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PENALIZED GENERALIZED FISCHER-BURMEISTER FUNCTION
FOR SOCCP

Sangho Kum* and Yongdo Lim

Abstract. Recently, Pan et al. [11] developed the merit function method for
SOCCP based on the generalized Fischer-Burmeister (FB) function. This note
is along the same line. Indeed, we study a penalized version of the generalized
FB function and provide a basic theoretical property that the level set of the
merit function induced by the penalized version of the generalized FB function
is bounded under suitable assumptions. The proof relies on trace inequalities.

1. INTRODUCTION

The symmetric cone complementarity problem (for short, SCCP) on a symmetric
cone Ω in a Euclidean Jordan algebra V (see Section 2 for details) is defined to be
the problem finding vectors x, y ∈ V such that

x ∈ Ω, y ∈ Ω, 〈x, y〉 = 0, y = F (x)(1.1)

where F : V → V is a continuously differentiable mapping. This is equivalent to
the form:

Find x � 0, such that F (x) � 0 and 〈x, F (x)〉 = 0(1.2)

where � is the Löwner partial order on V defined by x � y ⇐⇒ y − x ∈ Ω, and
x ≺ y ⇐⇒ y − x ∈ Ω. In relation to (1.2), a function φ : V × V → V is called a
complementarity function (C-function) (see [4, 1.5.1 Definition]) if

φ(x, y) = 0 if and only if 〈x, y〉 = 0, x � 0, y � 0.(1.3)
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It is well known that the function defined by

φ(x, y) = x+ y − (x2 + y2)1/2

is a C-function [6], called the Fischer-Burmeister function.
The need for studying SCCP in optimization mostly comes from second-order

cone complementarity problems (SOCCP) and semidefinite complementarity prob-
lems (SDCP). As SOCCP is concerned with, as is well-explained in [3], an important
special case of SOCCP corresponds to the KKT optimality conditions of the convex
second-order cone program (CSOCP):

(1.4) minimize g(x)
subject to Ax = b, x ∈ K,

where g : R
n → R is a twice continuously differentiable convex function, A ∈

Rm×n has full row rank, b ∈ Rm, and

(1.5) K :=
{
(x1, x2) ∈ R × R

n−1 | ‖x2‖ ≤ x1

}

is the second-order cone (SOC). The convex SOCP has numerous applications in en-
gineering design, finance, robust optimization, and convex quadratically constrained
quadratic programs; see [1, 9]. So many methodologies to solve (SOCP) and
(SOCCP) have introduced (see [3]). Especially the merit function method based
on the Fischer-Burmeister (in short, FB) function was proposed by Chen and Tseng
[3]. This is an approach based on reformulating CSOCP and SOCCP as an uncon-
strained smooth minimization problem. In fact, a function ψ : R

n × R
n → R+ is

called a merit function if

(1.6) ψ(x, y) = 0 ⇐⇒ 〈x, y〉 = 0, x � 0, y � 0.

Chen and Tseng [3] chose as a merit function the popular FB merit function for
SOCCP defined by

(1.7) ψ
FB

(x, y) :=
1
2
‖φ

FB
(x, y)‖2,

where φFB : Rn × Rn → Rn is the FB function given by

(1.8) φFB(x, y) = x+ y − (x2 + y2)1/2

with x2 the Jordan product of x with itself, x1/2 a vector such that (x1/2)2 = x.
With this choice, they successfully established a nice theory of the merit function
method for SOCCP [3].
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In particular, in a recent paper [11], the merit function method for SOCCP based
on the generalized FB function is presented. The definition of the generalized FB
function is as follow: Let x, y ∈ Rn. For p > 1,

(1.9) φp(x, y) = x+ y − (|x|p + |y|p) 1
p

is called the generalized Fischer-Burmeister function of SOCCP. Clearly, when
p = 2, this function reduces to the FB function itself. This note is also along
the same line as the previous one [11]. Indeed, we study a penalized version of
the generalized FB function and provide a basic theoretical property that the level
set of the merit function induced by the penalized version of the generalized FB
function is bounded under suitable assumptions. This is a crucial step toward an
entire development of the merit function theory for SOCCP based on the penalized
version as a future research.

