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MEAN LIPSCHITZ SPACES CHARACTERIZATION VIA MEAN
OSCILLATION

Hong Rae Cho', Hyungwoon Koo? and Ern Gun Kwon?

Abstract. In this paper we characterize mean Lipschitz spaces in terms of
some LP-mean oscillation on the unit disc.

1. INTRODUCTION

Let D be the unit disc and T the unit circle. For a measurable function f on D
and 0 < r < 1, we define the LP-mean M,(r, f) of f by

= ([ \f(re”w%)”p.

-7

The Hardy space H? is the collection of holomorphic functions f such that

| fllae = sup My(r, f) < oo.
o<r<1

For a measurable function f on T, we define the LP-norm on T by

7r A o\ /P
I = ([ 1rerge)

For 1 <pand f € LP(T), we denote by P[f] the Poisson integral of f :

Pl = [P0 - 05 3

)
o 2w
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where P(r,t) = Re {(1 + re)/(1 — ret*)} = (1 —r2)/(1 — 2rcost + r2), and
re? € D. It is well known that v = P[f] is harmonic in I, that the integral means
M,,(r,u) are bounded, and that the radial limit

u* () = lim u(re?)
r—1-

exists and equals f(e?) for a.e. real §. Conversely, if  is any harmonic function
on D for which the integral means M, (r, v) are bounded, then f = u* exists a.e.,
belongs to LP(T), and w = P[f]. In short, if h? denotes the class of harmonic
functions u for which M, (r,«) is bounded, then the radial limit map v — u*
establishes an isometric isomorphism between AP, taken in the natural norm imposed
by its definition, and LP(T).
Let

Arf(e) = f(e"OFD) = f(e?),

AFf(e?) = f(eFD) = 2f () + (7).
For 1 < p,qg < oo and 0 < o < 1 we define the mean Lipschitz space ALY to be
the collection of f € HP such that

7 1/
APA(f) = </ [ASTp dt) I < 0o

. e 2

Now for ov = 1 we define the mean Lipschitz space A%L? to be the collection of

f € HP such that
1/q
, T IAZfNT, dt
A1§:<J(f):</_7r mEE 7 < 00

Let1 <p,g<oo. For 3> 0and g € LP(D) let

1 1/q
v'to) = [ Myt - rptar)
The following theorem is a characterization of the mean Lipschitz space in terms
of of the integral mean function.
Theorem 1.1. ([4], [1]). Let 1 < p,q < co. Let f € HP.
(i) Let 0 < a < 1. Then
1 flzze + AZIS) ~ I fllme + LE2L ().
(if) For a =1, we have
1l a0 + AZACS) ~ W fllme + LE(F7).
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Suppose f € L'(T). If I is a subinterval of [—, 7], let |I| denote its length,

and write d@
249
fr= fle
1),

The space BMO of functions of bounded mean oscillation is the collection of
f € LY(T) for which || f[ a0 < oo (see [7]) where

| fllBrro = sup L / |f(e?) — f;\d—e : I a subinterval of [—7, 7] 5.
11 J1 27

In this paper we characterize Lipschitz type spaces in terms of certain mean
oscillation as in the BMO space. Let I, = [—s, s] with 0 < s < 7. We define the
LP-moduli of continuity in terms of certain mean oscillation as follows,

o] G2 2)”
o= ([ f sty )"

The following is our result characterizating the Besov spaces in terms of these mean
oscillations.

Theorem 1.2. Let 1 < p,q < oo and f € HP.
(i) Let 0 < a < 1. Then

T q 1/q
e+ 820 ~ 1+ ([ sty Cotiotas)

(if) For a =1, we have

T 1 1/q
e+ 8290 ~ i+ ([ o) as)

Remark 1.3. In [2], Dyakonov characterized the mean Lipschitz spaces in terms
of the Garsian type norm (see [3]) that is another kind of the mean oscillation.
However, he considered only the case 0 < a < 1.

2. PROOF OF THEOREM

We need a couple of lemmas.

Lemma 2.1. (Hardy’s inequality). Let p > 1,7 > 0 and h be a non-negative

function. Then we have
1 1/p
( /0 (yh(y))py""ldy> :

[/o1 (/Om h(y)dy>px_r_1dx] 1/p _

=S
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See [6] for a proof of Hardy’s inequality.

Lemma 2.2.

My(r, fo) < Mp(r, foe)-

Proof. Note that

fo(2) =izf'(2)

1
@D foo(z) = =22 " (2) — 2f'(2).

Thus we have
fo(z) = izf"(2) +if'(2)
(2.2) 1
= —foo(2).
12

Since
otre®) < [ 1Fitoe o
by Minkowski’s inequality, it follows that
Myl fo) < [ Myl fibdo < r (v £
By (2.2), we have
My(r, 13) = - My(r, fon).
Therefore

My (r, fo) < My(7, fop)- n

Proof of Theorem 1.2(i): If f € ALY, then, by Minkowski’s inequality,

= ov dt\P dO\'P _ 1 it
7 “wb av < A dt
</—7r <‘Is‘ I, ‘Atf(e ) 27T> 27T> ~ ‘1—8‘ /I5 H tfHLPQﬂ_

Thus, by Hardy’s inequality, we have
T q 1 1 dt\?
_ < - -
/0 slitaq (wp(f.9))"ds /o slitaq <‘Is‘ /15 1&ef e 27r) o

4 1 s dt\?
< I -
~ /0 $1+aq+q </0 HAtfHLp 27T> ds

o [T IAGI, dt
~ 0 tl—l—ocq 2

= (A1)
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For the converse, by Cauchy formula,

