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MEAN-FIELD MODELS INVOLVING
CONTINUOUS-STATE-DEPENDENT RANDOM SWITCHING:

NONNEGATIVITY CONSTRAINTS, MOMENT BOUNDS,
AND TWO-TIME-SCALE LIMITS

G. Yin1, Guangliang Zhao1 and Fubao Xi2

Abstract. This work concerns mean-field models, which are formulated using
stochastic differential equations. Different from the existing formulations, a
random switching process is added. The switching process can be used to
describe the random environment and other stochastic factors that cannot be
explained in the usual diffusion models. The added switching component
makes the formulation more realistic, but it adds difficulty in analyzing the
underlying processes. Several properties of the mean-field models are provided
including regularity, nonnegativity, finite moments, and continuity. In addition,
the paper addresses the issue when the switching takes place an order of
magnitude faster than that of the continuous state. It derives a limit that is an
average with respect to the invariant measure of the switching process.

1. INTRODUCTION

This work concerns mean-field models, which are many-body systems with
interactions. The origin of the problem stems from statistical mechanics. As is
well known, many-body problems are notoriously difficult due to the many bodies
involved and the interactions among them. To overcome the difficulties, one of
the main ideas is to replace all interactions to any one body with an average or
effective interaction, which reduces any multi-body problem to an effective one-body
problem. Although the motivation is mainly from statistical mechanics, such models
have also enjoyed recent applications in, for examples, graphical models in artificial
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intelligence. It should be mentioned that in financial engineering, a somewhat related
idea is termed mean-reversion models, in which one uses a dynamic model that has
a force pushing the system moving towards its “equilibrium” in a suitable way.

Concerning the mean-field models, intuitively, if the particles exhibit many in-
teractions in the original system, the mean field will be more accurate for such a
system. The usefulness, the potential impact on many practical situations, and the
challenges arise have attracted much attention in recent years. The work [1] presents
a detailed study on cooperative behavior of such systems, and the subsequent work
[2] delineates the law of large numbers and central limit theorem for jump mean
fields; see also related work [4, 9] and references therein. From a probabilistic view
point, it is important to have an in-depth understanding of basic properties of such
systems.

Owing to the progress in technology, more complicated systems are encoun-
tered in applications. In response to such challenges, much effort has been devoted
to modeling and analysis for sophisticated systems. One of the ideas is to bring
regime switching into the formulation, so as to deal with the coexistence of contin-
uous dynamics and discrete events. For example, the underlying dynamic systems
may be influenced by or subject to not only the usual dynamics represented by
differential equations, but also movements that exhibit jump or switching behavior.
These discrete events are used to depict random environment or other uncertainty.
Recently, there are growing interests on formulating complex systems by use of
regime-switching processes, which largely enriched the applicability of the dynamic
models; see [14] and many references therein.

Continuing our effort in the study of regime-switching diffusions, this work
focuses on investigating properties of regime-switching mean-field models. This
paper is a continuation of our recent work [11], in which regularity, Feller continu-
ity, strong Feller continuity, and exponential ergodicity are obtained. In the previous
work, for example, in [1] as well as in [11], each component of the system is al-
lowed to take values in R. That is, any of the r bodies is allowed to take negative
values. However, in statistical physics, typically, these many bodies are only al-
lowed to be nonnegative. Thus it will be more realistic to consider a formulation
with nonnegativity constraint. In this paper, we take nonnegativity constraint into
consideration, which puts further challenges to the analysis. If R is used, to ensure
the system is non-explosive, it suffices to verify the regularity. Under the nonnega-
tivity constraint, it is necessary to show that each component of the system remains
to be nonnegative or to be confined to the first quadrant only. This in turn, requires
more careful analysis and special attention. In addition, we are interested in getting
several moment bounds. With such bounds at our hands, we can proceed to obtain
sample continuity as well as further asymptotic behavior. Furthermore, when the
switching process is varying an order of magnitude faster than the continuous state,
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certain average takes place. We show that the continuous state process has a limit,
which is an average with respect to the quasi-stationary measure of the fast varying
switching process (more precise definition will be given in the subsequent section).
This limit can be obtained by means of a martingale problem formulation.

The rest of the paper is arranged as follows. The precise formulation of the
mean-field model is provided next. Section 3 concerns properties of solutions of
the stochastic differential equations for the mean-field models. Regularity together
with the existence of the solution in the quarter plane is provided. Also given in
that section are moment properties, existence of moment generating functions, and
sample path continuity. Section 4 continues with positive recurrence. Section 5
proceeds with the study of large-time asymptotic properties. Section 6 examines
asymptotic properties of a mean-field model, in which the switching process is fast
varying. When the switching takes place an order of magnitude faster than that of
the continuous state, we derive a limit that is an average with respect to the invariant
measure of the switching process. Finally, the paper is concluded with some further
remarks.

2. FORMULATION

Suppose that α(·) is a randomly switching process taking values in M :=
{1, . . . , m}, and that γ(·), β(·) : M �→ R+, where R+ := {z ∈ R : z > 0}.
Consider an r-body mean-field model with switching described by the following
system of stochastic differential equations. For i = 1, 2, . . . , r,

(2.1)
dXi(t) =

[
γ(α(t))Xi(t)− X3

i (t) − β(α(t))(Xi(t) − X(t))
]
dt

+σii(X(t), α(t))dWi(t),

where Wi(·) is a one-dimensional standard Brownian motion,

X(t) =
1
r

r∑
i=1

Xi(t), X(t) =
(
X1(t), X2(t), . . . , Xr(t)

)′
,

x′ denotes the transpose of x. For α ∈ M = {1, . . . , m}, the transition rules of
α(t) are specified by

(2.2) P{α(t + ∆) = k|α(t) = α, X(t) = x} = qαk(x)∆ + o(∆) if k �= α,

where ∆ ↓ 0 and
∑

k∈M qαk(x) = 0 for each α ∈ M.
We will use the following assumptions, which are conditions on the coefficients

of (2.1) and the transition rate (2.2). Note that (A1) allows the diffusion to grow
at the order of 4 − δ for some δ > 0, whereas (A2) allows similar growth rate
and requires also σii(0) = 0. Condition (A1) is sufficient to ensure the existence
and uniqueness of the solution of the switching stochastic differential equation, and
condition (A2) enables us to obtain further properties such as nonnegativity etc.
More details will be seen in the subsequent sections.
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(A1) The Q(·) is bounded and continuous. For each α ∈ M and x ∈ R
r,

(a) qαk(x) > 0 for k �= α and σii(x, α) > 0 for each 1 ≤ i ≤ r;
(b) σii(x, α) and qαk(x) are locally Lipschitz with respect to x;
(c) σii(x, α) is infinitely differentiable in x;
(d) there exist constants K0 > 0 and δ > 0 such that

(2.3)
r∑

i=1

σ2
ii(x, α) ≤ K0(|x|4−δ + 1).

