ω

u(x, t) ≤ k.
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As a result, for any small enough ε > 0, there exists T > 0, such that u(x, t) ≤ k+ε
for all x ∈ Ω and t ≥ T . It then follows that v satisfies

vt − d2∆v ≤ r2v

(
1− v

c(k+ ε)

)
, x ∈ Ω, t ≥ T,

∂nv = 0, x ∈ ∂Ω, t ≥ T,

v(x, t) > 0, x ∈ Ω, t = T.

Let w1(t) be a solution of the ODE system{
w′

1(t) = r2w1(1 − w1

c(k + ε)
), t > T,

w1(t) = maxx∈Ω v(x, t), t = T.

Then limt→∞w1(t) = c(k+ε). By the comparison principle we know that v(x, t) ≤
w1(t), which leads to

lim sup
t→+∞

max
x∈Ω

v(x, t) ≤ c(k + ε).

Since ε > 0 is arbitrary, we get that lim supt→+∞ maxx∈Ω v(x, t) ≤ ck and the
result of the theorem then follows.

On the other hand, we also have the following persistent property.

Theorem 2.2. Suppose that ack
br1

< 1. If (u, v) satisfies (1.2), then

lim inf
t→+∞ min

x∈Ω
u(x, t) ≥ k

(
1 − ack

br1

)
, lim inf

t→+∞ min
x∈Ω

v(x, t) ≥ ck

(
1 − ack

br1

)
.

Proof. Obviously, we see that u satisfies
ut − d1∆u ≥ r1u

(
1 − ack

br1
− u

k

)
, x ∈ Ω, t > 0,

∂nu = 0, x ∈ ∂Ω, t > 0,

u = u0 ≥ 0, �≡ 0, x ∈ Ω, t = 0.

Assume that z2(t) is a solution of the ODE system z′2(t) = r1z2

(
1 − ack

br1
− z2
k

)
, t > 0,

z2(t) = minx∈Ω u0(x, t), t = 0.

Then limt→∞ z2(t) = k
(
1− ack

br1

)
in view of ack

br1
< 1. It follows from the com-

parison principle that u(x, t) ≥ z2(t), and then

lim inf
t→+∞ min

x∈Ω
u(x, t) ≥ k

(
1 − ack

br1

)
.
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As a result, for any 0 < ε < k
(
1 − ack

br1

)
, there exists T > 0, such that

u(x, t) ≥ k

(
1 − ack

br1

)
− ε

for all x ∈ Ω and t ≥ T . Thus, v satisfies
vt − d2∆v ≥ r2v

1− v

c
(
k
(
1 − ack

br1

)
− ε
)
 , x ∈ Ω, t ≥ T,

∂nv = 0, x ∈ ∂Ω, t ≥ T,

v(x, t) > 0, x ∈ Ω, t = T.

Assume that w2(t) is a solution of the ODE system
w′

2(t) = r2w2

1− w2

c
(
k
(
1 − ack

br1

)
− ε
)
 , t ≥ T,

w2(t) = minx∈Ω v(x, t), t = T.

Then limt→∞w2(t) = c
(
k
(
1 − ack

br1

)
− ε
)

. By the comparison principle we get
v(x, t) ≥ w2(t), and then

lim inf
t→+∞ min

x∈Ω
v(x, t) ≥ c

(
k

(
1 − ack

br1

)
− ε

)
.

Setting ε→ 0 yields

lim inf
t→+∞ min

x∈Ω
v(x, t) ≥ ck

(
1 − ack

br1

)
,

and the proof is then completed.

3. STABILITY OF CONSTANT POSITIVE SOLUTION

In this section, we establish the stability of the constant positive solution of the
system (1.3). Note that the system (1.3) has a unique constant positive solution
(u1, v1) given by

(3.1) u1 =
(r1 − ack − br1) +

√
(r1 − ack− br1)2 + 4bkr21
2r1

, v1 = cu1.

Suppose {µi : i = 0, 1, 2, · · · } is the set of eigenvalues of −∆ on Ω with
homogenous Neumann boundary condition. Let Xi be the eigenspace corresponding
to the eigenvalue µi. We now show that the constant positive solution (u1, v1) is
asymptotically stable under a mild condition (see condition (3.2) below).



2018 Yunfeng Jia, Jianhua Wu and Hong-Kun Xu

Theorem 3.1. Let α = u1

(
r1
k − acu1

(b+u1)2

)
and β = au1

b+u1
. If

(3.2) max
{
−r2, d−1

2

(
d1r2 − 2

√
d1d2r2cβ

)}
< α,

then the constant positive solution (u 1, v1) is asymptotically stable.

Proof. The linearized operator of system (1.3) at (u1, v1) is

(3.3)

 −d1∆ − r1 +
2r1
k
u1 +

abv1
(b+ u1)2

au1

b+ u1

−r2v
2
1

cu2
1

−d2∆ − r2 +
2r2v1
cu1

 .

