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HYBRID VISCOSITY-LIKE APPROXIMATION METHODS FOR
GENERAL MONOTONE VARIATIONAL INEQUALITIES

Lu-Chuan Ceng, Q. H. Ansari and Juei-Ling Ho*

Abstract. In this paper, we introduce two implicit and explicit hybrid viscosity-
like approximation methods for solving a general monotone variational in-
equality, which covers their monotone variational inequality with C = H as
a special case. We use the contractions to regularize the general monotone
variational inequality, where the monotone operators are the generalized com-
plements of nonexpansive mappings and the solutions are sought in the set
of fixed points of another nonexpansive mapping. Such general monotone
variational inequality includes some monotone inclusions and some convex
optimization problems to be solved over the fixed point sets of nonexpan-
sive mappings. Both implicit and explicit hybrid viscosity-like approximation
methods are shown to be strongly convergent. In the meantime, these results
are applied to deriving the strong convergence theorems for a general mono-
tone variational inequality with minimization constraint. An application in
hierarchical minimization is also included.

1. INTRODUCTION

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H and
Γ : C → H be a nonlinear mapping. A variational inequality problem, denoted by
V I(Γ , C), is to find a point x∗ ∈ C such that
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(1.1) 〈Γx∗, x − x∗〉 ≥ 0, ∀x ∈ C.

We say that the V I(Γ , C) is monotone if the mapping Γ is a monotone operator.
Variational inequalities were initially studied by Stampacchia (See [24]) and ever
since have been widely studied, since they cover as diverse disciplines as partial
differential equations, optimal control, optimization, mathematical programming,
mechanics, and finance. The reader is referred to [24-28, 35-40] and the references
therein.

Very recently, Lu, Xu and Yin [23] were concerned with a special class of vari-
ational inequalities in which the mapping Γ is the complement of a nonexpansive
mapping and the constraint set is the set of fixed points of another nonexpansive
mapping. That is, they considered the following type of monotone variational in-
equality problem of finding x∗ ∈ Fix(T ) such that

(1.2) 〈(I − V )x∗, x− x∗〉 ≤ 0, ∀x ∈ Fix(T ),

where T, V : C → C are nonexpansive mappings such that Fix(T ) := {x ∈ C :
Tx = x}, is nonempty.

It is well-known that the V I(Γ , C) is equivalent to the following fixed point
equation

(1.3) x∗ = PC(I − λΓ )x∗,

where λ > 0 is an arbitrary fixed constant and PC is the metric projection of H
onto C.

It is also well-known that if Γ is Lipschitzian and strongly monotone, then
for small enough λ > 0, the mapping PC(I − λΓ ) is a contraction on C and so
the sequence {xn} of Picard iterates, given by xn+1 = PC(I − λΓ )xn (n ≥ 0),
converges strongly to the unique solution of the V I(Γ , C).

In 2001, Yamada [1] introduced a hybrid steepest-descent method for solving
the V I(F, C) where F : H → H is Lipschitzian and strongly monotone and C
is the fixed point set of a nonexpansive mapping T : H → H , i.e., C = Fix(T ).
However, his method can not be applied to the variational inequality (1.2) since the
mapping I −V fails, in general, to be strongly monotone, though it is Lipschitzian.
Therefore, other hybrid methods have to be sought.

In 2007, Mainge and Moudafi [2] introduced a hybrid viscosity approximation
method for solving the variational inequality (1.2), which generates a sequence {xn}
as follows:

(1.4) xn+1 = λnf(xn) + (1 − λn)[αnV xn + (1− λn)Txn],

where the initial guess x0 ∈ C, f : C → C is a contraction, and {λn} and {αn}
are the sequences in [0, 1] satisfying certain appropriate conditions.



Hybrid Viscosity-like Approximation Methods for General Monotone Variational Inequalities 1873

Motivated by Mainge and Moudafi [2], Lu, Xu and Yin [23] investigated other
hybrid viscosity approximation methods for solving the variational inequality (1.2).
More precisely, assuming (1.2) is consistent and noticing the fact that if, for each
t ∈ (0, 1), xt ∈ C is a fixed point of the nonexpansive mapping tV +(1− t)T then
every weak accumulation point of {xt} as t → 0 is a solution of the VI (1.2), they,
upon the idea of regularization, introduced a new hybrid viscosity approximation
method as follows:

(1.5) zn+1 = λn[αnf(zn) + (1 − αn)V zn] + (1− λn)Tzn,

where {λn} and {αn} are sequences in (0, 1), and f : C → C is a contraction.
Their idea is to regularize the nonexpansive mapping V , instead of the nonexpansive
mapping Wt := tV +(1− t)T as done by Moudafi and Mainge [3]. Since Moudafi
and Mainge’s regularization depends upon t whereas theirs not, they derived their
convergence result for the regularization under dramatically less restrictive condi-
tions; as a matter of fact, the conditions (A1) and (A3) of Moudafi and Mainge
[3] are completely removed. Moreover, they also applied both of their implicit and
explicit schemes to solving a hierarchical minimization problem in a Hilbert space.

Inspired by the above research work going on in this field, we introduce two
implicit and explicit hybrid viscosity-like approximation methods for solving a gen-
eral monotone variational inequality, which covers the above monotone variational
inequality (1.2) with C = H as a special case. More precisely, let F : H → H be a
κ-Lipschitzian and η-strongly monotone operator with constants κ > 0, η > 0, and
T : H → H be nonexpansive with Fix(T ) 	= ∅. Given a nonexpansive mapping V :
H → H . Let 0 < µ < 2η/κ2 and 0 < γ ≤ τ , where τ = 1 − √

1 − µ(2η − µκ2).
Consider the following general monotone variational inequality problem of finding
z∗ ∈ Fix(T ) such that

(1.6) 〈(µF − γV )z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T ).

In particular, whenever µ = 2, F = 1
2I, γ = τ = 1, the VI (1.6) reduces to the VI

(1.2) with C = H .
We use the contractions to regularize the VI (1.6), where the monotone operator

µF − γV are the generalized complement of nonexpansive mapping V and the
solutions are sought in the fixed point set Fix(T ) of another nonexpansive mapping
T . Both implicit and explicit hybrid viscosity-like approximation methods are shown
to be strongly convergent. In the meantime, we also apply both of our implicit and
explicit hybrid viscosity-like approximation methods to solving a general monotone
variational inequality with minimization constraint in a Hilbert space. An application
in a hierarchical minimization problem is also included. All in all, the results
presented in this paper extend Lu, Xu and Yin results to the case of the general
monotone variational inequality when C = H .
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2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H . Recall
the following concepts of mappings.

(i) A mapping f : C → C is a ρ-contraction if there is a constant ρ ∈ [0, 1) such
that

‖f(x)− f(y)‖ ≤ ρ‖x − y‖, ∀x, y ∈ C.