(A2) Assume (A1) but with (2.3) replaced by

(2.4)
r∑

i=1

σ2
ii(x, α) ≤ K0|x|4−δ.

To proceed, it is convenient to use a vector notation. For (x, α) ∈ R
r ×M, set

(2.5) b(x, α) =


b1(x, α)
b2(x, α)

...
br(x, α)

 =


γ(α)x1 − x3

1 − β(α)(x1 − x)
γ(α)x2 − x3

2 − β(α)(x2 − x)
...

γ(α)xr − x3
r − β(α)(xr − x)

 ∈ R
r,

and σ(x, α) = diag{σii(x, α)} ∈ Rr×Rr, where x :=
∑r

j=1 xj/r. Then stochastic
differential equation (2.1) can be rewritten as

(2.6) dX(t) = b(X(t), α(t))dt + σ(X(t), α(t))dW (t).

For a function f(·, ·) : R
r × M �→ R such that f(·, α) is twice continuously

differentiable with respect to the variable x for each α ∈ M, the operator associated
with the switching diffusion is given by

(2.7)
Lf(x, α) =

1
2

r∑
i=1

σ2
ii(x, α)

∂2f(x, α)
∂x2

i

+
r∑

i=1

bi(x, α)
∂f(x, α)

∂xi

+
∑
k∈M

qαk(x)
(
f(x, k)− f(x, α)

)
.

3. PROPERTIES OF SOLUTIONS

3.1. Regularity and Existence of Solutions

We begin by stating an existence and uniqueness of solution for the system of
differential equations of interest. Its proof can be found in [11, Theorem 3.3].
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Lemma 3.1. Assume condition (A1). Then for each initial condition (X(0),
α(0)) = (X0, α) with α ∈ M = {1, . . . , m}, there exists a unique solution
(X(t), α(t)) to (2.6) and (2.2) for t ≥ 0.

Remark 3.2. To proceed, we explore the regularity and nonnegativity of solu-
tions to (2.6) and (2.2). To get the regularity only, one can use a Liapunov function
V (x, α) = |x|. Then it can be verified that LV (x, α) ≤ cV (x, α) for some c > 0.
However, to show that the process will remain in the first quadrant, more complex
Liapunov function is needed as can be seen in the proof to follow.

Theorem 3.3. Assume (A2) and X0 ∈ R
r
+ := {(x1, . . . , xr) : xi > 0, i =

1, . . . , r}. Then the solution to (2.6) will remain in R
r
+ almost surely. That is,

X(t) ∈ R
r
+ a.s. for any t ≥ 0.

Proof. Consider (2.1). Using an argument of [5] for diffusions, assumption
(A2) indicates that the coefficients of the stochastic differential equation (2.6) are
locally Lipschitz and “locally” linear growth; see [14, Chapter 2]. Therefore, there
is an explosion time ρe such that for all t ∈ [0, ρe), there exists a local solution
for (2.6). Let k0 > 0 be sufficiently large such that Xi(0) ∈ ((1/k0), k0) for each
i = 1, . . . , r. For each k ≥ k0, we define

(3.1) τk := inf
{

t ∈ [0, ρe) : Xi(t) �∈
(1

k
, k

)
for some i = 1, 2, . . . , r

}
.

The sequence τk, k = 1, 2, . . . is monotonically increasing. Set τ∞ := limk→∞ τk.
Then τ∞ ≤ ρe.

We are in a position to prove τ∞ = ∞ a.s. Suppose that this were not true.
Then there would exist a T > 0 and ε > 0 such that P{τ∞ < T} > ε. Thus, there
is a k1 such that P{τk < T} > ε for all k ≥ k1. Denote

(3.2) S(x) =
r∑

i=1

xi,

and define a Liapunov function

V (x, α) =
r∑

i=1

xi − logS(x) where (x, α) ∈ R
r
+ ×M.

It is easily seen that

∂

∂xi
logS(x) =

1
S(x)

,
∂2

∂x2
i

logS(x) = − 1
S2(x)

.

Direct calculation leads to
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(3.3)

LV (x, α) =
r∑

i=1

[γ(α)xi − x3
i − β(α)(xi − x)]

+
1

S(x)

r∑
i=1

[−γ(α)xi + x3
i + β(α)(xi − x)]

+
1
2

1
S2(x)

r∑
i=1

σ2
ii(x, α) for each α ∈ M.

Since xi > 0 for each i, using the familiar inequality

(3.4)
r∑

i=1

xp
i ≤

( r∑
i=1

xi

)p
, p > 1,

(3.5)

− 1
S(x)

r∑
i=1

γ(α)xi = −γ(α),

1
S(x)

r∑
i=1

β(α)(xi − x) = 0,

1
S(x)

r∑
i=1

x3
i ≤ 1

S(x)

( r∑
i=1

xi

)3
= S2(x),

1
S(x)

r∑
i=1

σii(x, α) ≤ 1
S2(x)

r∑
i=1

x4−δ
i ≤ S2−δ(x).

Using (3.5) in (3.3), detailed estimates lead to that when x i > 0 is large, the value
of LV (x, α) is dominated by −x3

i ; when xi > 0 is small, the value of LV (x, α) is
dominated by a constant by using the bound of σ(x, α) in assumption (2.4). Thus,
in any event,

(3.6) LV (x, α) ≤ K where K > 0 is independent of k.