Since r1(1− u1
k )− av1

b+u1
= 0 and 1− v1

cu1
= 0, the matrix (3.2) can equivalently be

rewritten as

(3.4)

−d1∆+u1

(
r1
k
− acu1

(b+u1)2

)
au1

b+u1

−cr2 −d2∆+r2

=

(−d1∆+α β

−cr2 −d2∆+r2

)
.

Thus, for each i ∈ {0, 1, 2, · · ·}, the operator (3.4) is invariant on Xi, and µ ∈ R

is an eigenvalue of (3.4) on Xi for some i if and only if µ is the eigenvalue of the
matrix

Ai :=
(
d1µi + α β
−cr2 d2µi + r2

)
.

The determinant and trace of Ai are

detAi = d1d2µ
2
i + (d2α+ d1r2)µi + r2(α+ cβ)

and, respectively,
trAi = (d1 + d2)µi + r2 + α.

So, we find that detAi > 0 and trAi > 0 provided there hold the following two
inequalities:

(i) (d2α+ d1r2)2 − 4d1d2r2(α+ cβ) < 0;
(ii) α > −r2.

The inequality (i) holds if and only if there hold

d−1
2 (d1r2 − 2

√
d1d2r2cβ) < α < d−1

2 (d1r2 + 2
√
d1d2r2cβ).

Meanwhile, it is obvious that detAi > 0 for α > 0. Therefore, if condition (3.2)
holds, then we must have detAi > 0 and trAi > 0. In this case, the eigenvalues
of Ai have positive real parts, and therefore (u1, v1) is asymptotically stable.
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Remark 3.2. Suppose that condition (3.2) holds. Then

(i) For i = 0, detA0 = r2(α+ cβ) and trA0 = α+ r2. If

(α+ r2)2 < 4r2(α+ cβ),

then the real parts of eigenvalues of A0 are Reµ = 1
2(α+ r2) > 0. While if

(α+ r2)2 ≥ 4r2(α+ cβ),

then

Reµ+ =
1
2

(
(α+ r2) +

√
(α+ r2)2 − 4r2(α+ cβ)

)
> 0,

Reµ− =
1
2

(
(α+ r2) −

√
(α+ r2)2 − 4r2(α+ cβ)

)
> 0.

(ii) For i ≥ 1, if (trAi)2 < 4 detAi, then

Reµ± =
1
2
trAi =

1
2
((d1 + d2)µi + r2 + α) > 0.

If (trAi)2 ≥ 4 detAi, then

Reµ+ =
1
2

(
trAi +

√
(trAi)2 − 4 detAi

)
> 0,

Reµ− =
1
2

(
trAi −

√
(trAi)2 − 4 detAi

)
> 0.

The above facts show that if condition (3.2) holds, there must exist a constant
δ > 0 independent of i and such that Reµ ≥ δ for all i = 0, 1, 2, · · · . Therefore,
all eigenvalues of (3.4) are in the half plane {µ : Reµ ≥ δ}.

4. EXISTENCE OF BIFURCATION SOLUTION EMANATING FROM (u1, v1)

In order to apply the bifurcation theory to study the existence of positive so-
lutions, we take r1 as a parameter and discuss the local bifurcation solutions of
(1.3) which bifurcate from (u1, v1). The local bifurcation theory will be used to
give a precise description for the structure of a positive solution near the bifurcation
point, and the global bifurcation analysis describes the curve trend as the bifurcation
parameter varies. Theorem 3.1 shows that (u1, v1) is asymptotically stable when
condition (3.1) holds. So, in this case, there exist no bifurcation solutions emanating
from (u1, v1). In view of this reason, in order to discuss bifurcation solutions of
(1.3), we assume that α satisfies the condition

(4.1) α ≤ max
{
−r2, d−1

2

(
d1r2 − 2

√
d1d2r2cβ

)}
.
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Theorem 4.1. Set

(4.2) αi = −d1d2µ
2
i + d1r2µi + r2cβ

r2 + d2µi
, i ≥ 0.

Assume that
(i) α = αi0 for some i0, where α is given as in Theorem 3.1.
(ii) αi �= αj for all i �= j.

Then (U1;α) is a bifurcation point of the system (1.3) as long as µ i0 is a simple
eigenvalue of −∆ on Ω with the homogenous Neumann boundary condition. [Here
U1 = (u1, v1)T is the constant positive solution of (1.3) with u 1 and v1 being given
in (3.1)].