Syt CaER LIS

21 (et — reif)?

t, O0<r<l.

f(rey =
Thus
, T Af(e?)]  dt
(i < ‘ t we
‘f (7“6 )‘ ~ /_7r ‘ei(t—i—@) _ rew\Z I

v A ()] dt

e lett—r|? 27
For 0 <r <1, let N = N(r) be the positive integer such that
(2.3) (1—r)2N <7< (1—r)2N*t

Then,
N+1

/ [Af(e7)] i) )| dt Z/ [Af(e?)] i) )| dt
et — \2 27 Ji \e”—rP 2’
where
Jo={t:|t| <1—r}
Je={t: 211 —-r)<|t| <20 -=r)} (k=1,---,N)
Inir={t:2Y(1 =) < |t < 7}
Note that |e? —r| > 1 —r and for ¢t € Jj
left —r| > e —1|—(1—r)~2"1—r)—(1—7r)> 21— 7).

Therefore, for k = 0,1, ..., N + 1 we have

[ ot O de _ s
leit — 7|2 27 ~ 2K(1 —7) |Ji|

and
NI S| 1 0
@Y 1S Y GO RO = | 1aste

Note that for k = 0, ..., N(r)

™ ) P 40 1/p
1wl = ([ (g [ 18ereiss) 52) " =lr 2= )
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and
[ Entilloe S (1S ae-

Therefore, by (2.4) and (2.3) we have

1 1/q
22,0 = ([ a0 - -eotar
0

Hveos | 1/a
k (1—a)g—1
< - r _
< /0 kzg 1 —7) (I1—r) dr
_ .

L NOEL e 1/a

S / k‘ik (1 _ ,r)(l—a)q—ldr
0 P 2 (1 — 7“) P

N(T’) q 1/(]
S O T
~ 0 =0 Qk(l — ’I") P

k=0

L [NG) T /e
~ || fllar + (/0 (Z oren(f; 25(1—r)) A= r)Traq :

For notational conveniences we let w,(f,t) = 0 if ¢ > 7. With this notation, we

have
1 N(r) q g 1/q
(/0 (Z 21kwp(f72k(1r))) WJ)

k=0
1 0 1 e dr Ha
< (/O <§ Sren(f, 21 —r))> m)
S 1 q dr 1/a
<L ([ (tr2a-n) )
00 1 i d 1/a
Since 0 < o < 1, we thus have
1 [N 1 ! dr e
20 (< 1 f e + /O /; Q—kwp(f, 2k(1 — 7)) (T —r)ireq

™ d 1/q
S+ ([ atnon 5 )
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Proof of Theorem 1.2(ii): If f € AL?, then by Minkowski’s inequality,

™ P q40 1/p 1

| A2p(e)| & <
‘I\ I 27T o |I

Thus, by Hardy’s inequality, we have
o1 g L 1 ) dt\?
- . < [ -
/0 sl+q (wp(ﬂ 8)) ds N/O sl+q <‘[8‘ /Is HAtfHLP ) ds
o1 s dt
5/0 S1+2q </ HAZfHLP—> ds

N/ HA2fHLpdt<qu(f)
0

tl+a

dt
A?fHLP%

For the converse, since f € H', it can be represented as a Poisson integral

@5) fre) = [ Plro =055
where P(r,t) = Re {(1 + re)/(1 — ret)} = (1 —r2)/(1 — 2rcost + r?), and
re’ € D. Note that

1—2rcost4+1r2=(1—7)2+2r(1—cost) > ((1—r)+|t)>
Therefore

(2.6) ‘ng (7", t) P(?", t) .

<1
tl(1—r)
The estimate (2.6) appears in [5] (see p.157 of [5]).
Note that ffﬁ Pyy(r, t)dt = 0 since the derivative of a constant function is 0,
and straightforward calculations show Pyy(r,t) is an even function in ¢ variable.
We thus have

foolre®) = [ Pan(r, 071040 — 27(e) + J(0 )57
0 T
Therefore
A ™ o d
e S [ 1Pt DIIAR )5

N+1 . i@t
<Z \PeertHA f(e )\%

N+1

NZ/ T PR EIE
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Since P(r,t ,517”)2 on Ji, we have
S @)
A N+1 1
fulre™| £ Y e Gu0), - / 2f(e)

Therefore, following the argument as the proof of the case (i)with Gy instead of
Fy,, we have

1/q
LY (foo) = (/ My(r, foo)? (1 —r)*™ 1d7">

1 /1IN+1 c. q . 1/q
: </0 ( 2 o P L) (=) dr)
1 N+1 e q - 1/q
: </0 ( 2 5P L) (=) dr)
LN T /e
S llar + (/0 (% Mw;(fﬂk(l?"))) W’) .

Also, following the argument as the proof of the case (i) with w instead of w*, we
have

I . Yo e r gs \ 1/
—r —_ < O (F.8)12 _
/0 % 4k p(f 2 (1 )) (1_r)1+ocq ~ </0 p(fv ) 81+q>

Therefore, we have

1
2.7) L2 fa0) < |1 £1 v + (/ TS s)qd$> /q.
By Cauchy estimates we have sup. <y 5 | f”(2)| < || f|lm», and by (2.1)
70 = —glifolre®) — fan(re®)]
Therefore, by Lemma 2.2 and (2.7) we have

L") SN fllme + LY fo) + L (foo) S N Fllme + LY fo0)-
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