By virtue of the definitions of τk and V (x, α),

V (X(τk), α(τk)) ≥ (k − r log k) ∧
(1

k
+ log k

)
.

By means of Dynkin’s formula,
EV (X(T ∧ τk), α(T ∧ τk))− V (X(0), α(0))

= E
∫ τk∧T

0
LV (X(s), α(s))ds

≤ KT.

By rearrangement,

KT + V (X(0), α(0)) ≥ EV (X(τk ∧ T ), α(τk ∧ T ))

≥ EV (X(τk), α(τk))I{τk<T }
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≥ (k − r log k)) ∧
(1

k
+ log k

)
P(τk < T )

≥
[
(k − r log k) ∧

(1
k

+ log k
)]

ε

→ ∞ as k → ∞.

This is a contradiction. As a result, limk→∞ τk = ∞ a.s. and hence the explosion
time ρe = ∞ a.s.

3.2. Moment Properties

In this section, we consider moment properties of the process X(t). We show
that the moment generating function

M(z) = E exp(z′X(t)), for any t ≥ 0, z′ = (z1, . . . , zr) ∈ R
r with zi ∈ R

exists. To proceed, we first obtain a finite moment result.

Lemma 3.4. Under the conditions of Theorem 3.3, for any p ≥ 2,

sup
t≥0

E[
r∑

i=1

Xp
i (t)] ≤ K < ∞.

Proof. For any (x, α) ∈ R
r
+ × M, consider V (x, α) = Sp(x) with S(x)

defined in (3.2). Using the stopping time τk defined in (3.1), we have

LV (x, α) = pSp−1(x)
r∑

i=1

[γ(α)xi − x3
i − β(α)(xi − x)]

+
1
2
p(p − 1)Sp−2(x)

r∑
i=1

σ2
ii(x, α)

= pγ(α)Sp(x) − pSp−1(x)
r∑

i=1

x3
i +

1
2
p(p − 1)Sp−2

r∑
i=1

σ2
ii(x, α).

By virtue of Dynkin’s formula,

E[et∧τkSp(X(t∧ τk))− Sp(X(0))

= E
∫ t∧τk

0
es[V (X(s), α(s)) + LV (X(s), α(s))]ds

≤ E
∫ t∧τk

0
es

(
[1 + pγ(α)]Sp(x) +

1
2
p(p− 1)Sp−2

( r∑
i=1

xi

)2)
ds

≤ E
∫ t∧τk

0

esKds

≤ K(et − 1).

(3.7)
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Since limk→∞ τk = ∞ a.s., letting k → ∞, we obtain

E[etSp(X(t))]− Sp(X(0)) ≤ K(et − 1)

so
ESp(X(t)) ≤ e−tSp(X(0)) + K(1 − e−t) ≤ K < ∞.

Using (3.4) and taking supt≥0, the desired result then follows.

By virtue of Theorem 3.3, we can show EXi(t) ≤ K < ∞. This together
with Lemma 3.4 yields that for any positive integer l, EXl

i(t) ≤ K < ∞ for each
i = 1, . . . , r. Thus for any given z ∈ R

r, we have Ezl
iX

l
i(t) ≤ K < ∞ for each

i = 1, . . . , r. As a result,
∞∑
l=0

r∑
i=1

zl
iEX l

i(t)
l!

converges absolutely and uniformly.

The existence of the moment generating function then follows. We summarize this
into the following proposition.

Proposition 3.5. The moment generating function M(z) = E exp(z ′X(t))
exists for any z ∈ Rr and t ≥ 0.

3.3. Continuity

This section establishes the sample path continuity. In fact, the desired result
is obtained by means of an auxiliary bound. To proceed, we first establish the
following lemma.

Lemma 3.6. Under the conditions of Theorem 3.3, for any positive integer κ,
0 < T < ∞, and any 0 ≤ t, s ≤ T , there is a positive constant K such that

(3.8) E|X(t)− X(s)|2κ ≤ K|t − s|κ.

Proof. It suffices to examine each component Xi(·). It is easily seen that for
any positive integer κ, 0 < T < ∞, and any 0 ≤ t, s ≤ T ,

Xi(t) − Xi(s) =
∫ t

s
bi(X(u), α(u))du+

∫ t

s
σii(X(u), α(u))dWi(u),

and as a result∣∣∣∣Xi(t) − Xi(s)
∣∣∣∣2κ

≤ 22κ−1

[∣∣∣∣∫ t

s
bi(X(u), α(u))du

∣∣∣∣2κ

+
∣∣∣∣∫ t

s
σii(X(u), α(u))dWi(u)

∣∣∣∣2κ
]

.
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An application of the Hölder inequality leads to

(3.9)

E
∣∣∣∣∫ t

s
bi(X(u), α(u))du

∣∣∣∣2κ

≤
(∫ t

s
du

)2κ−1 ∫ t

s
E|bi(X(u), α(u))|2κdu

≤ K(t − s)2κ.

The last line above follows from the moment estimate in Lemma 3.4.
Next, we estimate the diffusion term. By using [7, Lemma 4.12, p. 131], we

have

(3.10)

E
∣∣∣∣∫ t

s
σii(X(u), α(u))dWi(u)

∣∣∣∣2κ

≤ [κ(2κ− 1)κ(t − s)κ−1]
∫ t

s
E|σii(X(u), α(u))|2κdu

≤ K(t − s)κ.

Combining the estimates in (3.9) and (3.10), the desired moment estimate fol-
lows.

Theorem 3.7. Under the conditions of Theorem 3.3, the process X(·), which
is the solution of (2.1), has continuous sample paths almost surely.

Proof. It suffices to examine each component. The assertion is a direct con-
sequence of Lemma 3.6 and the well-known Kolmogorov continuity criterion [10,
Theorem 2, p. 3].