Proof. For fixed r2, k, a, b, c, we define a nonlinear operator F : X×R−→Y
by

F (U ; r1) =

 −d1∆u− r1u+
r1
k
u2 +

auv

b+ u

−d2∆v − r2v +
r2v

2

cu

 , U =
(
u
v

)
,

whereX = C2,α
0 (Ω)×C2,α

0 (Ω), Y = Cα(Ω), C2,α
0 (Ω) = {u ∈ C2,α(Ω) : ∂nu|∂Ω =

0}, α ∈ (0, 1), U ∈ X. Thus, we see that U is the solution of the boundary value
problem

F (U ; r1) = 0, x ∈ Ω; ∂nU = 0, x ∈ ∂Ω

if and only if U is a solution of (1.3). Therefore F (U1; r1) = 0, and the Fréchet
derivative FU of F at (U1; r1) is

FU (U1; r1) =

 −d1∆ − r1 +
2r1
k
u1 +

abv1
(b+ u1)2

au1

b+ u1

−r2v
2
1

cu2
1

−d2∆ − r2 +
2r2v1
cu1


=

( −d1∆ + α β

−cr2 −d2∆ + r2

)

=: FU (U1;α) ,

where α and β are given as in Theorem 3.1.
We next show that λ = 0 is an eigenvalue of FU (U1;α). Indeed, assume that

λ is an eigenvalue of FU (U1;α) and (ϕ, ψ)T is a corresponding eigenfunction with
expansions

ϕ =
∞∑
i=0

τi∑
j=1

aijϕij, ψ =
∞∑
i=0

τi∑
j=1

bijϕij,
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where τi ≥ 1 is the multiplicity of the eigenvalue µi of −∆, and ϕij are the
normalized eigenfunctions corresponding to µi. The sequence {ϕij}, i ≥ 0, 1 ≤ j ≤
τi constitutes a complete orthonormal basis for L2(Ω). Noticing −∆ϕij = µiϕij,

we have
∞∑
i=0

τi∑
j=1

(
λ− d1µi − α −β

cr2 λ− d2µi − r2

) (
aij

bij

)
ϕij = 0.

Since λ is an eigenvalue of FU (U1;α), λ solves the characteristic equation

(4.3) λ2−((d1+d2)µi0+αi0+r2)λ+d1d2µ
2
i0+(d2αi0+d1r2)µi0+r2(αi0 +cβ) = 0.

By assumption (i), we find that the constant term of (4.3) equals 0. Hence
0 is an eigenvalue of FU (U1;α). This shows that FU (U1;α) is degenerate and
(ϕ, ψ)T ∈ N (FU (U1;α)), where N (FU (U1;α)) is the kernel space of FU (U1;α).

Since µi0 is simple, τi0 = 1. In this case, ϕi0j = ϕi01 =: ϕi0 . Simple
calculations give that

N (FU (U1;α)) = span
{(

ϕ
ψ

)}
= span

{( −β
d1µi0 + αi0

)
ϕi0

}
,

and dimN (FU (U1;α)) = 1.
Now we consider codimR(FU (U1;α)), whereR(FU (U1;α)) is the range space

of FU (U1;α).
Since the conjugate operator F∗

U (U1;α) of FU (U1;α) is

F ∗
U (U1;α) =

( −d1∆ + α −cr2
β −d2∆ + r2

)
,

the matrices F ∗
U (U1;α) and FU (U1;α) have the same characteristic polynomial.

Thus, F ∗
U (U1;α) is also degenerate. By direct calculations, we get

N (F ∗
U (U1;α)) = span

{(
ϕ∗

ψ∗

)}
= span

{(
cr2

d1µi0 + αi0

)
ϕi0

}
,

and dimN (F ∗
U (U1;α)) = 1. Therefore, noticing

R(FU (U1;α)) = (N (F ∗
U (U1;α)))⊥,

we must have codimR(FU(U1;α)) = 1.

On the other hand, since the Fréchet derivative FUr1 (U1;α) is
(

2u1
k − 1 0

0 0

)
,

FUr1 (U1;α)
(
ϕ

ψ

)
=
(

2u1
k − 1 0

0 0

)(
ϕ

ψ

)
=
(

2u1

k
− 1
)(

ϕ

0

)
.
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We claim that
(

2u1
k − 1

)( ϕ

0

)
�∈ R(FU (U1;α)). As a matter of fact, suppose

on the contrary that
(

2u1
k − 1

)( ϕ

0

)
∈ R(FU (U1;α)). Then the system

{ −d1∆u+ αu + βv =
(

2u1
k − 1

)
ϕ,

−d2∆v + r2v − cr2u = 0

is solvable. Multiplying the first and second equations by ϕ and ψ, respectively,
and integrating over Ω, we get

(4.4)

(
2u1

k
− 1
)∫

Ω
ϕ2dx =

∫
Ω
(−d1∆u+ αu+ βv)ϕdx

=
∫

Ω

(−d1∆ϕ+ αϕ)udx+ β

∫
Ω

vϕdx

= β

∫
Ω
(vϕ− uψ)dx,

and

(4.5)

0 =
∫

Ω

(−d2∆v + r2v − cr2u)ψdx

=
∫

Ω
(−d2∆ψ + r2ψ)vdx− cr2

∫
Ω
uψdx

= cr2

∫
Ω
(vϕ− uψ)dx.