(ii) A mapping T : C → C is nonexpansive provided

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

(iii) A mapping Γ : C → H is
(a) monotone if

〈Γx− Γy, x− y〉 ≥ 0, ∀x, y ∈ C;
(b) strictly monotone if

〈Γx− Γy, x− y〉 > 0, ∀x, y ∈ C, x 	= y;

(c) η-strongly monotone if there exists a constant η > 0 such that

〈Γx− Γy, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ C.

The metric (or nearest point) projection from H onto C is the mapping PC :
H → C which assigns to each point x ∈ H the unique point PCx ∈ C satisfying
the property

‖x − PCx‖ = inf
y∈C

‖x− y‖ =: d(x, C).

Throughout this paper, we write xn ⇀ x to indicate that the sequence {xn}
converges weakly to x. xn → x implies that {xn} converges strongly to x. The
following lemmas are useful for our paper.

Lemma 2.1. Given x ∈ H and z ∈ C, there are the following statements:

(i) z = PCx if and only if there holds the relation:

〈x − z, y − z〉 ≤ 0, ∀y ∈ C;

(ii) z = PCx if and only if there holds the relation:

‖x − z‖2 ≤ ‖x − y‖2 − ‖y − z‖2, ∀y ∈ C;

(iii) there holds the relation

〈PCx − PCy, x− y〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H.

Consequently, PC is monotone and nonexpansive.
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The following lemma is not hard to prove.

Lemma 2.2 (cf. [4]). Let f : C → C be a ρ-contraction with ρ ∈ [0, 1) and
T : C → C be a nonexpansive mapping. Then

(i) I − f is (1 − ρ)-strongly monotone:

〈(I − f)x − (I − f)y, x− y〉 ≥ (1 − ρ)‖x− y‖2, ∀x, y ∈ C;

(ii) I − T is monotone:

〈(I − T )x− (I − T )y, x− y〉 ≥ 0, ∀x, y ∈ C.

Lemma 2.3 (Demiclosedness Principle (cf. [5])). Let T : C → C be a
nonexpansive mapping with Fix(T ) 	= ∅. If {xn} is a sequence in C weakly
converging to x and if {(I − T )xn} converges strongly to y, then (I − T )x = y.

The following fact is straightforward (but useful).

Lemma 2.4. There holds the following inequality in an inner product space X:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ X.

The following lemma plays a key role in proving strong convergence of our
algorithms.

Lemma 2.5 ([6, Lemma 2.1]). Let {sn} be a sequence of nonnegative numbers
satisfying the condition

sn+1 ≤ (1 − γn)sn + γnδn, ∀n ≥ 0,

where {γn}, {δn} are sequences of real numbers such that

(i) {γn} ⊂ [0, 1] and
∑∞

n=0 γn = ∞, or equivalently,

∞∏
n=0

(1− γn) := lim
n→∞

n∏
k=0

(1 − γk) = 0;

(ii) lim supn→∞ δn ≤ 0, or
(ii’)

∑∞
n=0 γnδn is convergent.

Then, limn→∞ sn = 0.

Lemma 2.6 ([6, Lemma 3.1]). Let λ be a number in (0, 1] and let µ > 0.
Let F : H → H be an operator on a Hilbert space H such that, for some
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constants κ, η > 0, F is κ-Lipschitzian and η-strongly monotone. Associating with
a nonexpansive mapping T : H → H , define the mapping T λ : H → H by

T λx := Tx − λµF (Tx), ∀x ∈ H.

Then T λ is a contraction provided µ < 2η/κ2, that is,

‖T λx − T λy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ H,

where τ = 1 − √
1− µ(2η − µκ2) ∈ (0, 1].

Remark 2.1. Put F = 1
2I , where I is the identity operator of H . Then we

have µ < 2η/κ2 = 4. Also, put µ = 2. Then it is easy to see that κ = η = 1
2 and

τ = 1 −
√

1 − µ(2η − µκ2) = 1 −
√

1− 2(2 · 1
2
− 2(

1
2
)2) = 1.

In particular, whenever λ > 0, we have Tλx := Tx − λµF (Tx) = (1− λ)Tx.

3. IMPLICIT HYBRID VISCOSITY-LIKE APPROXIMATION METHOD

Suppose F : H → H is a κ-Lipschitzian and η-strongly monotone operator with
constants κ > 0, η > 0. Suppose T : H → H is nonexpansive with Fix(T ) 	= ∅.
Consider the variational inequality problem of finding x∗ ∈ Fix(T ) such that

(3.1) 〈Fx∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ).

Yamada [1] introduced the following hybrid steepest-descent method for solving
the variational inequality (3.1), which generates a sequence {xn} via the following
iterative algorithm:

(3.2) xn+1 = Txn − λn+1µF (Txn), ∀n ≥ 0,

where 0 < µ < 2η/κ2, the initial guess x0 ∈ H is arbitrary and the sequence {λn}
in (0, 1) satisfies the conditions:

λn → 0,

∞∑
n=0

λn = ∞ and
∞∑

n=0

|λn+1 − λn| < ∞.

A key fact in Yamada’s argument is that, for small enough λ > 0, the mapping

T λx := Tx − λµF (Tx), ∀x ∈ H

is a contraction, due to the κ-Lipschitz continuity and η-strong monotonicity of F .
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Now given a nonexpansive mapping V : H → H and t ∈ (0, 1). Let 0 < µ <

2η/κ2 and 0 < γ ≤ τ , where τ = 1 − √
1 − µ(2η − µκ2). Then we consider a

mapping Wt on H defined by

Wtx = tγV x + (I − tµF )Tx, ∀x ∈ H.

It is easy to see that Wt is a nonexpansive mapping. Indeed, we have

‖Wtx − Wty‖ ≤ tγ‖V x − V y‖+ ‖(I − µtF )Tx − (I − µtF )Ty‖
≤ tγ‖x− y‖ + (1− tτ)‖x− y‖
= (1− t(τ − γ))‖x− y‖.

Since 0 < γ ≤ τ , it is known that Wt is nonexpansive on H .
In our case, we consider the variational inequality problem of finding z∗ ∈

Fix(T ) such that

(3.3) 〈(µF − γV )z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T ).

where the mappings V, T, F and the parameters µ, γ are the same as above. In
particular, whenever µ = 2, F = 1

2I, γ = τ = 1, the VI (3.3) reduces to the
following variational inequality problem of finding z∗ ∈ Fix(T ) such that

(3.3)′ 〈(I − V )z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T ),

which was considered and studied in Mainge and Moudafi [2] and Lu, Xu and Yin
[23].

We remark that if we take Γ = µF − γV then the VI (3.3) is equivalent to the
following variational inequality problem of finding z∗ ∈ Fix(T ) such that

〈Γ z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T ).

Because it is possible that Γ = µF − γV is not strongly monotone, Yamada’s
argument fails to work. As a matter of fact, the variational inequality (3.3) is, in
general, ill-posed and thus regularization is need. Inspired by Lu, Xu and Yin [23],
our idea remains to regularize the nonexpansive mapping V by contractions, and is
based on the following proposition.