4. POSITIVE RECURRENCE

Recall that an Rr-valued Markov process ξ(t) satisfying ξ(0) = x (denoted by
ξx(t) when we want to emphasize the initial data x-dependence) is recurrent with
respect to some nonempty bounded open set G ⊂ Rr if P {τx < ∞} = 1 for any
x /∈ G, where x = ξ(0) and τx is the hitting time of G for ξx(t) (i.e., the first
time that the process ξx(t) enters the set G, or τx := inf {t ≥ 0 : ξx(t) ∈ G}). The
process ξ(t) is said to be positive recurrent with respect to G if Eτ x < ∞ for any
x /∈ G.

Theorem 4.1. The solution is positive recurrent with respect to the domain

Gρ := {x ∈ R
r
+ : 0 < xi < ρ, i = 1, 2, . . . , r},

where ρ is a positive number to be specified.
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Proof. By virtue of [14], it suffices for each α ∈ M to find a nonnegative
Liapunov function V (·, α) defined on (Rr

+ − Gρ) ×M such that V (·, α) is twice
continuously differentiable with respect to x and satisfies LV (x, α) ≤ −1 for all
(x, α) ∈ (Rr

+ − Gρ) × M, where Gρ denotes the closure of Gρ. We consider the
nonnegative function

V (x, α) =
r∑

i=1

(logxi)2, (x, α) ∈ (Rr
+ − Gρ) ×M.

Note that for getting the positive recurrence, it suffices to work with a Liapunov
function that is defined in the exterior of the bounded set Gρ. Note also that when
xi > e, logxi > 1. Thus, in view of the fact log xi/xi ≤ 1,

(4.1)

r∑
i=1

2β(α)
logxi

xi

r∑
j=1

xj

r
≤ 2β(α)

r

r∑
i=1

r∑
j=1

xj

= 2β(α)
r∑

i=1

logxi
xi

logxi

≤
r∑

i=1

2β(α)xi logxi

when ρ is large enough. Note also that for xi > e, (1− logxi)/x2
i < 0. As a result,

(4.2)
r∑

i=1

σ2
ii(x, α)

1− logxi

x2
i

< 0.

Consequently, using (4.1) and (4.2),

LV (x, α) =
r∑

i=1

2 logxi(γ(α)− x2
i − β(α)) +

r∑
i=1

2β(α)
logxi

xi

r∑
j=1

xj

r

+
r∑

i=1

σ2
ii(x, α)

1− log xi

x2
i

<

r∑
i=1

2 logxi(γ(α)− x2
i − β(α) + β(α)xi)

=
r∑

i=1

2 logxi[−(xi − β(α)
2

)2 + (
β(α)

2
)2 − β(α) + γ(α)]

(4.3)

Thus we can find ρ large enough such that for all (x, α) ∈ (Rr
+ − Gρ) × M,

LV (x, α) < −1. Therefore X(t) is positive recurrent with respect to the domain
Gρ.

Since the process is positive recurrent with respect to Gρ, there is an invariant
measure there ([15] and also [14, Chapter 4]). Furthermore, there is an invariant
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density for the joint process (X(t), α(t)), denoted by {µ(x, i) : i ∈ M} such that

L∗µ(x, i) = 0,
∑
i∈M

∫
Rr

µ(x, i)dx = 1,

where L∗ is the adjoint of the operator L.

5. FURTHER ASYMPTOTIC BOUNDS

In this section, we derive further asymptotic bounds in the sense of almost sure
estimates. The result reveals long-time behavior and stability.

Theorem 5.1. The solution X(t) satisfies

lim sup
T→∞

log (X(T ))
logT

≤ K a.s.

for some K > 0.

Proof. Choose

V (t, x, α) = et log (x) for (t, x, α) ∈ [0,∞)× R
r
+ ×M,

where x =
∑r

i=1 xi/r. It is readily seen that

∂V

∂t
= et log(x),

∂V

∂xi
=

1
rx

et, and
∂2V

∂x2
i

= − 1
r2x2

et.

Then by virtue of Itô’s formula,

et log (X(t)) − log (X(0))

=
∫ t

0
es log (X(s))ds

+
∫ t

0
es

{ r∑
i=1

1
rX(s)

[γ(α(s))Xi(s)− X3
i (s) − β(α(s))(Xi(s) − X(s))]

+
r∑

i=1

1
2
σ2

ii(X(s), α(s))
−1

r2X
2(s)

}
ds

+
∫ t

0
es

r∑
i=1

σii(X(s), α(s))
rX(s)

dwi(s).

(5.1)

Denote

Mi(t) =
∫ t

0
es 1

rX(s)
σii(X(s), α(s))dwi(s),
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whose quadratic variation is〈
Mi, Mi

〉
(t) =

∫ t

0
e2s σ2

ii(X(s), α(s))

r2X
2(s)

ds.

By the familiar exponential martingale inequality (e.g., [8, p. 49]), for any positive
constants T , δ, and η, we have

P{ sup
0≤t≤T

[Mi(t) − δ

2
〈
Mi, Mi

〉
(t)] > η} ≤ e−δη .

Choose

T = kζ, δ = εe−kζ , and η =
θekζ log k

ε
,

where k ∈ N, 0 < ε < 1, θ > 1, and ζ > 0. Then similarly to that of [16], we can
show that

(5.2)

Mi(t) ≤ εe−kζ

2
〈
Mi, Mi

〉
(t) +

θekθ log k

ε
, for all 0 ≤ t ≤ kγ.

et log (X(t)) − log (X(0))

≤
∫ t

0
es{logX(s) +

r∑
i=1

1
rX(s)

[γ(α(s))Xi(s)

−X3
i (s) − β(α(s))(Xi(s) − X(s))]

+
r∑

i=1

σ2
ii

2
(X(s), α(s))

−1

r2X
2(s)

+
r∑

i=1

εe−kζesσ2
ii(X(s), α(s))

2
1

r2X
2(s)

}ds +
rθekζ log k

ε
.

Since εe−kζes < 1,
r∑

i=1

σ2
ii(X(s), α)

2
−1
r2x2

+
εe−kζesσ2

ii(x, α)
2

1
r2x2

=
r∑

i=1

σ2
ii(x, α)
2r2x2

(−1+εe−kζ es)<0.