By (4.4) and (4.5) we know that
∫
Ω ϕ

2dx = 0, and so ϕ ≡ 0. This is a contradiction

since ϕ is an eigenfunction. We have therefore proved that
(

2u1
k − 1

)( ϕ

0

)
/∈

R(FU (U1;α)). Consequently, we can apply the Crandall-Rabinowitz’s bifurcation
theorem [16] to get our assertion that (U1;α) is a bifurcation point of (1.3).

The Crandall-Rabinowitz’s bifurcation theorem implies that there exist s0 >
0, γ : (−s0, s0) → R, (ω1,ω2)T : (−s0, s0) → X , γ, ω1,ω2 ∈ C1(−s0, s0) satisfy-
ing

γ(0) = 0, (ω1,ω2)T ∈ R (FU (U1;α)) , ω1(0) = ω2(0) = 0.

Now let u(s) = u1+s(ϕ+ω1(s)) = u1−sβϕi0 +o(s), v(s) = v1+s(ψ+ω2(s)) =
v1+s(d1µi0+αi0)ϕi0+o(s), r1(s) = r1+γ(s), U(s) = (u, v)T . Then (U(s); r1(s))
is the unique positive solution of the equation

F (U ; r1) = 0, x ∈ Ω; ∂nU = 0, x ∈ ∂Ω
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near (U1;α) and U(s) is the solution of (1.3). That is, the zero set of F only consists
of two curves (U1;α) and (U(s); r1(s)) in a neighborhood of the bifurcation point
(U1;α).

Remark 4.2. In Theorem 4.1, the condition αi �= αj for any integer i �=
j is essential. In fact, if αi = αj for some i �= j, then it can’t ensure that
dimN (FU (U1;α)) = 1. This can be easily seen from the proof above. By (4.2)
we can find that αi = αj for i �= j if and only if

d1d2r2(µi + µj) + d1d
2
2µiµj + d1r

2
2 = cβd2r2.

Remark 4.3. If Ω is one dimensional, then all µi are simple and (U1;α) is
always a bifurcation point of (1.3) when α = αi0 for some i0 and αi �= αj for any
i �= j.

Theorem 4.1 gives a precise description for the structure of positive solutions
near the bifurcation point. But it provides no information on the bifurcating curve
far from the equilibrium. In the following, we investigate the positive solutions of
(1.3) by considering global bifurcation. The global bifurcation result shows that
the bifurcation curve reaches to infinity. For simplicity, we suppose that Ω is one
dimensional, say Ω = (0, 1).

Theorem 4.4. Suppose that the assumptions of Theorem 4.1 hold. Then the
bifurcation curve Γi0 of the positive bifurcation solution (u, v) of (1.3) which occurs
at (U1;α) tends to infinity.

Proof. For Ω = (0, 1), system (1.3) becomes the following ordinary differential
equations system

(4.6)


−d1u

′′ = r1u(1 − u
k ) − auv

b+ u
, x ∈ (0, 1),

−d2v
′′ = r2v(1− v

cu
), x ∈ (0, 1),

u′ = v′ = 0, x = 0, 1.

Obviously, system (4.6) also has the unique positive constant solution (u1, v1).
Consider the eigenvalue problem

(4.7)

{ −ϕ′′ = µϕ, x ∈ (0, 1),

ϕ′ = 0, x = 0, 1.

It is well know that all eigenvalues µi, i = 0, 1, 2, · · · , of (4.7) are simple and all
eigenfunctions {ϕi}∞i=0 of (4.7) constitute an orthonormal basis in L2((0, 1)).
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Let ũ = u− u1, ṽ = v − v1. Then system (4.6) can be written as

(4.8)


−d1ũ

′′ + αũ + βṽ + f̃ (ũ, ṽ) = 0, x ∈ (0, 1),

−d2ṽ
′′ − cr2ũ+ r2ṽ + g̃(ũ, ṽ) = 0, x ∈ (0, 1),

ũ′ = ṽ′ = 0, x = 0, 1,

where f̃ (ũ, ṽ) and g̃(ũ, ṽ) are higher order terms of ũ and ṽ. Thus, the unique
constant solution (u1, v1) of (4.6) shifts to the unique constant solution (0, 0) of
(4.8).

For w(x) ∈ C([0, 1]), assume that u = G1(w) and v = G2(w) are solutions of
the problems

d1u
′′ + αu = w, x ∈ (0, 1), u′ = 0, x = 0, 1,

and
d2v

′′ − r2v = w, x ∈ (0, 1), v′ = 0, x = 0, 1,

respectively, where α < 0 in view of Theorem 4.1. Then (u, v) ∈ C2([0, 1]) ×
C2([0, 1]) is unique, and the operators G1 =

(
d1

d2

dx2 +α
)−1

, G2=
(
d2

d2

dx2 −r2
)−1

are compact.
Set

Ũ = (ũ, ṽ), E =
{
(u, v)|u, v ∈ C2([0, 1]), u′ = v′ = 0, x = 0, 1

}
.