2. EUCLIDEAN JORDAN ALGEBRAS

We recall certain basic notions and well-known facts concerning Jordan algebras
from the book by Faraut and Korányi [5]. A Jordan algebra V with an identity
element e over the field R or C is a commutative algebra satisfying x2(xy) = x(x2y)
for all x, y ∈ V. Every Jordan algebra is power associative which means that the
algebra generated by x and e is associative. Denote L(x) by the multiplication
operator L(x)y = xy, and set P (x) = 2L(x)2 − L(x2) for x ∈ V. An element
x ∈ V is said to be invertible if there exists an element y in the subalgebra generated
by x and e such that xy = e.

A finite-dimensional real Jordan algebra V is called a Euclidean Jordan algebra
if it carries an associative inner product 〈·, ·〉 on V , namely 〈xy, z〉 = 〈y, xz〉 for
all x, y, z ∈ V. An element c ∈ V is idempotent if c2 = c, and two idempotents c
and c′ are orthogonal if cc ′ = 0. If an idempotent c cannot be written by a sum of
two non-zero idempotents then c is called primitive. One says that c1, . . . , ck is a
complete system of orthogonal idempotents if e =

∑k
i=1 ci, cicj = δijci. A Jordan

frame is a complete system of orthogonal primitive idempotents. The following two
theorems are fundamental in the theory of Euclidean Jordan algebra. Actually, we
introduce more detailed statements in [2] rather than the original ones in [5] as
follows:

Theorem 2.1. (Spectral theorem, first version [5, Theorem III.1.1]). For an
element x of a Euclidean Jordan algebra V there exist unique real numbers λ 1 >
· · · > λk and a unique complete system of orthogonal idempotents c 1, . . . , ck such
that x =

∑k
i=1 λici. The uniqueness is in the following sense: if there exist a

complete system of orthogonal idempotents {e 1, , . . . , es} and distinct real numbers
η1 > · · · > ηs such that x =

∑s
i=1 ηiei, then k = s and ηi = λi and ei = ci for

all 1 ≤ i ≤ k.
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Theorem 2.2. (Spectral theorem, second version [5, Theorem III.1.2]). For an
element x of a Euclidean Jordan algebra V there exist a Jordan frame c 1, . . . , cr (r
is fixed and called the rank of V ) and real numbers λ 1 ≥ · · · ≥ λr such that x =∑r

i=1 λici. If there exist a Jordan frame e1, . . . , er and real numbers η1 ≥ · · · ≥ ηr

such that x =
∑r

i=1 ηiei, then ηi = λi for all i and
∑

{j|ηj=α} ej =
∑

{j|ηj=α} cj
for each real number α.

Let tr(x) =
∑r

i=1 λi, the trace of x =
∑r

i=1 λici in the second spectral theorem.
Then the trace inner product tr(xy) is associative. Let Ω be the open convex cone
of invertible squares of a Euclidean Jordan algebra V. Then Ω is a symmetric cone,
that is, the group G(Ω) := {g ∈ GL(V ) : g(Ω) = Ω} acts transitively on it and Ω
is a self-dual cone with respect to the trace inner product. Recall the Löwner partial
order on V defined by x � y :⇐⇒ y − x ∈ Ω, and x ≺ y :⇐⇒ y − x ∈ Ω.

Lemma 2.3. Let p be a positive real number.
(i) Each element x � 0 has a unique p-th root denoted by x 1/p in Ω. If x ∈ Ω

has a spectral decomposition x =
∑r

i=1 λici, then x1/p =
∑r

i=1 λ
1/p
i ci.

(ii) (The Löwner-Heinz inequality, [8])

0 � x � y =⇒ xp � yp, 0 ≤ p ≤ 1.

For x ∈ V, we denote |x| by |x| = (x2)1/2 and

(2.10) x+ =
x+ |x|

2
, x− =

|x| − x

2
.

If x has a spectral decomposition x =
∑r

i=1 λici then

x+ =
r∑

i=1

(λi)+ci, x− =
r∑

i=1

(λi)−ci, |x| =
r∑

i=1

|λi|ci(2.11)

where for any scalar λ, λ+ = max{0, λ}, λ− = max{0,−λ}. Since x = x+ − x−
and 〈x+, x−〉 = 0, by the Moreau decomposition, x+ and −x− are the projections
of x onto Ω and −Ω, respectively. Moreover, x+x− = 0.

We close this section with two typical examples of Euclidean Jordan algebras:

Example 2.4. Let Sn be the algebra of n× n real symmetric matrices with the
Jordan product defined by

X ◦ Y =
XY + Y X

2
where XY is the usual matrix multiplication of X and Y . Then Sn is a Euclidean
Jordan algebra equipped with the trace inner product

〈X, Y 〉 = tr(XY ).