Proposition 3.1. Let S denote the solution set of the VI (3.3). Let t ∈ (0, 1)
and let zt be a fixed point of the mapping W t = tγV + (I − tµF )T ; namely,
zt = tγV zt + (I − tµF )Tzt. Assume {zt} remains bounded as t → 0.

(i) The solution set S of the variational inequality (3.3) is nonempty and each
weak limit point (as t → 0) of {zt} solves the VI (3.3).

(ii) If µF − γV is strictly monotone, then the net {z t} converges weakly to the
(unique) solution of the VI (3.3).
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(iii) If µF −γV is strongly monotone (e.g., µη > γ), then the net {zt} converges
strongly to the solution of the VI (3.3).

To prove part (i) of Proposition 3.1, we need the following useful lemma.

Lemma 3.2. ([23]). Assume that Γ : C → H is monotone and weakly
continuous along segments (i.e., Γ (x + ty) ⇀ Γx as t → 0). Then the VI (1.1)
is equivalent to the dual variational inequality problem of finding a point x ∗ ∈ C
such that

(3.4) 〈Γx, x− x∗〉 ≥ 0, ∀x ∈ C.

Proof of Proposition 3.1. Let W be the set of all weak accumulation points of
{zt} as t → 0; that is,

W = {z : ztn ⇀ z for some sequence {tn} in (0, 1) such that tn → 0}.
Then W 	= ∅ since {zt} is bounded.

To prove (i), we notice that the boundedness of {zt} implies that W 	= ∅ and

‖zt − Tzt‖ = t‖γV zt − µF (Tzt)‖ → 0 as t → 0.

It thus follows from Lemma 2.3 that W ⊂ Fix(T ).
Observe that

〈F (zt)− F (x̂), zt − x̂〉 = 〈F (Tzt)− F (x̂), zt − x̂〉 + 〈F (zt)− F (Tzt), zt − x̂〉
= 〈F (Tzt)−F (x̂), T zt−x̂〉+〈F (Tzt)−F (x̂), zt−Tzt〉

+〈F (zt)− F (Tzt), zt − x̂〉
≤ 〈F (Tzt)− F (x̂), T zt − x̂〉 + 2κ‖zt − x̂‖‖zt − Tzt‖.

Hence, utilizing Lemmas 2.4 and 2.6, we deduce that, for any x̂ ∈ Fix(T ),

‖zt − x̂‖2 = ‖(I − tµF )Tzt − (I − tµF )x̂ + t(γV zt − µF (x̂))‖2

≤ ‖(I − tµF )Tzt − (I − tµF )x̂‖2 + 2t〈γV zt − µF (x̂), zt − x̂〉
= ‖Tzt−x̂‖2−2tµ〈F (Tzt)−F (x̂), T zt−x̂〉+t2µ2‖F (Tzt)−F (x̂)‖2

+2t(〈γV zt−µF (zt), zt−x̂〉 + µ〈F (zt)−F (x̂), zt−x̂〉)
≤ ‖zt − x̂‖2 − 2tµ〈F (Tzt) − F (x̂), T zt − x̂〉+ t2µ2κ2‖zt − x̂‖2

+2t(〈γV zt − µF (zt), zt − x̂〉 + µ〈F (Tzt) − F (x̂), T zt − x̂〉
+2µκ‖zt − x̂‖‖zt − Tzt‖)

= ‖zt − x̂‖2 + t2µ2κ2‖zt − x̂‖2 + 2t〈γV zt − µF (zt), zt − x̂〉
+4tµκ‖zt − x̂‖‖zt − Tzt‖

= (1 + t2µ2κ2)‖zt − x̂‖2 + 2t〈γV zt − µF (zt), zt − x̂〉
+4tµκ‖zt − x̂‖‖zt − Tzt‖.
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It follows that

(3.5) 〈µF (zt) − γV zt, zt − x̂〉 ≤ tµ2κ2

2
‖zt − x̂‖2 + 2µκ‖zt − x̂‖‖zt − Tzt‖.

Note that 0 < γ ≤ τ and

µη ≥ τ ⇔ µη ≥ 1−
√

1 − µ(2η − µκ2)

⇔
√

1 − µ(2η − µκ2) ≥ 1 − µη

⇔ 1 − 2µη + µ2κ2 ≥ 1 − 2µη + µ2η2

⇔ κ2 ≥ η2

⇔ κ ≥ η.

It is clear that

〈(µF − γV )x− (µF − γV )y, x− y〉 ≥ (µη − γ)‖x− y‖2, ∀x, y ∈ H.

Hence it follows from 0 < γ ≤ τ ≤ µη that µF − γV is monotone. Thus we have

〈(µF − γV )zt, zt − x̂〉 ≥ 〈(µF − γV )x̂, zt − x̂〉.

This together with (3.5) implies that

(3.6) 〈(µF − γV )x̂, zt − x̂〉 ≤ tµ2κ2

2
‖zt − x̂‖2 + 2µκ‖zt − x̂‖‖zt − Tzt‖.

Now if x̃ ∈ W ⊂ Fix(T ) and if tn → 0 is such that xtn ⇀ x̃, then we conclude
from (3.6) and ‖ztn − Tztn‖ → 0 that

(3.7) 〈(µF − γV )x̂, x̃− x̂〉 ≤ 0, ∀x̂ ∈ Fix(T ).

By Lemma 3.2, we get x̃ ∈ S.
To see (ii), we assume that {t′n} is another null sequence in (0, 1) such that

xt′n ⇀ x̂. Then x̂ ∈ S and interchange x̃ and x̂ in (3.7) to get

(3.8) 〈(µF − γV )x̃, x̂− x̂〉 ≤ 0.

Adding up (3.7) and (3.8) yields

〈(µF − γV )x̃ − (µF − γV )x̂, x̃− x̂〉 ≤ 0.

So the strict monotonicity of µF − γV implies that x̃ = x̂ and {zt} converges
weakly.
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Finally to prove (iii), we observe that the strong monotonicity of µF − γV and
(3.5) imply that

(3.9)
α‖zt − x̂‖2 + 〈(µF − γV )x̂, zt − x̂〉

≤ tµ2κ2

2
‖zt − x̂‖2 + 2µκ‖zt − x̂‖‖zt − Tzt‖, x̂ ∈ Fix(T )

where α > 0 is the strong monotonicity coefficient of µF − γV ; that is,

〈(µF − γV )x − (µF − γV )y, x− y〉 ≥ α‖x − y‖2, ∀x, y ∈ H.

By part (ii), we have zt ⇀ z̃ ∈ S, where z̃ is the unique solution of the VI (3.3).
Replacing the x̂ in (3.9) with z̃ and then letting t → 0, we obtain that z t → z̃.