Then (4.8) can be interpreted as the equation

(4.9) Ũ = G(α)(Ũ) +H(Ũ),

where

G(α) =
(

2αG1 βG1

−cr2G2 0

)
and H are compact on E , G(α)(Ũ) = (2αG1(ũ)+βG1(ṽ),−cr2G2(ũ)), H(Ũ) =
(G1(f̃), G2(g̃)) = o(|Ũ |).

In order to apply Rabinowitz’s global bifurcation theorem [15], we should verify
following facts:

(i) 1 is an eigenvalue of G(α) with algebraic multiplicity one;
(ii) for any sufficiently small ε > 0, the fixed point index index(I − G(α) −

H, (0, 0)) satisfies

(4.10) index(I −G(α− ε) −H, (0, 0)) �= index(I −G(α+ ε) −H, (0, 0)).
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For any ϕ, ψ ∈ C2([0, 1]) × C2([0, 1]), it is easy to verify that
(
ϕ

ψ

)
∈

N (G(α)− I) if and only if
(
ϕ

ψ

)
∈ N (FU (U1;α)). Thus,

N (G(α)− I) = N (FU (U1;α)) = span
{( −β

d1µi0 + αi0

)
ϕi0

}
.

This shows that 1 is an eigenvalue of G(α) indeed and dimN (G(α)− I) = 1.
Now, we consider N (G∗(α) − I), where G∗(α) is the conjugate operator of

G(α).

Let
(
ϕ

ψ

)
∈ N (G∗(α)− I). Then we have

2αG1ϕ− cr2G2ψ = ϕ, βG1ϕ = ψ.

Using the definitions of G1, G2 we get

d2ϕ
′′ = (2αd−1

1 d2+r2)ϕ+(2α2β−1d−1
1 d2−2αβ−1r2−cr2)ψ, d1ψ

′′ = βϕ−αψ.

Write ϕ =
∑∞

i=0 aiϕi, ψ =
∑∞

i=0 biϕi, where {ϕi}∞i=0 is the set of eigenfunc-

tions of (4.7) in L2((0, 1)). Then
∑∞

i=0 Ci

(
ai

bi

)
ϕi = 0, where

Ci =
(

2αd−1
1 d2 + r2 + d2µi 2α2β−1d−1

1 d2 − 2αβ−1r2 − cr2
β −α+ d1µi

)
.

A direct calculation yields

detCi = d1d2µ
2
i + (d1r2 + d2α)µi + r2(cβ + α).

Take i = i0 in detCi. Then it is exactly the case that λ = 0 in (4.3). Therefore Ci

is degenerate for i = i0. By a simple calculation we get

N (G∗(α) − I) = span
{( −αi0 + d1µi0

−β
)
ϕi0

}
.

Clearly,
(−αi0 + d1µi0

−β
)
ϕi0 and

( −β
d1µi0 + αi0

)
ϕi0 are not orthogonal to each

other, so
( −β
d1µi0 + αi0

)
ϕi0 �∈ (N (G∗(α)− I))⊥ = R(G(α)− I), and therefore,

N (G(α)− I) ∩ R(G(α)− I) = {0}.
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Further, N ((G(α)− I)2) = N (G(α)− I), and for any positive integer n, we have

N ((G(α)− I)n) = N (G(α)− I).

By the definition of algebraic multiplicity of eigenvalues, we know that the algebraic
multiplicity of eigenvalue 1 is just dim∪∞

n=1N (G(α) − I)n. This proves that 1 is
an eigenvalue of G(α) with algebraic multiplicity one.

If α �= αi is in a neighborhood of αi, then the operator I −G(α) : E → E is
non-degenerate and (0, 0) is an isolate fixed point of (4.9). Thus, by the definition
of the fixed point index in [22], the index of I −G(α)−H at (0, 0) is given by

index(I −G(α)−H, (0, 0)) = deg(I −G(α), B, (0, 0)) = (−1)ν,

where B is a sufficiently small ball centering at (0, 0), and ν is the sum of the
algebraic multiplicities of all positive eigenvalues of G(α)− I.

In the following, we claim that (4.10) holds.

Let µ be an eigenvalue of G(α) with eigenfunction
(
ϕ
ψ

)
, then we have

µd1ϕ
′′ = (2− µ)αϕ+ βψ, µd2ψ

′′ = −cr2ϕ+ µr2ψ.

Write ϕ =
∑∞

i=0 aiϕi, ψ =
∑∞

i=0 biϕi. Then

∞∑
i=0

(
(2 − µ)α+ µd1µi β

−cr2 µr2 + µd2µi

) (
ai

bi

)
ϕi = 0.

Thus, all the eigenvalues of G(α) consist of the roots of the characteristic equation

(4.11) (d1µi − α)µ2 + 2αµ+
cβr2

d2µi + r2
= 0, i ≥ 0.

If 1 is a root of (4.11), taking µ = µj in (4.11), then we get αi = αj , and so i = j

by our assumption. Therefore, without counting the eigenvalues corresponding to
i = j in (4.11), G(α) − I has the same number of positive eigenvalues for all
α → αi, and they also have the same multiplicities. For the case i = j, the two
roots of (4.11) are

µ(α) = 1, µ̃(α) =
−d1µi − α

d1µi − α
< 1.