In this case, Ω is the set of all positive definite matrices.
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Example 2.5. Let Rn be the Euclidean space with the Jordan product defined
by

x ◦ y = (〈x, y〉, x1y2 + y1x2)

where x = (x1, x2), y = (y1, y2) ∈ R×Rn−1 and 〈x, y〉 is the usual inner product
in R

n. Then R
n is a Euclidean Jordan algebra equipped with the standard inner

product 〈·, ·〉. In this case, Ω is the set intK = {(x1, x2) ∈ R×Rn−1 | ‖x2‖ < x1}.

For further definitions, terminologies and facts concerning a Euclidean Jordan alge-
bra V and second-order cone K, readers may refer to [5, 3, 7].

3. MAIN RESULTS

We begin with quite elementary observations:

Lemma 3.1. For two nonzero vectors x, y ∈ R
n, we have

‖x+ y‖ ≥ ‖x‖ − ‖y‖.

The equality holds if and only if x = αy for some α ≤ −1.

Proof. The above inequality is nothing but the triangle inequality. If the equality
holds, then x and y are linearly dependent, so that x = αy for some α ∈ R. Then
we can easily deduce from the equality ‖x + y‖ = ‖x‖ − ‖y‖ that α ≤ −1. The
converse is trivial.

Lemma 3.2. For nonnegative real numbers t and s, the followings hold:

(i) (t+ s)p ≥ tp + sp for p > 1. The equality holds if and only if ts = 0.
(ii) (t+ s)p ≤ tp + sp for 0 ≤ p < 1. The equality holds if and only if ts = 0.

Lemma 3.3. Let κ ≥ 0. Let f(x) = (κ− x)p + (κ+ x)p for −κ ≤ x ≤ κ.

(i) For p > 1, f is an even function which is strictly increasing on 0 ≤ x ≤ κ.
(ii) For 0 ≤ p < 1, f is an even function which is strictly decreasing on 0 ≤ x ≤ κ.

Theorem 3.4. Let a = (t, x) ∈ R × R
n−1 and b = (s, y) ∈ R × R

n−1. For
p > 1, the generalized Fischer-Burmeister function

φp(a, b) = a+ b− (|a|p + |b|p) 1
p

is a C-function of SOCCP.

Proof. Assume that a ≥ 0, b ≥ 0 and ab = 0. By means of Gowda et al.
[6, Proposition 6], [L(a), L(b)] = L(a)L(b) − L(b)L(a) = 0. Due to Faraut and
Korányi [5, Lemma X.2.2], there exists a common Jordan frame c1, . . . , cr such that
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a =
∑r

i=1 λici and b =
∑r

i=1 µici with nonnegative real numbers λj, µj . Thus
we have

(a+ b)p = (λ1 + µ1)pc1 + · · ·+ (λr + µr)pcr

ap + bp = (λp
1 + µp

1)c1 + · · ·+ (λp
r + µp

r)cr

ab = (λ1µ1)c1 + · · ·+ (λrµr)cr = 0.

Hence λ1µ1 = · · · = λrµr = 0, which means by Lemma 3.2 (i) that (a + b)p =
ap + bp, that is, φp(a, b) = 0. Conversely, suppose that φp(a, b) = 0, namely,
a+b = (|a|p+|b|p)1/p. Setting w = (|a|p+|b|p)1/p, we have wp = |a|p+|b|p ≥ |a|p
and wp = |a|p + |b|p ≥ |b|p. By Lemma 2.3 (ii) (the Löwner-Heinz inequality),
w ≥ |a| and w ≥ |b|. Since |a| ≥ a and |b| ≥ b, we then have

a = w − b ≥ w − |b| ≥ 0, b = w − a ≥ w − |a| ≥ 0.

Thus |a| = a and |b| = b, so (a + b)p = |a|p + |b|p = ap + bp. Hence we have
tr[(a+ b)p] = tr(ap) + tr(bp), that is,

(3.12)
(t+ s− ‖x+ y‖)p + (t+ s + ‖x+ y‖)p

= (t− ‖x‖)p + (t+ ‖x‖)p + (s− ‖y‖)p + (s+ ‖y‖)p.