Proposition 3.1 says that every weak cluster point of {zt} solves the VI (3.3).
This motivates us to regularize V in the following manner.

Let
Vt = tf + (1 − t)V,

where f : H → H is a contraction with coefficient ρ ∈ [0, 1) and t ∈ (0, 1). Then
we consider the contraction x �→ sγVtx + (I − sµF )Tx, where s ∈ (0, 1). Denote
by zs,t the (unique) fixed point of this contraction. That is, zs,t ∈ H is the only
solution of the fixed point equation

(3.10)
zs,t = sγVtzs,t + (I − sµF )Tzs,t

= sγ[tf(zs,t) + (1 − t)V zs,t] + (I − sµF )Tzs,t.

Indeed, in terms of Lemma 2.6 we obtain that for each x, y ∈ H

‖[sγVt + (I − sµF )T ]x − [sγVt + (I − sµF )T ]y‖
≤ sγ‖Vtx − Vty‖ + ‖(I − sµF )Tx − (I − sµF )Ty‖
= sγ‖tf(x) + (1− t)V x − tf(y) − (1 − t)V y‖ + (1 − sτ)‖x − y‖
≤ sγ[t‖f(x)− f(y)‖ + (1 − t)‖V x − V y‖] + (1 − sτ)‖x − y‖
≤ sγ[tρ‖x− y‖ + (1− t)‖x− y‖] + (1− sτ)‖x− y‖
= sγ(1− t(1− ρ))‖x− y‖ + (1 − sτ)‖x − y‖
= {1 − s[τ − γ(1− t(1 − ρ))]}‖x− y‖.

Since 0 < γ ≤ τ, 0 ≤ ρ < 1 and 0 < s, t < 1, we have

γ(1− t(1 − ρ)) < γ ≤ τ,

and hence
0 < 1 − s[τ − γ(1− t(1 − ρ))] < 1.
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This implies that sγVt + (I − sµF )T is a contraction on H . Thus Banach’s
contraction principle guarantee’s that there exists a unique zs,t ∈ H such that (3.10)
holds.

Theorem 3.3. Suppose S 	= ∅. Then the iterated limt→0 lims→0 zs,t exists in
the norm topology and is the (unique) solution z ∗ of the VIP of finding z ∗ ∈ S

such that

(3.11) 〈(µF − γf)z∗, z − z∗〉 ≥ 0, ∀z ∈ S.

Equivalently, z∗ is the unique fixed point of the contraction P S(I −µF +γf); that
is, z∗ = PS(I − µF + γf)z∗.

Proof. First, let us show that the mapping µF − γV t is strongly monotone.
Indeed, observe that for each x, y ∈ H

〈(µF − γVt)x − (µF − γVt)y, x− y〉
= µ〈F (x) − F (y), x− y〉 − γ〈Vtx − Vty, x− y〉
≥ µη‖x − y‖2 − γ(1− t(1 − ρ))‖x− y‖2

= [µη − γ(1− t(1 − ρ))]‖x− y‖2.

Since 0 < γ ≤ τ ≤ µη, 0 ≤ ρ < 1 and 0 < t < 1, we have

γ(1− t(1 − ρ)) < γ ≤ τ ≤ µη

and hence
µη − γ(1− t(1 − ρ)) > 0.

This shows that µF − γVt is strongly monotone.
According to Proposition 3.1 (iii), we have that, for each fixed t ∈ (0, 1),

‖ · ‖ − lim
s→0

zs,t =: zt

exists and solves the variational inequality problem of finding zt ∈ Fix(T ) such
that

(3.12) 〈(µF − γVt)zt, y − zt〉 ≥ 0, ∀y ∈ Fix(T ).

Equivalently, zt ∈ Fix(T ) satisfies

(3.13) t〈(µF −γf)zt, y−zt〉+(1−t)〈(µF−γV )zt, y−zt〉 ≥ 0, ∀y ∈ Fix(T ).

In particular, for any y∗ ∈ S,

(3.14) t〈(µF − γf)zt, y
∗ − zt〉 + (1 − t)〈(µF − γV )zt, y

∗ − zt〉 ≥ 0.
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However, since y∗ ∈ S, we have

(3.15) 〈(µF − γV )zt, y
∗ − zt〉 ≤ 〈(µF − γV )y∗, y∗ − zt〉 ≤ 0.

It follows from (3.14) that

(3.16) 〈(µF − γf)zt, y
∗ − zt〉 ≥ 0, ∀y∗ ∈ S.

It turns out that

µη‖zt − y∗‖2 ≤ µ〈F (zt) − F (y∗), zt − y∗〉
≤ 〈µF (y∗)− γf(zt), y∗ − zt〉
= 〈(µF − γf)y∗, y∗ − zt〉 + γ〈f(y∗) − f(zt), y∗ − zt〉
≤ 〈(µF − γf)y∗, y∗ − zt〉 + γρ‖y∗ − zt‖2.

Therefore,

(3.17) ‖zt − y∗‖2 ≤ 1
µη − γρ

〈(µF − γf)y∗, y∗ − zt〉.

In particular,
‖zt − y∗‖ ≤ 1

µη − γρ
‖µF − γf)y∗‖

and {zt} is thus bounded.
Next let us show that ωw({zt}) ⊂ S; that is, if {tj} is a null sequence in (0, 1)

such that ztj ⇀ z̃ as j → ∞, then z̃ ∈ S. To see this, we combine (3.14) and
(3.15) to obtain, for all y∗ ∈ S,

〈(µF − γV )y∗, y∗ − zt〉 ≥ t

1 − t
〈(µF − γf)zt, zt − y∗〉.

Since {zt} is bounded, we may let t = tj → 0 (as j → ∞) in the last inequality to
get

〈(µF − γV )y∗, y∗ − z̃〉 ≥ 0, ∀y∗ ∈ S.

This implies that z̃ ∈ S.
Now from (3.17) we have

‖ztj − z̃‖2 ≤ 1
µη − γρ

〈(µF − γf)z̃, z̃ − ztj 〉.

Taking the limit as j → ∞, we see that ztj → z̃. Moreover, letting t = tj → 0 in
(3.16), we get

〈(µF − γf)z̃, y∗ − z̃〉 ≥ 0, ∀y∗ ∈ S.
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This shows that z̃ ∈ S solves the VI (3.11). By uniqueness, we have z̃ = z∗.
Therefore, zt → z∗ as t → 0.

Remark 3.4. Although, using a diagonal argument, for any given null sequence
{sn} in (0, 1), we can find another null sequence {tn} in (0, 1) such that zsn,tn →
z∗, we wonder whether or not the limit of {zs,t} exists in norm as (s, t) → (0, 0)
jointly.

Remark 3.5. Moudafi and Mainge [3] studied the VI (3.3)′ by regularizing the
mapping Wt := tV + (1− t)T and defined xs,t as the unique solution of the fixed
point equation:

(3.18) xs,t = sf(xs,t) + (1− s)[tV xs,t + (1− t)Txs,t].