In addition, note that

1
rx

r∑
i=1

[γ(α)xi − β(α)(xi − x)] = γ(α).

Using the Hölder inequality,( r∑
i=1

xi

)3 ≤
( r∑

i=1

13/2
)2

r∑
i=1

x3
i ≤ r2

r∑
i=1

x3
i .
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As a result,

log x − 1
rx

r∑
i=1

x3
i ≤ logx − 1

r3x

( r∑
i=1

xi

)3

= logx − x2 < 0.

Using the above estimates, we obtain

(5.3) logx +
1
rx

r∑
i=1

[γ(α)xi − x3
i − β(α)(xi − x)] ≤ γ(α).

Therefore, using (5.3) and (5.2), we obtain

(5.4)
et log (X(t)) − log (X(0)) ≤

∫ t

0

esCds +
rθekζ log k

ε

= C(et − 1) +
rθekζ log k

ε
,

where C is a positive constant. Thus for (k − 1)ζ ≤ t ≤ kζ, similar to the
development in [16], by sending ζ ↓ 0, ε ↑ 1, and θ ↓ 1, we have

lim sup
T→∞

logX(T )
logT

≤ K a.s.

The result is proved.
As a direct consequence, we obtain the following corollary.

Corollary 5.2. Under the conditions of Theorem 5.1,

lim sup
T→∞

logX(T )
T

≤ 0 a.s.,

and
lim sup
T→∞

log |X(T )|
T

≤ 0 a.s.

6. A TWO-TIME-SCALE LIMIT

This section is concerned with a class of mean field processes, in which the
random switching process changes an order of magnitude faster than the continuous
state (or the switching process jump change much more frequently). The basic
premise is that there are inherent two-time scales. Our interest focuses on the limit
behavior of the resulting process. Suppose that ε > 0 is a small parameter and the
system of mean field equations is given by

(6.1)
dXε

i (t) =
[
γ(α(t))Xε

i (t) − (Xε
i (t))

3 − β(αε(t))(Xε
i (t) − X

ε(t))
]
dt

+σii(Xε(t), αε(t))dWi(t),
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or using the definition of b(x, α),

(6.2) dXε(t) = b(Xε(t), αε(t))dt + σ(Xε(t), αε(t))dW (t),

where αε(t) is a fast-varying process whose generator is Q(x)/ε when Xε(t) = x.
Compared with our previous work on two-time-scale Markov processes [12], where
time-inhomogeneous Markov chains are treated, the new contribution is featured in
the x-dependence of the switching process. In this paper, the switching process
itself is non-Markov. To overcome the difficulty, we sub-divide the interval into
small part, and use careful approximation techniques to resolve the x-dependency
issue. Recall that Q(x) is bounded and continuous.

(A3) For each x ∈ R
r, Q(x) is weakly irreducible. That is, the system of equations

ν(x)Q(x) = 0, ν(x)11 = 1

has a unique solution where 11 := (1, . . . , 1)′ ∈ R
m×1 is a vector with all

component being 1, where ν(x) = (ν1(x), . . . , νm(x)) with νi(x) ≥ 0 for
each i ∈ M.

As can be seen, αε(·) is subject to fast variation, whereas X ε(·) changes rel-
atively slowly compared with αε(·). Although it is subject to rapid variations, the
αε(·) does not go to ∞; it is essentially a noise process having an invariant measure.
As ε → 0, the noise is averaged out, and the slow component of the evolution Xε(·)
converges weakly to X(·) that is an average with respect to the invariant measure
ν(x) given in (A3); see also the idea of averaging in systems with singularly per-
turbed diffusions in [6] and references therein. Let us consider the process {X ε(·)},
and work with t ∈ [0, T ] for some T > 0.

Lemma 6.1. Assume both (A1) and (A3). Then

sup
t∈[0,T ]

E|Xε(t)|2 < ∞.

This is barely a restatement of the moment bounds in the previous sections.
Using similar idea as in Lemma 3.4, we can also show that E|X ε(t)|p < ∞.

Lemma 6.2. Assume both (A1) and (A3). Then {X ε(·)} is tight in D([0, T ] :
Rr), the space of functions that are right continuous with left limits endowed with
the Skorohod topology.

Proof. For any ∆ > 0, and t, s > 0 satisfying s ≤ ∆, using Lemma 6.1 and
the same technique as in Lemma 3.6,

Et|Xε(t + s) − Xε(t)|2 ≤ O(s) ≤ O(∆),
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where Et denotes the conditioning on the σ-algebra generated by {Xε(u), αε(u) :
u ≤ t}. Taking lim sup

ε→0
followed by lim

∆→0
, we obtain

lim
∆→0

lim sup
ε→0

EEt|Xε(t + s) − Xε(t)|2 = 0.

Thus, by virtue of the well-known tightness criterion (for example, see [13, Lemma
14.12, p. 320]), {X ε(·)} is tight.

Since {Xε(·)} is tight, we can extract weakly convergent subsequences by the
well-known Prohorov’s theorem. Select such a subsequence and for notational
simplicity, still denote the subsequence indexed by ε with limit X(·). By virtue
of the Skorohod representation, there is an augmented probability space on which
there is a sequence X̃ε(·) defined on it having the same distribution as X ε(·) such
that X̃ε(·) converges to X̃(·) in the sense of w.p.1, where X̃(·) have the same
distribution as that of X(·). With a slight abuse of notation without changing
notation, we still denote this sequence by {X ε(·)} such that X ε(·) → X(·) w.p.1.
Using the argument as in Theorem 3.7, X(·) has continuous sample paths w.p.1.
We proceed to characterize the limit process.