To show that ab = 0, it suffices to verify that 〈a, b〉 = 0 because a ≥ 0 and b ≥ 0.
Since a ≥ 0 and b ≥ 0, we have t ≥ ‖x‖ and s ≥ ‖y‖ so that t+ s ≥ ‖x+ y‖ ≥
‖x‖−‖y‖ (we may assume ‖x‖ ≥ ‖y‖ by the symmetry of the inequality in Lemma
3.1). Moreover,

(t+ s− ‖x+ y‖)p + (t+ s + ‖x+ y‖)p

≥ (t+ s− ‖x‖+ ‖y‖)p + (t+ s+ ‖x‖ − ‖y‖)p

≥ (t− ‖x‖)p + (s+ ‖y‖)p + (t+ ‖x‖)p + (s− ‖y‖)p.

The first inequality follows from Lemma 3.3, and the second comes from Lemma
3.2. By (3.12), we get

(t+ s− ‖x+ y‖)p + (t+ s + ‖x+ y‖)p

= (t+ s− ‖x‖+ ‖y‖)p + (t+ s+ ‖x‖ − ‖y‖)p

= (t− ‖x‖)p + (s+ ‖y‖)p + (t+ ‖x‖)p + (s− ‖y‖)p.

We first assume that two vectors x, y are nonzero. From the first equality above,
we obtain x = αy for some α ≤ −1 by Lemmas 3.1 and 3.3. Moreover, it can be
easily checked from the last equality that either t = 0, or s = 0, or (t = ‖x‖ and
s = ‖y‖) by Lemma 3.2. Since x, y are nonzero, the only possible case is when
t = ‖x‖ and s = ‖y‖. So we get
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〈x, y〉 = 〈αy, y〉 = α‖y‖2 = −‖αy‖‖y‖ = −‖x‖‖y‖ = −ts.
Thus, 〈a, b〉 = ts+ 〈x, y〉 = 0. When either x = 0 or y = 0, we see again from the
last equality that either t = 0 or s = 0 which clearly entails either a = 0 or b = 0,
hence 〈a, b〉=0. Therefore, we always have 〈a, b〉=0. This completes the proof.

Similarly, we show that a penalized version of the generalized FB function is
also a C-function of SOCCP. For p > 1, define a function

ψp(a, b) = a+ b− (|a|p + |b|p) 1
p + a+b+

and call it the penalized version of the generalized FB function φ p (1.9) where a+

denotes the orthogonal projection of a onto K.

Theorem 3.5. Let a = (t, x) ∈ R × Rn−1 and b = (s, y) ∈ R × Rn−1. For
p > 1, the penalized version of the generalized FB function

ψp(a, b) = a+ b− (|a|p + |b|p) 1
p + a+b+

is still a C-function of SOCCP.

Proof. Assume that a ≥ 0, b ≥ 0 and ab = 0. Then a+b+ = ab = 0 and hence
ψp(a, b) = a + b − (ap + bp)1/p = φp(a, b) = 0 from Theorem 3.4. Conversely,
suppose that ψp(a, b) = a+ b− (|a|p + |b|p)1/p + a+b+ = 0. We can decompose a
as a = a+ − a− where a− = (−a)+. Multiplying by a− both sides, we have

a−{(a+ b− (|a|p + |b|p)1/p) + a+b+} = 0

or from a+a− = 0

{−(a−)2 − a−[(|a|p + |b|p)1/p − b]}+ a−(a+b+) = 0.

Applying the trace operator to both sides yields that

−{tr((a−)2) + tr(a−[(|a|p + |b|p)1/p − b])}+ tr(a−(a+b+)) = 0.

Since both (|a|p + |b|p)1/p − b (by the Löwner-Heinz inequality) and a− belong to
K, and the trace operator is associative, we see that

tr((a−)2) = 0,

which implies that a− = 0, whence a ≥ 0. Similarly we obtain b ≥ 0. Thus
a+ b− (ap + bp)1/p + ab = 0. So we have (a+ b+ ab)p = ap + bp. Hence we get
tr[(a+ b+ ab)p] = tr(ap) + tr(bp), that is,

(3.13)

(t+ s+ ts+ 〈x, y〉 − ‖(s+ 1)x+ (t+ 1)y‖)p

+(t+ s + ts + 〈x, y〉+ ‖(s+ 1)x+ (t+ 1)y‖)p

= (t− ‖x‖)p + (t+ ‖x‖)p + (s− ‖y‖)p + (s+ ‖y‖)p.
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Now we verify that 〈a, b〉 = 0, i.e., ab = 0 by using a similar argument in the proof
of Theorem 3.4. Note that a+b+ab = (t+s+ts+〈x, y〉, (s+1)x+(t+1)y) ∈ K,
equivalently, t+ s+ ts+ 〈x, y〉 ≥ ‖(s+ 1)x+ (t+ 1)y‖. It can be easily checked
that