(Note that α < 0). So µ̃(α) < 1 as α → αi. Since the root of (4.11) is increasing
in α, we must have

µ(α − ε) < 1, µ(α + ε) > 1.
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for small ε. Consequently, G(α+ ε) − I has exactly one more positive eigenvalue
than G(α − ε) − I does. By a similar argument above we can show that this
eigenvalue has algebraic multiplicity one. This proves (4.10).

Using the bifurcation theorem in [15], we know that the bifurcation curve Γ i0

which occurs at (U1;α) either tends to infinity or meets some other bifurcation point.
In the following, we claim that the first alternative must occur. For convenience of
use later, we denote such bifurcation point by (U1;αi0).

Assume that Γi0 dose not reach to infinity. Then Γi0 must meet another bifur-
cation point, say (U1;αi1), and can not meet other bifurcation point (U1;αi2) for
i2 > i1.

Consider the problem

(4.12)


d1u

′′ + r1u(1 − u

k
) − auv

b+ u
= 0, x ∈ (0,

1
k

),

d2v
′′ + r2v(1− v

cu
) = 0, x ∈ (0,

1
k

),

u′ = v′ = 0, x = 0,
1
k
.

If U is the solution of (4.12), then using U, we may construct a solution of (4.6)
by a reflective and periodic extension. For example, let xn = n

k , n = 0, 1, 2, · · · , k
and

U(x) =

{
U(x− x2n), x2n ≤ x ≤ x2n+1,

U(x2n+2 − x), x2n+1 ≤ x ≤ x2n+2.

Then x ∈ [0, 1] and U(x) is a solution of (4.6). Clearly, (U1;αi1) is also a bifur-
cation point of (4.12). Denote by Γi1 the bifurcation curve which emanates from
(U1;αi1). Then by the same argument above it is easy to show that Γi1 either
reaches to infinity or meets some other bifurcation point (U1; ai3), i3 > i1. If the
latter alternative occurs, then it shows that Γi meets (U1; ai3) too. It is an obvious
contradiction. Therefore, Γi1 reaches to infinity, and then by the extension again
we know that Γi0 reaches to infinity too. The proof is accomplished.

5. NONEXISTENCE AND EXISTENCE OF NONCONSTANT POSITIVE SOLUTIONS

This section is devoted to the study of nonexistence and existence of noncon-
stant positive solutions of system (1.3). We shall prove that system (1.3) has no
nonconstant positive solutions if the effective diffusion rates are suitably large.

For any ϕ ∈ L1(Ω), we denote by ϕ the averaged value of ϕ over Ω, that is,

ϕ =
1
|Ω|
∫

Ω
ϕdx.

Theorem 5.1. Assume the following conditions
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(5.1) d1 >
r1
µ1

+
(
ak

2b

)2

+
(

cr2b
2r21

2(br1 − ack)2

)2

and

(5.2) d2 >
1
µ1

(
r2 +

2
µ1

)
.

Then system (1.3) does not admit any nonconstant positive solutions.

Proof. For any y, z ∈ R and s > 0, using the Cauchy inequality [18] we get

(5.3) yz ≤ 1
4s
y2 + sz2.

In particular, taking s = 1
µ1
, we get

yz ≤ µ1

4
y2 +

1
µ1
z2.

Let (u, v) be a nonconstant positive solution of (1.3). Then we have u ≤ k and
v ≤ ck. Multiplying the two equations of (1.3) by u − u =: ξ and v − v =: η,
respectively, and then integrating over Ω and using the inequality (5.3), we obtain

d1

∫
Ω
|�ξ|2dx =

∫
Ω

(
r1u

(
1 − u

k

)
− auv

b+ u

)
ξdx

=
∫

Ω

((
r1u

(
1−u

k

)
− auv

b+ u

)
−
(
r1u

(
1−u

k

)
− auv

b+ u

))
ξdx

=
∫

Ω

(
r1ξ − r1

k
(u+ u) ξ − abvξ

(b+ u)(b+ u)
− auη

b+ u

)
ξdx

=
∫

Ω

(
r1 − r1

k
(u+ u) − abv

(b+ u)(b+ u)

)
ξ2dx−

∫
Ω

au

b+ u
ξηdx

≤
∫

Ω

(
r1 − r1

k
(u+ u) − abv

(b+ u)(b+ u)

)
ξ2dx+

∫
Ω
|ak
b
ξη|dx

≤ r1

∫
Ω

ξ2dx+
a2k2µ1

4b2

∫
Ω

ξ2dx+
1
µ1

∫
Ω

η2dx

and

d2

∫
Ω
|�η|2dx =

∫
Ω

(
r2v − r2

c

v2

u

)
ηdx

=
∫

Ω

((
r2v − r2

c

v2

u

)
−
(
r2v − r2

c

v2

u

))
ηdx

=
∫

Ω

(
r2η − r2

c

(
v + v

u
η − v2

uu
ξ

))
ηdx

=
∫

Ω

(
r2 − r2

c

v + v

u

)
η2dx+

r2
cu

∫
Ω

v2

u
ξηdx



Positive Solutions for a Predator-prey Interaction Model 2029

≤ r2

∫
Ω
η2dx+

∫
Ω

cr2b
2r21

(br1 − ack)2
ξηdx

≤ r2

∫
Ω
η2dx+

(
cr2b

2r21
2(br1 − ack)2

)2 ∫
Ω
ξ2dx+

1
µ1

∫
Ω
η2dx.