To proceed, for an arbitrary N satisfying 0 < N < ∞, we can confine ourselves
with BN = {x : |x| ≤ N}, the ball with radius N , and work with a truncated
process Xε,N(·), known as N -truncation [13, p.321]. We then obtain the limit of
Xε,N(·). Finally by letting N → ∞ and using a piecing together argument, we
prove the convergence of Xε(·). However, For notational simplicity and without or
loss of generality, we can assume that Xε(·) is bounded in what follows. We shall
show that the limit X(·) is a solution of the mean field equation

(6.3) dX(t) = b(X(t))dt + σ(X(t))dW (t),

where

(6.4)

b(x) =
∑
i∈M

νi(x)b(x, i),

a(x) =
∑
i∈M

νi(x)a(x, i),

a(x) = σ(x)σ′(x), a(x, i) = σ(x, i)σ′(x, i),

ν(x) = (ν1(x), . . . , νm(x)) ∈ R
1×m.

Equivalently, X(·) is a solution of the martingale problem with operator L defined
by

(6.5) Lf(x) = b
′(x)∇f(x) + tr[a(x)Hf(x)],

for any f(·) ∈ C2(Rr), where ∇f(x) and Hf(x) are the usual gradient and
Hessian matrix of f(x), respectively.
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Theorem 6.3. Under the conditions of Lemma 6.2, the process X ε(·) converges
weakly to X(·), which is the solution of the martingale problem with operator L
given by (6.5) or X(·) is a solution of the limit mean field equation given by (6.3).

Proof. Since we have already established the tightness of the process {X ε(·)},
what remains to be done is to characterize the limit process X(·). To show that X(·)
is a solution of the martingale problem with operator L, pick out any F (·) ∈ C2

0 (Rr)
(C2 function with compact support). We need only show that

(6.6) F (X(t))− F (X(0))−
∫ t

0
LF (X(u))du is a martingale.

To verify (6.6), it suffices to show that for any bounded and continuous function
h(·), any positive integer �, any t, s > 0, and any tl ≤ t with l ≤ �,

(6.7) Eh(X(tl) : l ≤ �)
[
F (X(t + s)) − F (X(t))−

∫ t+s

t

LF (X(u))du
]

= 0.

To verify (6.7), we begin with the process indexed by ε, namely {Xε(·)}.
Because F (·) is independent of i ∈ M,

(6.8)
∑
j∈M

qε
ij(x)F (x) = 0 for each i ∈ M and each x.

Since the joint process (X ε(·), αε(·)) is Markov,

F (Xε(t + s))− F (Xε(t))−
∫ t+s

t
LF (Xε(u))du

is a martingale, and as a result,

Eh(Xε(tl) : l ≤ �)
[
F (Xε(t + s)) − F (Xε(t))−

∫ t+s

t

LF (Xε(u))du
]

= 0,

where L is the operator defined in (2.7) with Q(x) replaced by Q(x)/ε. That is, in
view of (6.8),

LF (x) =
1
2

tr[a(x, i)HF (x)]+ b′(x, i)∇F (x), i ∈ M.

Note that since F (·) is independent of i ∈ M, the term involving Q(x)/ε disappears.
Note also that L depends on ε and should have been written as Lε, but for notational
simplicity, we suppress the ε-dependence. By the weak convergence of Xε(·) to
X(·) and the Skorohod representation, we have

(6.9)
Eh(Xε(tl) : l ≤ �)

[
F (Xε(t + s)) − F (Xε(t))

]
→ Eh(X(tl) : l ≤ �)

[
F (X(t + s))− F (X(t))

]
as ε → 0.
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On the other hand,

Eh(Xε(tl) : l ≤ �)
[∫ t+s

t
LF (Xε(u))du

]
= Eh(Xε(tl) : l ≤ �)

[ ∫ t+s

t

[b′(Xε(u), αε(u))∇F (Xε(u))

+
1
2

tr[a(Xε(u), αε(u))HF (Xε(u)]du
]

First, consider the drift term, we obtain

(6.10)

Eh(Xε(tl) : l ≤ �)
[ ∫ t+s

t

b′(Xε(u), αε(u))∇F (Xε(u))du
]

= Eh(Xε(tl) : l ≤ �)
[ ∫ t+s

t

∑
i∈M

b′(Xε(u), i)∇F (Xε(u))I{αε(u)=i}
]

= Eh(Xε(tl) : l ≤ �)[ ∫ t+s

t

∑
i∈M

b′(Xε(u), i)∇F (Xε(u))[I{αε(u)=i} − νi(Xε(u))]
]

+Eh(Xε(tl) : l ≤ �)
[ ∫ t+s

t

∑
i∈M

b′(Xε(u), i)∇F (Xε(u))νi(Xε(u))
]
.

By virtue of the weak convergence of Xε(·) to X(·) and the Skorohod repre-
sentation (without changing notation by our convention), it can be shown that for
the last term in (6.10),

(6.11)

Eh(Xε(tl) : l≤�)
[∫ t+s

t

∑
i∈M

b′(Xε(u), i)∇F (Xε(u))νi(Xε(u))
]

→ Eh(X(tl) : l≤�)
[∫ t+s

t

∑
i∈M

b′(X(u), i)∇F (X(u))νi(X(u))
]

as ε → 0

= Eh(X(tl) : l≤�)
[∫ t+s

t

b
′
(X(u))∇F (X(u))du

]
.

As for the next to the last term in (6.10), we partition the interval [t, t + s] as
follows. For any 0 < ∆ < 1, let t = t0 < t1 < t2 < · · · < tlε ≤ t + s such that
tk = kε1−∆. Note that lε = 
s/ε1−∆� = O(1/ε1−∆). Without loss of generality
and for notational simplicity, we will assume the tlε coincides with t + s. Then we
can rewrite∫ t+s

t

∑
i∈M

b′(Xε(u), i)∇F (Xε(u))[I{αε(u)=i} − νi(Xε(u))]

=
lε−1∑
k=0

∫ tk+1

tk

∑
i∈M

b′(Xε(u), i)∇F (Xε(u))[I{αε(u)=i} − νi(Xε(u))]du.
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By the continuity of b(·, i) and the smoothness of F (·), we obtain

lim
ε→0

Eh(Xε(tl) : l ≤ �)[ ∑
i∈M

∫ t+s

t
b′(Xε(u), i)∇F (Xε(u))[I{αε(u)=i} − νi(Xε(u))]du

]
= lim

ε→0
Eh(Xε(tl) : l ≤ �)[ lε−1∑

k=0

∑
i∈M

∫ tk+1

tk

b′(Xε(tk), i)∇F (Xε(tk))[I{αε(u)=i} − νi(Xε(u))]du
]
.