(t+ s+ ts + 〈x, y〉 − ‖(s+ 1)x+ (t+ 1)y‖)p

+ (t+ s + ts + 〈x, y〉+ ‖(s+ 1)x+ (t+ 1)y‖)p

≥ (t+ s+ ts+ 〈x, y〉 − ‖(s+ 1)x‖+ ‖(t+ 1)y‖)p

+ (t+ s + ts + 〈x, y〉+ ‖(s+ 1)x‖ − ‖(t+ 1)y‖)p

≥ (s+ 1)p(t− ‖x‖)p + (s+ 〈x, y〉+ (t+ 1)‖y‖)p

+ (t+ 1)p(s− ‖y‖)p + (t+ 〈x, y〉+ (s+ 1)‖x‖)p

≥ (t− ‖x‖)p + (s+ ‖y‖)p + (s− ‖y‖)p + (t+ ‖x‖)p.

The first inequality follows from Lemma 3.3, and the second one comes from Lemma
3.2. By (3.13), we get

(t+ s+ ts + 〈x, y〉 − ‖(s+ 1)x+ (t+ 1)y‖)p

+ (t+ s + ts + 〈x, y〉+ ‖(s+ 1)x+ (t+ 1)y‖)p

= (t+ s+ ts+ 〈x, y〉 − ‖(s+ 1)x‖+ ‖(t+ 1)y‖)p

+ (t+ s + ts + 〈x, y〉+ ‖(s+ 1)x‖ − ‖(t+ 1)y‖)p

= (s+ 1)p(t− ‖x‖)p + (s+ 〈x, y〉+ (t+ 1)‖y‖)p

+ (t+ 1)p(s− ‖y‖)p + (t+ 〈x, y〉+ (s+ 1)‖x‖)p

= (t− ‖x‖)p + (s+ ‖y‖)p + (s− ‖y‖)p + (t+ ‖x‖)p.

We first assume that two vectors x, y are nonzero. From the first equality above, we
obtain (s+ 1)x = α(t+ 1)y for some α ≤ −1 by Lemmas 3.1 and 3.3. Moreover,
it follows directly from the last equality that t = ‖x‖ and s = ‖y‖. So we get

〈x, y〉 = 〈βy, y〉 = β‖y‖2 = −‖βy‖‖y‖ = −‖x‖‖y‖ = −ts
where β = α t+1

s+1 < 0. Thus, 〈a, b〉 = ts+ 〈x, y〉 = 0. When either x = 0 or y = 0,
we see again from the last equality that either t = ‖x‖ = 0 or s = ‖y‖ = 0 which
clearly entails either a = 0 or b = 0, hence 〈a, b〉 = 0. This completes the proof.

Proposition 3.6. Let a = (t, x) ∈ R × Rn−1 and b = (s, y) ∈ R × Rn−1. For
p ≥ 1, we have

(3.14) tr[(|a|p + |b|p)1/p] ≤ tr(|a|) + tr(|b|).
Proof. The inequality (3.14) is equivalent to the following:

(3.15) tr[(a+ b)α] ≤ tr(aα) + tr(bα) for all a ≥ 0 and b ≥ 0 where α = 1/p.
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When p = 1, (3.14) is trivial so we may assume that p > 1.

tr[(a+ b)α] = (t+ s − ‖x+ y‖)α + (t+ s+ ‖x+ y‖)α

≤ (t+ s − ‖x‖ + ‖y‖)α + (t+ s + ‖x‖ − ‖y‖)α

≤ (t− ‖x‖)α + (s+ ‖y‖)α + (t+ ‖x‖)α + (s− ‖y‖)α

= tr(aα) + tr(bα).

The first inequality comes from Lemma 3.3, and the second inequality follows from
Lemma 3.2.

Definition. A mapping F : Rn → Rn is said to be R01 − function if for any
sequence {xk} such that

(3.16) ‖xk‖ → ∞,
(−xk)+
‖xk‖ → 0,

(−F (xk))+
‖xk‖ → 0,

we have

lim inf
k→∞

〈xk, F (xk)〉
‖xk‖2

> 0.

Proposition 3.7. Let F : R
n → R

n be a R01-function. For any sequence {xk}
satisfying ‖xk‖ → ∞, lim supk→∞ ‖xk−‖ < ∞ and lim supk→∞ ‖F (xk)−‖ < ∞,
we have

〈xk
+, F (xk)+〉 → ∞.