Since Moudafi and Mainge’s regularization depends on t, the convergence of the
scheme (3.18) is very complicated. But, Lu, Xu and Yin [23] studied the VI (3.3)′
by regularizing the mapping V and defined zs,t as the unique solution of the fixed
point equation:

(3.18)′ zs,t = s[tf(zs,t) + (1− t)V zs,t] + (1 − s)Tzs,t.

Thus, the convergence of the scheme (3.18)′ is very simple. In the meantime, we
investigate the VI (3.3) by regularizing the mapping V and define xs,t as the unique
solution of the fixed point equation:

zs,t = sγ[tf(zs,t) + (1− t)V zs,t] + (I − sµF )Tzs,t.

Whenever γ = 1, µ = 2 and F = 1
2I , our scheme reduces to the scheme (3.18)′.

In addition, the convergence of our scheme is very simple as well. Indeed, Moudafi
and Mainge [3] (see also [8] for improvements) proved the strong convergence of
the iterated lims→0 limt→0 xs,t under much more restrictive assumptions, two of
which are ((A1) and (A3) in [3])

(a) For each t ∈ (0, 1), the fixed point set of Wt, Fix(Wt), is nonempty and the
set {Fix(Wt) : 0 < t < 1} is bounded;

(b) ∅ 	= S ⊂ ‖ · ‖ − lim inft→0 Fix(Wt) := {z : ∃zt ∈ Fix(Wt) such that zt →
z in norm as t → 0}.

In our regularization and Lu, Xu and Yin one, these conditions (1) and (2) have
completely been removed.

4. EXPLICIT HYBRID VISCOSITY-LIKE APPROXIMATION METHOD

Our variational inequality (3.3) involves two nonexpansive mappings T and
V . Our explicit hybrid viscosity-like approximation method is motivated by our
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implicit hybrid viscosity-like approximation method investigated in the last section
and the recent investigation on iterative methods for nonexpansive mappings (see
more details in [9-12,7,13-16,6,17-19,4,29-34]).

Our explicit iterative scheme generates a sequence {zn} from an arbitrary initial
guess z0 ∈ C and via the recursive formula:

(4.1) zn+1 = λnγVnzn + (I − λnµF )Tzn,

where the mappings V, T, F and the parameters µ, γ are the same as in Section
3, {λn} and {αn} are sequences in (0, 1), and Vn = αnf + (1 − αn)V with
f being a contraction of C with coefficient ρ ∈ [0, 1). In particular, whenever
µ = 2, F = 1

2I, γ = 1, the scheme (4.1) reduces to the following one

(4.1)′ zn+1 = λnVnzn + (1 − λn)Tzn.

Such a scheme was introduced and studied by Lu, Xu and Yin [23]. Similar iterative
methods can be found in [2] (see also [20]). The convergence of the scheme (4.1)
is not easy to discuss. However, we have the following result.

Theorem 4.1. Suppose the solution set S of the VI (3.3) is nonempty. Suppose
the following conditions hold:

(i) λn → 0 and αn → 0;
(ii)

∑∞
n=1 αnλn = ∞;

(iii) |αnλn − αn−1λn−1|/αnλ2
n → 0;

(iv) |λn − λn−1|/αnλ2
n → 0;

(v) there are constants θ > 0 and k̄ > 0 satisfying ‖x−Tx‖ ≥ k̄[d(x, Fix(T ))]θ

for x ∈ H and for some θ > 0;
(vi) λ

1/θ
n /αn → 0.

Suppose also that the sequence {zn} defined by the algorithm (4.1) is bounded.
Then {zn} converges in norm to the unique fixed point z ∗ of the contraction PS(I−
µF + γf), or the unique solution of the variational inequality (3.11).

Proof. Let z∗ be the unique fixed point of the contraction PS(I − µF + γf);
that is, z∗ is the unique solution of the variational inequality (3.11).

We divide our proof into the following steps
(1) ‖zn+1 − zn‖ → 0.
(2) ‖zn − Tzn‖ → 0; hence ωw({zn}) ⊂ Fix(T ).
(3) ‖zn+1 − zn‖/λn → 0.
(4) lim supn→∞〈(γf − µF )z∗, zn − z∗〉 ≤ 0.
(5) lim supn→∞ α−1

n 〈(γV − µF )z∗, zn+1 − z∗〉 ≤ 0.
(6) zn → z∗.



Hybrid Viscosity-like Approximation Methods for General Monotone Variational Inequalities 1885

Proof of (1). We compute

(4.2)

zn+1 − zn

= λnγVnzn + (I − λnµF )Tzn − [λn−1γVn−1zn−1

+(I − λn−1µF )Tzn−1]

= αnλnγ[f(zn)− f(zn−1)] + λnγ(1− αn)(V zn − V zn−1)

+[(I − λnµF )Tzn − (I − λnµF )Tzn−1]

+(αnλn − αn−1λn−1)γ[f(zn−1) − V zn−1]

+(λn − λn−1)[γV zn−1 − µF (Tzn−1)].

Since {zn} is bounded, we can find a constant M > 0 satisfying

M ≥ sup
n≥0

{γ‖f(zn) − V zn‖, ‖γV zn − µF (Tzn)‖}.

Now utilizing Lemma 2.6 we conclude from (4.2) and 0 < γ ≤ τ that

(4.3)

‖zn+1 − zn‖
≤ αnλnγ‖f(zn) − f(zn−1)‖ + λnγ(1− αn)‖V zn − V zn−1‖

+‖(I − λnµF )Tzn − (I − λnµF )Tzn−1‖
+|αnλn − αn−1λn−1|γ‖f(zn−1)− V zn−1‖
+|λn − λn−1|‖γV zn−1 − µF (Tzn−1)‖

≤ αnλnγρ‖zn − zn−1‖ + λnγ(1− αn)‖zn − zn−1‖
+(1 − λnτ)‖zn − zn−1‖
+|αnλn − αn−1λn−1|M + |λn − λn−1|M

= [1− λn(τ − γ + αnγ(1− ρ))]‖zn − zn−1‖
+M(|αnλn − αn−1λn−1| + |λn − λn−1|)

≤ (1− (1− ρ)αnλnγ)‖zn − zn−1‖
+M(|αnλn − αn−1λn−1| + |λn − λn−1|)

= (1− αnλnγ(1− ρ))‖zn − zn−1‖
+αnλnγ(1− ρ) · M(|αnλn − αn−1λn−1|
+|λn − λn−1|)/αnλnγ(1− ρ).

Conditions (iii) and (iv) imply that

lim
n→∞M(|αnλn − αn−1λn−1| + |λn − λn−1|)/αnλnγ(1− ρ) = 0.
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Hence, applying Lemma 2.5 to (4.3) yields ‖zn+1 − zn‖ → 0.

Proof of (2). By the definition of algorithm (4.1), we get immediately

‖zn+1 − Tzn‖ = λn‖γVnzn − µF (Tzn)‖ → 0 as {zn} is bounded.