Therefore, by the Poincaré inequality [19], we have

d1µ1

∫
Ω

ξ2dx+ d2µ1

∫
Ω

η2dx ≤ d1

∫
Ω

|�ξ|2dx+ d2

∫
Ω

|�η|2dx

≤
(
r1 +

a2k2µ1

4b2
+ µ1

(
cr2b

2r21
2(br1 − ack)2

)2
)∫

Ω
ξ2dx+

(
r2 +

2
µ1

)∫
Ω
η2dx,

which contradicts our assumptions. Therefore, (1.3) does not admit any nonconstant
positive solutions under the assumptions (5.1) and (5.2).

We next turn to investigate the existence of positive solutions via the fixed point

index theory. Put U =
(
u
v

)
and U1 =

(
u1

v1

)
. Let

D =
(
d1 0
0 d2

)
, F (U) =

(
r1u(1− u

k ) − auv
b+u

r2v(1− v
cu )

)
, B =

(
α β

−cr2 r2

)
.

Then the Fréchet derivative of F at U1 is FU(U1) = B. Hence (1.3) can be rewritten
as

(5.4) −∆U = D−1F (U), x ∈ Ω; ∂nU = 0, x ∈ ∂Ω.

Thus, U is a solution of (5.4) if and only if U satisfies the equation

U − (I − ∆)−1(D−1F (U) + U) = 0.

Let H((d1, d2);U) = U − (I −∆)−1(D−1F (U)+U). Then the Fréchet derivative
of H is

HU((d1, d2);U1) = I − (I − ∆)−1(D−1B + I).

As the same as that of in Section 3, we see that, for each i ∈ {0, 1, 2, · · ·},
HU((d1, d2);U1) is invariant on Xi; moreover, ξ is the eigenvalue of HU((d1, d2);
U1) on Xi if and only if ξ(1 + µi) is the eigenvalue of the matrix

µiI −D−1B =
(
µi − αd−1

1 −βd−1
1

cr2d
−1
2 µi − r2d

−1
2

)
=: Mi.

The determinant and the trace of Mi are given by

detMi =
1

d1d2
(d1d2µ

2
i − (d1r2 + d2α)µi + r2(α+ cβ))
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and respectively,
trMi = 2µi − αd−1

1 − r2d
−1
2 .

Now let

h((d1, d2); µ) =
1

d1d2
(d1d2µ

2 − (d1r2 + d2α)µ+ r2(α+ cβ)).

Suppose that

(5.5) (d1r2 + d2α)2 > 4d1d2r2(α+ cβ).

Then the equation h((d1, d2); µ) = 0 has two different real roots denoted by
µ+(d1, d2), µ−(d1, d2), where

µ+(d1, d2) =
(d1r2 + d2α) +

√
(d1r2 + d2α)2 − 4d1d2r2(α+ cβ)

2d1d2
,

µ−(d1, d2) =
(d1r2 + d2α) −

√
(d1r2 + d2α)2 − 4d1d2r2(α+ cβ)

2d1d2
.

Set Λ = {µ0, µ1, µ2, · · · } and

R = R(d1, d2) = {µ : µ > 0, µ−(d1, d2) < µ < µ+(d1, d2)}.

In order to calculate index(H((d1, d2), ·);U1), we first need a lemma. Recall that
τi ≥ 1 is the multiplicity of each µi, i = 0, 1, 2, · · · .

Lemma 5.2. [20]. Suppose that h((d1, d2); µi) �= 0 for any µi ∈ Λ. Then

index(H((d1, d2), ·);U1) = (−1)σ,

where

σ =


∑

µi∈R∩Λ

τi, R ∩ Λ �= ∅,

0, R ∩ Λ = ∅.
Particularly, if h((d1, d2); µ) > 0 for any µ > 0, then σ = 0.

We are now in a position to state and prove the main result of this section.

Theorem 5.3. Suppose that
∑

µi∈R∩Λ τi is odd and r2
d2

∈ (µp, µp+1) for some
positive integer p. Then there exists d∗

0 > 0 such that (1.3) has nonconstant positive
solutions for d1 > d∗0.