Proof. Since (−x)+ = x− for every x ∈ R
n, (3.16) is satisfied for the given

sequence {xk}. As F is a R01-function, we have

lim inf
k→∞

〈xk, F (xk)〉
‖xk‖2

> 0.

Hence
〈xk, F (xk)〉 → ∞.

Decomposing xk = xk
+ − xk− and F (xk) = F (xk)+ − F (xk)− yields that

〈xk, F (xk)〉 = 〈xk
+, F (xk)+〉+ 〈xk

−, F (xk)−〉 − 〈xk
+, F (xk)−〉 − 〈xk

−, F (xk)+〉.
Therefore we conclude that 〈xk

+, F (xk)+〉 → ∞. This completes the proof.

Proposition 3.8. The penalized version of the generalized FB function

ψp(a, b) = a+ b− (|a|p + |b|p) 1
p + a+b+

satisfies
‖ψp(a, b)‖ ≥ max{‖a−‖, ‖b−‖}, ∀a, b ∈ R

n.
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Proof. By taking the inner product with −a−, we have

〈−a−, a+b−(|a|p+|b|p)1/p+a+b+〉 = ‖a−‖2+〈a−, (|a|p+|b|p)1/p−b〉 ≥ ‖a−‖2

because both (|a|p + |b|p)1/p − b and a− belong to Ω, a+a− = 0, and the inner
product is associative with respect to the Jordan product. By the Cauchy-Schwarz
inequality, we get

‖a−‖‖ψp(a, b)‖ ≥ 〈−a−, a + b− (|a|p + |b|p)1/p + a+b+〉 ≥ ‖a−‖2,

and hence ‖ψp(a, b)‖ ≥ ‖a−‖. Similarly, we have ‖ψp(a, b)‖ ≥ ‖b−‖.
Proposition 3.9. Let a, b ∈ Rn. If max{‖a−‖, ‖b−‖} < C0, then

tr(a+ b− (|a|p + |b|p) 1
p ) > −8C0.

Proof. Observe that tr(a−) ≤ 2‖a−‖ < 2C0, tr(b−) ≤ 2‖b−‖ < 2C0. The trace
inequality (3.14) yields

tr(a+ b− (|a|p + |b|p)1/p) = tr(a+ b)− tr(|a|p + |b|p)1/p

≥ tr(a+ b)− tr(|a|+ |b|)
= −2tr(a−) − 2tr(b−) > −8C0.

Now the boundedness of level sets of the merit function ‖Ψp(x)‖=‖ψp(x, F (x))‖
is proved, which is the main result of this paper.

Theorem 3.10. Let p > 1. The level set M = {x ∈ V | ‖Ψp(x)‖ ≤ C} is
bounded provided that F is R01-function.

Proof. It is sufficient to prove that ‖Ψp(xk)‖ → ∞ as ‖xk‖ → ∞. If ||xk−||
→ ∞ or ||F (xk)−|| → ∞, the result holds by Proposition 3.8. Suppose that
lim supk→∞ ||xk−|| < ∞ and limsupk→∞ ||F (xk)−|| < ∞. So there is a C0 with
max{||xk−||, ||F (xk)−||} < C0. By Proposition 3.7, we obtain

tr(xk
+F (xk)+) = 2〈xk

+, F (xk)+〉 → ∞.

Then we have

||Ψp(xk)|| ≥ 1
2

tr{xk + F (xk) − (|xk|p + |F (xk)|p)1/p + xk
+F (xk)+}

=
1
2

tr{xk + F (xk) − (|xk|p + |F (xk)|p)1/p} +
1
2

tr(xk
+F (xk)+).

It follows from Proposition 3.9 that

lim inf
n→∞ tr{xk + F (xk) − (|xk|p + |F (xk)|p)1/p} > −∞.
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Therefore we conclude ||Ψp(xk)|| → ∞ as k → ∞.

Remark. Using a similar argument, we can show that Theorem 3.10 still holds
true under the strict feasibility condition on F .

4. CONCLUDING REMARKS

The results of the previous section in a sense only begin the theoretical study
of the merit function for SOCCP based on the penalized version of the generalized
Fischer-Bermeister function. So the next logical step in future research is to analyse
semismoothness or differentiablity of the merit function, and to report its numer-
ical performances as in [10]. Also there is an enough motivation to develop the
corresponding extensions to symmetric cones.
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