Hence, ‖zn−Tzn‖ ≤ ‖zn −zn+1‖+‖zn+1 −Tzn‖ → 0. From the demiclosedness
of I − T (Lemma 2.3) it follows that ωw({zn}) ⊂ Fix(T ).

Proof of (3). Utilizing (iv) we know that there exists an integer n0≥ 1 such that

|λn − λn−1|
αnλ2

nγ(1− ρ)
<

1
2
, ∀n ≥ n0.

Hence from (4.3) it follows that for all n ≥ n0

(4.4)

‖zn+1 − zn‖
λn

= (1− αnλnγ(1− ρ))
‖zn − zn−1‖

λn−1

+(1 − αnλnγ(1− ρ))‖zn − zn−1‖( 1
λn

− 1
λn−1

)

+M
|αnλn − αn−1λn−1|+ |λn − λn−1|

λn

≤ (1− αnλnγ(1− ρ))
‖zn − zn−1‖

λn−1
+ ‖zn − zn−1‖| 1

λn
− 1

λn−1
|

+M
|αnλn − αn−1λn−1|+ |λn − λn−1|

λn

= (1− αnλnγ(1− ρ))
‖zn − zn−1‖

λn−1

+αnλnγ(1− ρ) · ‖zn − zn−1‖
λn−1

|λn − λn−1|
αnλ2

nγ(1− ρ)

+M
|αnλn − αn−1λn−1|+ |λn − λn−1|

λn

≤ (1− αnλnγ(1− ρ)/2)
‖zn − zn−1‖

λn−1

+M
|αnλn − αn−1λn−1|+ |λn − λn−1|

λn

= (1− αnλnγ(1− ρ)/2)
‖zn − zn−1‖

λn−1

+
αnλnγ(1− ρ)

2
· M |αnλn − αn−1λn−1| + |λn − λn−1|

αnλ2
nγ(1− ρ)/2

.

By virtue of conditions (ii), (iii) and (iv), we can apply Lemma 2.5 to (4.4) to
conclude ‖zn+1 − zn‖/λn → 0.
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Proof of (4). We verify that ωw({zn}) ⊂ S; that is, every weak limit point of
{zn} solves the variational inequality (3.3). To see this, we rewrite zn+1 as

zn+1 = αnλnγf(zn) + λnγ(1− αn)V zn + (I − λnµF )Tzn

so that

(4.5)

zn − zn+1

= αnλn(I − γf)zn

+λn(1− αn)(I − γV )zn + (1 − λn)(I − T )zn − λn(I − µF )Tzn

= αnλn(µF−γf)zn+λn(1−αn)(µF−γV )zn+(1−λn)(I − T )zn

+λn[(I − µF )zn − (I − µF )Tzn].

Set yn = zn−zn+1

λn(1−αn) . It is then easily seen from (4.5) that

yn = (µF − γV )zn +
αn

1 − αn
(µF − γf)zn +

1 − λn

λn(1− αn)
(I − T )zn

+
1

1 − αn
[(I − µF )zn − (I − µF )Tzn].

Utilizing the monotonicity of I−T and µF−γV , we deduce that for each x′∈Fix(T ),

(4.6)

〈yn, zn − x′〉
= 〈(µF − γV )zn, zn − x′〉 +

αn

1 − αn
〈(µF − γf)zn, zn − x′〉

+
1 − λn

λn(1− αn)
〈(I − T )zn − (I − T )x′, zn − x′〉

+
1

1 − αn
〈(I − µF )zn − (I − µF )Tzn, zn − x′〉

≥ 〈(µF − γV )x′, zn − x′〉 +
αn

1 − αn
〈(µF − γf)zn, zn − x′〉

+
1

1 − αn
〈(I − µF )zn − (I − µF )Tzn, zn − x′〉.

Note that ‖zn − Tzn‖ → 0 (Step (2)) implies ‖(I − µF )zn − (I − µF )Tzn‖ → 0.
Also, since yn → 0 (Step (3)), αn → 0, and {zn} is bounded, we obtain from (4.6)
that

(4.7) lim sup
n→∞

〈(µF − γV )x′, zn − x′〉 ≤ 0, ∀x′ ∈ Fix(T ).

This suffices to guarantee that ωw({zn}) ⊂ S. Indeed, if z̃ ∈ ωw({zn}) and if
zmj ⇀ z̃ for some subsequence {zmj} of {zn}, then we conclude from (4.7) that

〈(µF − γV )x′, z̃ − x′〉 ≤ lim sup
n→∞

〈(µF − γV )x′, zn − x′〉 ≤ 0, ∀x′ ∈ Fix(T ).

Therefore, by the dual version of (3.3) (see Lemma 3.2), z̃ ∈ S.
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Now take a subsequence {zni} of {zn} satisfying

lim sup
n→∞

〈(γf − µF )z∗, zn − z∗〉 = lim sup
i→∞

〈(γf − µF )z∗, zni − z∗〉.

With no loss of generality, we may further assume that znj ⇀ z̃; then z̃ ∈ S.
Therefore, noticing that z∗ is the solution of the VI (3.11), we get

lim sup
n→∞

〈(γf − µF )z∗, zn − z∗〉 = lim sup
i→∞

〈(γf − µF )z∗, z̃ − z∗〉 ≤ 0.

Proof of (5). We have

(4.8)

〈(γV − µF )z∗, zn+1 − z∗〉
= 〈(γV −µF )z∗, zn+1−PFix(T )zn+1〉+〈(γV −µF )z∗, PFix(T )zn+1−z∗〉
≤ 〈(γV − µF )z∗, zn+1 − PFix(T )zn+1〉
≤ ‖(γV − µF )z∗‖d(zn+1, Fix(T ))

≤ ‖(γV − µF )z∗‖( 1
k̄
‖zn+1 − Tzn+1‖)1/θ.

We also have

‖zn+1 − Tzn+1‖ ≤ ‖zn+1 − Tzn‖+ ‖zn+1 − zn‖
= λn‖γVnzn − µF (Tzn)‖ + ‖zn+1 − zn‖
≤ Mλn + ‖zn+1 − zn‖.

Hence for a big enough constant k1 > 0, we have

(4.9)

1
αn

〈(γV − µF )z∗, zn+1 − z∗〉 ≤ k1

αn
(λn + ‖zn+1 − zn‖)1/θ

≤ k1λ
1/θ
n

αn
(1 +

‖zn+1 − zn‖
λn

)1/θ.

By Step (3) and condition (vi), we obtain lim supn→∞
1

αn
〈(γV − µF )z∗, zn+1

−z∗〉 ≤ 0.

Proof of (6). Observe that

zn+1 − z∗

= [(I − λnµF )Tzn − (I − λnµF )z∗] + αnλnγ(f(zn) − f(z∗))
+λn(1 − αn)γ(V zn − V z∗) + αnλn(γf−µF )z∗+λn(1−αn)(γV −µF )z∗.