By the choice of tl , we can rewrite the last line above as

Eh(Xε(tl) : l ≤ �)[ lε−1∑
k=0

∑
i∈M

∫ tk+1

tk

b′(Xε(tk), i)∇F (Xε(tk))[I{αε(u)=i} − νi(Xε(u))]du
]

= Eh(Xε(tl) : l ≤ �)[ lε−1∑
k=0

∑
i∈M

b′(Xε(tk), i)∇F (Xε(tk))Etk

∫ tk+1

tk

[I{αε(u)=i} − νi(Xε(u))]du
]
.

By virtue of the Cauchy-Schwarz inequality,

(6.12)

E

∣∣∣∣∣h(Xε(tl) : l ≤ �)
[ lε−1∑

k=0

∑
i∈M

b′(Xε(tk), i)∇F (Xε(tk))Etk

∫ tk+1

tk

[I{αε(u)=i} − νi(Xε(u))]du
]∣∣∣∣∣

≤
lε−1∑
k=0

∑
i∈M

E

∣∣∣∣∣h(Xε(tl) : l ≤ �)

b′(Xε(tk), i)∇F (Xε(tk))Etk

∫ tk+1

tk

[I{αε(u)=i} − νi(Xε(u))]du

∣∣∣∣∣
≤ K

lε−1∑
k=0

∑
i∈M

(1 + E1/2|Xε(tk)|2)E1/2

∣∣∣∣∣Etk

∫ tk+1

tk

[I{αε(u)=i} − νi(Xε(u))]du

∣∣∣∣∣
2

.

Lemma 6.4. Assume the conditions of Theorem 6.3 are fulfilled. For t ∈ [0, T ],
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and each fixed x in a bounded subset of R r, consider the generator Q(x)/ε. Then

(6.13)

∣∣∣∣∣ exp
(Q(x)t

ε

)
− 11ν(x)

∣∣∣∣∣ ≤ K exp
(
− κ0t

ε

)
,

for some K > 0 and κ0 > 0, where 11 = (1, 1, . . . , 1)′ ∈ R
m.

Proof of Lemma 6.4. For each x in a bounded subset of R
r, consider the

switching process with a generator Q(x)/ε. Then the results in [12, Lemma A.2, p.
300] are applicable. In fact, exp(Q(x)t/ε) is the associated transition matrix. The
weak irreducibility of Q(x) implies that exp(Q(x)t/ε) converges to a matrix with
identical rows, namely, 11ν(x). Moreover, the convergence takes place exponentially
fast. Thus (6.13) holds. Since the set x living in is bounded, K and κ0 can be
chosen to be independent of x.

We now examine the last term in (6.12). We have by the continuity of ν(x),

Etk

∫ tk+1

tk

[νi(Xε(tk))− νi(Xε(u))]du = o(tk+1 − tk) = o(ε1−∆).

Thus

(6.14)

lε−1∑
k=0

∑
i∈M

(1 + E1/2|Xε(tk)|2)E1/2

∣∣∣∣∣Etk

∫ tk+1

tk

[νi(Xε(tk)) − νi(Xε(u))]du

∣∣∣∣∣
2

≤ K

lε−1∑
k=0

o(ε1−∆) ≤ Klεo(ε1−∆) = o(1) → 0 as ε → 0.

Next, consider

Etk

∫ tk+1

tk

[I{αε(u)=i} − νi(Xε(tk))]du.

For u ∈ [tk, tk+1], to consider E[I{αε(u)=i} − νi(Xε(tk))], first let us examine the
associated transition matrix

P ε(u, tk) = (pε
ij(u, tk)) = (P(αε(u) = j|αε(tk) = i, Xε(tk)).

It satisfies the forward equation
d

du
P ε(u, tk) = P ε(u, tk)

Q(Xε(u))
ε

= P ε(u, tk)
Q(Xε(tk))

ε
+ P ε(u, tk)

Q(Xε(u)) − Q(Xε(tk))
ε

,

P ε(tk, tk) = I.
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The solution of the above matrix differential equation is given by

(6.15)

P ε(u, tk) = exp
(Q(Xε(tk))(u− tk)

ε

)
+

∫ u

tk

P ε(s, tk)
Q(Xε(s))− Q(Xε(tk))

ε

exp
(Q(Xε(tk))(s − tk)

ε

)
ds.

Note that Q(Xε(s))11 = Q(X ε(tk))11 = 0 and ν(x)Q(x) = 0 for each x. It then
follows from (6.15) that

(6.16)

P ε(u, tk) − 11ν(X ε(u))

=
(

exp
(Q(Xε(tk))(u− tk)

ε

)
− 11ν(X ε(tk))

)
+

∫ u

tk

{
[P ε(s, tk)− 11ν(X ε(tk))]

Q(Xε(s))− Q(Xε(tk))
ε

+11[ν(X ε(tk)) − ν(Xε(s))]
Q(Xε(s))

ε

}
×

(
exp

(Q(Xε(tk))(s − tk)
ε

)
− 11ν(X ε(tk))

)
ds.

Note that using Lemma 6.4, for some for some 0 < κ1 < κ0,∣∣∣∣∣
∫ u

tk

11[ν(X ε(tk))− ν(Xε(s))]
Q(Xε(s))

ε(
exp

(Q(Xε(tk))(s− tk)
ε

)
− 11ν(X ε(tk))

)
ds

∣∣∣∣∣
≤ K

∫ u

tk

1
ε
gε
1(s) exp

(
− κ0(s − tk)

ε

)
ds

≤ K

∫ u

tk

gε
1(s) exp

(
− κ1(s − tk)

ε

)
ds

≤ o(ε).