Proof. We need to evaluate index(H((d1, d2), · ); U1). By Lemma 5.2, we
know that the key ingredient in the calculation of this index is to seek the range of
µ when h((d1, d2); µ) < 0.
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It is easy to see that (5.5) holds and µ+(d1, d2) > µ−(d1, d2) > 0 when d1 is
sufficiently large. Moreover

lim
d1→+∞

µ+(d1, d2) =
r2
d2
, lim

d1→+∞
µ−(d1, d2) = 0.

Hence, if r2
d2

∈ (µp, µp+1) for some positive integer p, then there must exist suitably
large d0 such that

(5.6) µp < µ+(d1, d2) < µp+1, 0 < µ−(d1, d2) < µ1

for d1 ≥ d0.
By the nonexistence result above, we know that there is d > d0 such that (1.3)

has no nonconstant positive solutions when d1 ≥ d, d2 = d. Meanwhile, we can
choose d large enough so that r2

d2
< µ1. Thus, there must exist some d∗0 such that

(5.7) 0 < µ−(d1, d) < µ+(d1, d) < µ1

provided that d1 ≥ d∗0 (In fact, d∗0 only needs to satisfy d∗0 ≥ max{d0, d}) . We
now prove that (1.3) has nonconstant positive solutions for all d1 ≥ d∗0. We do this
by contradiction.

Suppose on the contrary that there exists d∗1 such that (1.3) has no nonconstant
positive solutions for d∗1 ≥ d∗0.

Take d1 = d∗1. For t ∈ [0, 1], we construct a homotopy operator by

D(t) =
(
td1 + (1 − t)d∗0 0

0 td2 + (1 − t)d

)
and consider the problem

(5.8) −∆U = D−1(t)F (U), x ∈ Ω; ∂nU = 0, x ∈ ∂Ω.

Obviously, U is a solution of (1.3) if and only if U is a solution of (5.8) (in this
case t = 1). Therefore, as the unique constant positive solution of (1.3), U1 is also
the unique constant positive solution of (5.8).

It is clear that for each t ∈ [0, 1], U is a nonconstant positive solution of (5.8)
if and only if U is a positive solution of the equation

(5.9) U − (I − ∆)−1(D−1(t)F (U) + U) = 0.

In view of the previous discussions, it is easily known that the equation (5.9) has no
nonconstant positive solutions for t = 0. Meanwhile, by our assumptions we also
know that (5.9) has no nonconstant positive solutions for t = 1, d1 = d∗1.

Now we set f(U, t) = U − (I − ∆)−1(D−1(t)F (U) + U). Then

f(U, 1) = H((d1, d2);U), f(U, 0) = H((d∗0, d);U),
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and we have the Fréchet derivatives

HU((d1, d2);U1) = I − (I − ∆)−1(D−1B + I)

and
HU((d∗0, d);U1) = I − (I − ∆)−1(D−1

1 B + I),

where D1 =
(
d∗0 0
0 d

)
. Using (5.6) and (5.7) we have

R(d1, d2) ∩ Λ = {µ1, µ2, · · ·µp}, R(d∗0, d)∩ Λ = ∅.
If
∑

µi∈R∩Λ τi =
∑p

i=0 τi is odd, then by Lemma 5.2 we have

(5.10) index(f(·, 1);U1) = index(H((d1, d2), ·);U1) = −1,

(5.11) index(f(·, 0);U1) = index(H((d, d∗0), ·);U1) = 1.

If (u, v) is a positive solution of (1.3), then there must exist some ε > 0 such that
u, v > ε for x ∈ Ω. Let

S = {(u, v) ∈ X : ε < u, v < max{k, ck}+ ε}.
Then for t ∈ [0, 1] and (u, v) ∈ ∂S, where ∂S is the boundary of S, we have
f(U, t) �= 0. Thus, the Leray-Schauder degree deg(f(·, t), S, 0) is well defined, and
by the homotopy invariance on degree [22], we know that deg(f(·, t), S, 0) is a
constant. Therefore we have

(5.12) deg(f(·, 0), S, 0) = deg(f(·, 1), S, 0).

However, the equations f(U, 0) = 0 and f(U, 1) = 0 both have equal unique
positive solution U1, by (5.10) and (5.11) we have

deg(f(·, 1), S, 0) = index(f(·, 1);U1) = −1,

deg(f(·, 0), S, 0) = index(f(·, 0);U1) = 1.

This obviously contradicts (5.12), and the proof is therefore complete.

Remark 5.4. Theorem 5.1 shows that when d2 >
1
µ1

(
r2 + 2

µ1

)
> r2

µ1
and d1

is large, then (1.3) has no nonconstant positive solution. On the other hand, for the
existence result, we also see that the condition r2

d2
∈ (µp, µp+1) in Theorem 5.3 for

some p ≥ 1 implies that d2 <
r2
µ1

.

Using the same techniques as above, we can similarly show that following result
holds.
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Theorem 5.5. Suppose that R(d1, d2) ∩ Λ = {µj , µj+1, · · ·µj+p−1} for some
positive integers j, p ≥ 1. If

∑
µi∈R∩Λ τi is odd, then (1.3) has nonconstant positive

solutions.
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