Noticing 0 < γ ≤ τ and utilizing Lemma 2.6, we give the following estimation
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(4.10)

‖zn+1 − z∗‖2

= ‖[(I − λnµF )Tzn − (I − λnµF )z∗] + αnλnγ(f(zn)− f(z∗))

+λn(1 − αn)γ(V zn − V z∗)

+αnλn(γf − µF )z∗ + λn(1 − αn)(γV − µF )z∗‖2

≤ ‖[(I − λnµF )Tzn − (I − λnµF )z∗] + αnλnγ(f(zn)− f(z∗))

+λn(1 − αn)γ(V zn − V z∗)‖2

+2〈αnλn(γf − µF )z∗ + λn(1− αn)(γV − µF )z∗, zn+1 − z∗〉
≤ [1− λnτ + αnλnγρ + λn(1− αn)γ]2‖zn − z∗‖2

+2αnλn〈(γf − µF )z∗, zn+1 − z∗〉
+2λn(1 − αn)〈(γV − µF )z∗, zn+1 − z∗〉

≤ [1− αnλnγ(1− ρ)]‖zn − z∗‖2 + 2αnλn〈(γf − µF )z∗, zn+1 − z∗〉
+2λn(1 − αn)〈(γV − µF )z∗, zn+1 − z∗〉

= [1− αnλnγ(1− ρ)]‖zn − z∗‖2 + αnλnγ(1− ρ)

· 2
γ(1− ρ)

(〈(γf − µF )z∗, zn+1 − z∗〉

+
1 − αn

αn
〈(γV − µF )z∗, zn+1 − z∗〉).

Setting γn = αnλnγ(1− ρ) and

δn =
2

γ(1− ρ)
(〈(γf − µF )z∗, zn+1 − z∗〉+

1 − αn

αn
〈(γV − µF )z∗, zn+1 − z∗〉),

we can rewrite (4.10) as

(4.11) ‖zn+1 − z∗‖2 ≤ (1− γn)‖zn − z∗‖2 + γnδn.

From Steps (4) and (5), we have lim supn→∞ δn ≤ 0. Since
∑

n γn = ∞, we can
apply Lemma 2.5 to (4.11) to conclude that ‖zn − z∗‖ → 0 as n → ∞.

Remark 4.2. As pointed out in Lu, Xu and Yin [23], whenever the sequences
{αn} and {λn} are chosen as

αn =
1

(n + 1)α
and λn =

1
(n + 1)λ

,

conditions (i)-(iv) of Theorem 4.1 are satisfied provided 0 < α, λ < 1 and α+2λ ≤
1. Also conditions (vi) is satisfied provided λ/α > θ.
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5. APPLICATIONS

Let H he a Hilbert space and let ϕ0, ϕ1 : H → R := (−∞,∞] be proper lower
semicontinuous convex functions. Consider the following hierarchical minimization

(5.1) min
x∈H

ϕ0(x) and min
x∈S0

ϕ1(x),

where S0 := argminx∈Hϕ0(x). (Here we always assume that S0 is nonempty.) Let
S = argminx∈S0

ϕ1(x) and assume S 	= ∅. Assume ϕ0 and ϕ1 are differentiable
and their gradients are Lipschitz continuous:

‖∇ϕ0(x)−∇ϕ0(y)‖ ≤ L0‖x − y‖ and ‖∇ϕ1(x)−∇ϕ1(y)‖ ≤ L1‖x − y‖,
where D(∇ϕ0) = D(∇ϕ1) = H .

Let

(5.2) T = I − γ0∇ϕ0 and V = I − γ1∇ϕ1,

where γ0 > 0 and γ1 > 0.
It is readily seen that S0 = Fix(T ). It is also known that T and V are both

nonexpansive if 0 < γ0 < 2/L0 and 0 < γ1 < 2/L1 (we always restrict γ0 and γ1

to such ranges). To see this, we need a result of [21] which says that the Lipschitz
continuity of ∇ϕ0 implies that it is inverse strongly monotone; that is, the following
inequality holds:

〈x − y,∇ϕ0(x)−∇ϕ0(y)〉 ≥ 1
L0

‖∇ϕ0(x) −∇ϕ0(y)‖2

for all x, y ∈ D(∇ϕ0) = H . Now it follows that

‖Tx − Ty‖2

= ‖(x− y) − γ0(∇ϕ0(x) −∇ϕ0(y))‖2

= ‖x − y‖2 − 2γ0〈x − y,∇ϕ0(x)−∇ϕ0(y)〉+ γ2
0‖∇ϕ0(x) −∇ϕ0(y)‖2

≤ ‖x − y‖2 − γ0(
2
L0

− γ0)‖∇ϕ0(x) −∇ϕ0(y)‖2

≤ ‖x − y‖2.

Hence, T is nonexpansive. Similarly, V is nonexpansive.
The optimality condition for x∗ ∈ S0 to be a solution of the hierarchical mini-

mization (5.1) is to find x∗ ∈ S0 such that

〈∇ϕ1(x∗), x− x∗〉 ≥ 0, ∀x ∈ S0,

or, equivalently, the variational inequality problem of finding x∗ ∈ Fix(T ) such that
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(5.3) 〈(I − V )x∗, x− x∗〉 ≤ 0, ∀x ∈ Fix(T ).

On the other hand, assume F : H → H is a κ-Lipschitzian and η-strongly
monotone operator with constants κ > 0, η > 0. Let T, V : H → H be the same
as in (5.2). Let 0 < µ < 2η/κ2 and 0 < γ ≤ τ , where τ = 1−√

1 − µ(2η − µκ2).
Then we consider the general variational inequality problem of finding x∗ ∈ Fix(T )
such that

(5.4) 〈(µF − γV )x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ).

In particular, whenever µ = 2, F = 1
2I, γ = τ = 1, the VI (5.4) reduces to the VI

(5.3).
In the remainder of this paper, we always assume F : H → H is a strongly

positive bounded linear operator. That is, there is a constant η > 0 with the property

〈Fx, x〉 ≥ η‖x‖2, ∀x ∈ H.

In this case, F is a κ-Lipschitzian and η-strongly monotone operator with κ = ‖F‖.
Therefore, Theorems 3.3 and 4.1 can be applied to the VI (5.4). In particular, taking
f = 0, we have the following result.

Theorem 5.1. Let S denote the solution set of the VI (5.4).
(I) Given s, t ∈ (0, 1). Define zs,t ∈ H by the fixed point equation

(5.5)
zs,t = −(sµF − γs(1− t)I)−1[γγ1s(1 − t)∇ϕ1(zs,t)

+γ0(I − sµF )∇ϕ0(zs,t)].

Then the iterated limt→0 lims→0 zs,t exists in the norm topology and is the unique
solution z̃ to the VIP of finding z̃ ∈ S such that

〈Fz̃, z − z̃〉 ≥ 0, ∀z ∈ S.