In the above gε
1(s) is a continuous function satisfying gε

1(s) → 0 as ε → 0.
Thus, using Lemma 6.4, for some κ0 > 0 and 0 < κ2 < κ0,

|P ε(u, tk)− 11ν(X ε(u))|

≤ exp
(
− κ0(u − tk)

ε

)
+ o(ε)
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+K

∫ u

tk

|P ε(s, tk)− 11ν(X ε(tk))|gε(s)
1
ε

exp
(−κ0(s − tk)

ε

)
ds

≤ exp
(
− κ0(u − tk)

ε

)
+ o(ε)

+K

∫ u

tk

|P ε(s, tk)− 11ν(X ε(tk))|gε(s) exp
(−κ2(s − tk)

ε

)
ds,

where gε(s) → 0 as ε → 0. An application of Gronwall’s inequality [3, p. 36,
Lemma 6.2] then yields that

(6.17) |P ε(u, tk) − 11ν(X ε(u))| ≤ o(ε).

It then follows that

(6.18)

∣∣∣∣∣Etk

∫ tk+1

tk

[I{αε(u)=i} − νi(Xε(u))]du

∣∣∣∣∣
≤ K

∫ tk+1

tk

o(ε)du

= O(ε2−∆).

Using (6.18) in the last term in (6.12), we obtain

(6.19)

lε−1∑
k=0

∑
i∈M

(1 + E1/2|Xε(tk)|2)E1/2

∣∣∣∣∣Etk

∫ tk+1

tk

[I{αε(u)=i} − νi(Xε(u))]du

∣∣∣∣∣
2

≤ K

lε−1∑
k=0

∑
i∈M

(1 + E1/2|Xε(tk)|2)E1/2

∣∣∣∣∣
∫ tk+1

tk

o(ε)du

∣∣∣∣∣
2

≤ KlεO(ε2−∆) = O(ε1−∆) → 0 as ε → 0.

By virtue of the weak convergence of Xε(·) to X(·), the Skorohod representation,
(6.10), (6.11), and the estimates up to now, we obtain

(6.20)
Eh(Xε(tl) : l ≤ �)

[ ∫ t+s

t
b′(Xε(u), αε(u))∇F (Xε(u))du

]
= Eh(X(tl) : l ≤ �)

[∫ t+s

t
b
′(X(u))∇F (X(u))du

]
.

Likewise, we can show

(6.21)
Eh(Xε(tl) : l ≤ �)

[∫ t+s

t
tr[a(Xε(u), αε(u))HF (Xε(u))]du

]
= Eh(X(tl) : l ≤ �)

[ ∫ t+s

t
tr[a(X(u))HF (X(u))]du

]
.
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Combining the estimates obtained thus far, we obtain that X(·) is a solution of the
martingale problem with operator L. The theorem is thus proved.

7. CONCLUDING REMARKS

In this paper, we have established several properties for a class of mean-field
models with random switching. The random switching is continuous-state depen-
dent. One difficulties considered here is that each of the particle is required to
be nonnegative. Our results include moment estimates, regularity, continuity, and
certain tightness. Furthermore, we also examine the asymptotic behavior when the
switching process is subject to fast variation. In the future study, it will be interest-
ing to examine the equivalent or mean field behavior when the number of particles
or bodies becomes large. In addition, the study of behavior of phase transitions will
also be a worthwhile undertaking.

REFERENCES

1. D. A. Dawson, Critical dynamics and fluctuations for a mean-field model of cooper-
ative behavior, J. Statist. Phys., 31 (1983), 29-85.

2. D. A. Dawson and X. Zheng, Law of large numbers and central limit theorem for
unbounded jump mean-field models, Adv. Appl. Math., 12 (1991), 293-326.

3. J. K. Hale, Ordinary Differential Equations, 2nd ed., R.E. Krieger, Malabar, FL,
1980.

4. M. Hitsuda and I. Mitoma, Tightness problem and stochastic evolution equation
arising from fluctuation phenomena for interacting diffusions, J. Multivariate Anal.,
19 (1986), 311-328.

5. R. Z. Khasminskii, Stochastic Stability of Differential Equations, Stijhoff and No-
ordhoff, Alphen, 1980.

6. R. Khasminskii and G. Yin, On averaging principles: An asymptotic expansion
approach, SIAM J. Math. Anal., 35 (2004), 1534-1560.

7. R. S. Liptser and A. N. Shiryayev, Statistics of Random Processes I, Springer-Verlag,
New York, NY, 2001.

8. X. Mao, Stochastic Differential Equations and Applications, 2nd Ed., Horwood,
Chichester, UK, 2008.

9. T. Shiga and H. Tanaka, Central limit theorem for a system of Markovian particles
with mean field interactions, Z. Wahr. Verw. Geb., 69 (1985), 439-459.

10. A. V. Skorohod, Studies in the Theory of Random Processes, Dover, New York,
1982.

11. F. Xi and G. Yin, Asymptotic properties of a mean-field model with a continuous-
state-dependent switching process, J. Appl. Probab., 46 (2009), 221-243.



Switching Mean-Field Models 1805

12. G. Yin and Q. Zhang, Continuous-time Markov Chains and Applications: A Singular
Perturbations Approach, Springer-Verlag, New York, NY, 1998.

13. G. Yin and Q. Zhang, Discrete-time Markov Chains: Two-time-scale Methods and
Applications, Springer, New York, NY, 2005.

14. G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications,
Springer, New York, 2010.

15. C. Zhu and G. Yin, Asymtotic properties of hybrid diffusion systems, SIAM J. Control
Optim., 46 (2007), 1155-1179.

16. C. Zhu and G. Yin, On competitive Lotka-Volterra model in random environments,
J. Math. Anal. Appl., 357 (2009), 154-170.

G. Yin
Department of Mathematics
Wayne State University
Detroit, MI 48202
U.S.A.
E-mail: gyin@math.wayne.edu

Guangliang Zhao
Department of Mathematics
Wayne State University
Detroit, MI 48202
U.S.A.
E-mail: ea4628@wayne.edu

Fubao Xi
Department of Mathematics
Beijing Institute of Technology
Beijing 100081
P. R. China
E-mail: xifb@bit.edu.cn