Equivalently, z̃ is the unique fixed point of the contraction P S(I − µF ); that is,
z̃ = PS(I − µF )z̃.

(II) Define a sequence {zn} by the recursive algorithm:

(5.6)
zn+1 = [(1 + γλn(1 − αn))I − λnµF ]zn

−γ0(I − λnµF )∇ϕ0(zn) − γγ1λn(1− αn)∇ϕ1(zn),

where we assume that {αn} and {λn} satisfy the conditions (i)-(iv). Assume also
that there are constants k̄ > 0, θ > 0 satisfying

(5.7) ‖∇ϕ0(x)‖ ≥ k̄[d(x, S0)]θ, ∀x ∈ D(∇ϕ0) = H.
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Moreover, assume λ
1/θ
n /αn → 0. Then, if {zn} is bounded, {zn} converges in

norm to the unique solution z̃ ∈ S to the VIP given in the case (I).

Proof. (I) For this particular case, the implicit scheme (3.10) is reduced to

zs,t = sγ(1− t)V zs,t + (I − sµF )Tzs,t

= sγ(1− t)(I − γ1∇ϕ1)zs,t + (I − sµF )(I − γ0∇ϕ0)zs,t

= sγ(1− t)zs,t − sγ(1− t)γ1∇ϕ1(zs,t) + zs,t − γ0∇ϕ0(zs,t)
−sµFzs,t + γ0sµF∇ϕ0(zs,t)
= zs,t − (sµF − sγ(1− t)I)zs,t − γγ1s(1− t)∇ϕ1(zs,t)
−γ0(I − sµF )∇ϕ0(zs,t),

which is equivalent to

(5.8) (sµF −sγ(1− t)I)zs,t = −γγ1s(1− t)∇ϕ1(zs,t)−γ0(I −sµF )∇ϕ0(zs,t).

Since F is a strongly positive bounded linear operator with constant η > 0, F is
a κ-Lipschitzian and η-strongly monotone operator with κ = ‖F‖. Also, since
0 < γ ≤ τ ≤ µη, we have

0 < sγ(1− t) < sγ ≤ sτ ≤ sµη.

This implies that the mapping sµF − sγ(1 − t)I is s(µη − γ(1 − t))-strongly
monotone. In the meantime, it is clear that the mapping sµF − sγ(1 − t)I is a
linear bounded operator. Thus the mapping sµF − sγ(1 − t)I is a topological
isomorphism from H onto itself, and so is the mapping (sµF −sγ(1−t)I)−1. This
implies that zs,t satisfies Eq. (5.5). By Theorem 3.3, we conclude that the iterated
limt→0 lims→0 zs,t =: z̃ exists and is the unique solution to the VIP of finding
z̃ ∈ S such that

〈Fz̃, z − z̃〉 ≥ 0, ∀z ∈ S.

Equivalently, z̃ is the unique fixed point of the contraction PS(I − µF ); that is,
z̃ = PS(I − µF )z̃.

(II) For this particular case, the explicit scheme (4.1) is reduced to

zn+1 = λnγVnzn + (I − λnµF )Tzn

= λnγ(1− αn)V zn + (I − λnµF )Tzn

= λnγ(1− αn)(I − γ1∇ϕ1)zn + (I − λnµF )(I − γ0∇ϕ0)zn

= γλn(1 − αn)zn − γγ1λn(1− αn)∇ϕ1(zn) + (I − λnµF )zn

−γ0(I − λnµF )∇ϕ0(zn)
= [(1 + γλn(1− αn))I − λnµF ]zn − γ0(I − λnµF )∇ϕ0(zn)

−γγ1λn(1 − αn)∇ϕ1(zn).
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That is, {zn} is defined by the algorithm (5.6).
Since I − T = γ0∇ϕ0 and Fix(T ) = S0, we find that condition (5.7) implies

condition (v) of Theorem 4.1.
Hence, all conditions (i)-(vi) of Theorem 4.1 are satisfied. Therefore, {zn}

converges in norm to a point z̃ ∈ S which is indeed the unique solution z̃ to the
VIP in the solution set S as argued in the case (I).

Corollary 5.2 (See [23, Theorem 5.1]). Let S denote the solution set of the VI
(5.3) (i.e., the solution set of the hierarchical minimization (5.1)).

(I) Given s, t ∈ (0, 1). Define zs,t ∈ H by the fixed point equation

zs,t = − 1
st

[γ0(1− s)∇ϕ0(zs,t) + γ1s(1 − t)∇ϕ1(zs,t)].

Then the iterated limt→0 lims→0 zs,t exists in the norm topology and is the minimum-
norm solution of the hierarchical minimization (5.1).

(II) Define a sequence {zn} by the recursive algorithm:

zn+1 = (1 − αnλn)zn − γ0(1 − λn)∇ϕ0(zn) − γ1λn(1− αn)∇ϕ1(zn)

where we assume that {αn} and {λn} satisfy the conditions (i)-(iv). Assume also
that there are constants k̄ > 0, θ > 0 satisfying

‖∇ϕ0(x)‖ ≥ k̄[d(x, S0)]θ, ∀x ∈ D(∇ϕ0) = H.

Moreover, assume λ
1/θ
n /αn → 0. Then, if {zn} is bounded, {zn} converges in

norm to the minimum-norm solution of the hierarchical minimization (5.1).

Proof. In Theorem 5.1, put µ = 2, F = 1
2I and γ = τ = 1. Then the VI (5.4)

reduces to the VI (5.3).
(I) For any given s, t ∈ (0, 1), the fixed point equation (5.5) reduces to the

following

zs,t = − 1
st

[γ0(1− s)∇ϕ0(zs,t) + γ1s(1 − t)∇ϕ1(zs,t)].

In terms of Theorem 5.1 (I), we deduce that the iterated limt→0 lims→0 zs,t exists
in the norm topology and is the unique solution z̃ to the VIP of finding z̃ ∈ S such
that

(5.9) 〈z̃, z − z̃〉 ≥ 0, ∀z ∈ S.

This is equivalent to the fact that z̃ = PS(0); namely, z̃ ∈ S fulfills the property:
‖z̃‖ = min{‖z‖ : z ∈ S}.

(II) In this case, the recursive algorithm (5.6) reduces to the following

zn+1 = (1 − αnλn)zn − γ0(1− λn)∇ϕ0(zn) − γ1λn(1 − αn)∇ϕ1(zn).



1894 Lu-Chuan Ceng, Q. H. Ansari and Juei-Ling Ho

In terms of Theorem 5.1 (II), we know that {zn} converges in norm to the unique so-
lution z̃ ∈ S to the VI (5.9), namely, the minimum-norm solution of the hierarchical
minimization (5.1).

Remark 5.3. As reminded in [23], see [22] for the nonsmooth case in a finite-
dimensional Hilbert space.
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