TAIWANESE JOURNAL OF MATHEMATICS

Vol. 15, No. 4, pp. 1749-1757, August 2011

This paper is available online at http://www.tjm.nsysu.edu.tw/

MEAN LIPSCHITZ SPACES CHARACTERIZATION VIA MEAN OSCILLATION

Hong Rae Cho¹, Hyungwoon Koo² and Ern Gun Kwon³

Abstract. In this paper we characterize mean Lipschitz spaces in terms of some L^p -mean oscillation on the unit disc.

1. Introduction

Let $\mathbb D$ be the unit disc and $\mathbb T$ the unit circle. For a measurable function f on $\mathbb D$ and 0 < r < 1, we define the L^p -mean $M_p(r,f)$ of f by

$$M_p(r,f) = \left(\int_{-\pi}^{\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi}\right)^{1/p}.$$

The Hardy space H^p is the collection of holomorphic functions f such that

$$||f||_{H^p} = \sup_{0 < r < 1} M_p(r, f) < \infty.$$

For a measurable function f on \mathbb{T} , we define the L^p -norm on \mathbb{T} by

$$||f||_{L^p} = \left(\int_{-\pi}^{\pi} |f(e^{i\theta})|^p \frac{d\theta}{2\pi}\right)^{1/p}.$$

For $1 \leq p$ and $f \in L^p(\mathbb{T})$, we denote by P[f] the Poisson integral of f:

$$P[f](re^{i\theta}) = \int_{-\pi}^{\pi} P(r, \theta - t) f(e^{it}) \frac{dt}{2\pi},$$

Received February 18, 2010, accepted April 6, 2010.

Communicated by H. M. Srivastava.

2000 Mathematics Subject Classification: 30D50, 30D55.

Key words and phrases: Mean Lipschitz space, Mean oscillation, BMO space, Unit disc.

¹The author is supported by KRF-2008-313-C00036.

²The author is supported by KRF-2008-314-C00012.

³The author is supported by KRF-2009-0072094.

where $P(r,t)=\operatorname{Re}\ \{(1+re^{it})/(1-re^{it})\}=(1-r^2)/(1-2r\cos t+r^2)$, and $re^{i\theta}\in\mathbb{D}$. It is well known that u=P[f] is harmonic in \mathbb{D} , that the integral means $M_p(r,u)$ are bounded, and that the radial limit

$$u^*(e^{i\theta}) = \lim_{r \to 1^-} u(re^{i\theta})$$

exists and equals $f(e^{i\theta})$ for a.e. real θ . Conversely, if u is any harmonic function on $\mathbb D$ for which the integral means $M_p(r,u)$ are bounded, then $f=u^*$ exists a.e., belongs to $L^p(\mathbb T)$, and u=P[f]. In short, if h^p denotes the class of harmonic functions u for which $M_p(r,u)$ is bounded, then the radial limit map $u\to u^*$ establishes an isometric isomorphism between h^p , taken in the natural norm imposed by its definition, and $L^p(\mathbb T)$.

Let

$$\Delta_t f(e^{i\theta}) = f(e^{i(\theta+t)}) - f(e^{i\theta}),$$

$$\Delta_t^2 f(e^{i\theta}) = f(e^{i(\theta+t)}) - 2f(e^{i\theta}) + f(e^{i(\theta-t)}).$$

For $1 \leq p,q < \infty$ and $0 < \alpha < 1$ we define the mean Lipschitz space $\Lambda^{p,q}_{\alpha}$ to be the collection of $f \in H^p$ such that

$$\Delta_{\alpha}^{p,q}(f) = \left(\int_{-\pi}^{\pi} \frac{\|\Delta_t f\|_{L^p}^q}{|t|^{1+\alpha q}} \frac{dt}{2\pi}\right)^{1/q} < \infty.$$

Now for $\alpha=1$ we define the mean Lipschitz space $\Lambda^{p,q}_*$ to be the collection of $f\in H^p$ such that

$$\Delta_*^{p,q}(f) = \left(\int_{-\pi}^{\pi} \frac{\|\Delta_t^2 f\|_{L^p}^q}{|t|^{1+q}} \frac{dt}{2\pi} \right)^{1/q} < \infty.$$

Let $1 \leq p, q < \infty$. For $\beta > 0$ and $g \in L^p(\mathbb{D})$ let

$$L_{\beta}^{p,q}(g) = \left(\int_{0}^{1} M_{p}(r,g)^{q} (1-r)^{\beta q-1} dr\right)^{1/q}.$$

The following theorem is a characterization of the mean Lipschitz space in terms of of the integral mean function.

Theorem 1.1. ([4], [1]). Let $1 \le p, q < \infty$. Let $f \in H^p$.

(i) Let $0 < \alpha < 1$. Then

$$||f||_{H^p} + \Delta_{\alpha}^{p,q}(f) \sim ||f||_{H^p} + L_{1-\alpha}^{p,q}(f').$$

(ii) For $\alpha = 1$, we have

$$||f||_{H^p} + \Delta_*^{p,q}(f) \sim ||f||_{H^p} + L_1^{p,q}(f'').$$

Suppose $f \in L^1(\mathbb{T})$. If I is a subinterval of $[-\pi, \pi]$, let |I| denote its length, and write

 $f_I = \frac{1}{|I|} \int_I f(e^{i\theta}) \frac{d\theta}{2\pi}.$

The space BMO of functions of bounded mean oscillation is the collection of $f \in L^1(\mathbb{T})$ for which $||f||_{BMO} < \infty$ (see [7]) where

$$||f||_{BMO} = \sup \left\{ \frac{1}{|I|} \int_I |f(e^{i\theta}) - f_I| \frac{d\theta}{2\pi} : I \text{ a subinterval of } [-\pi, \pi] \right\}.$$

In this paper we characterize Lipschitz type spaces in terms of certain mean oscillation as in the BMO space. Let $I_s = [-s, s]$ with $0 < s < \pi$. We define the L^p -moduli of continuity in terms of certain mean oscillation as follows,

$$\omega_p(f,s) = \left(\int_{-\pi}^{\pi} \left(\frac{1}{|I_s|} \int_{I_s} |\Delta_t f(e^{i\theta})| \frac{dt}{2\pi} \right)^p \frac{d\theta}{2\pi} \right)^{1/p};$$

$$\omega_p^*(f,s) = \left(\int_{-\pi}^{\pi} \left(\frac{1}{|I_s|} \int_{I_s} |\Delta_t^2 f(e^{i\theta})| \frac{dt}{2\pi} \right)^p \frac{d\theta}{2\pi} \right)^{1/p}.$$

The following is our result characterizating the Besov spaces in terms of these mean oscillations.

Theorem 1.2. Let $1 \leq p, q < \infty$ and $f \in H^p$.

(i) Let $0 < \alpha < 1$. Then

$$||f||_{H^p} + \Delta_{\alpha}^{p,q}(f) \sim ||f||_{H^p} + \left(\int_0^{\pi} \frac{1}{s^{1+\alpha q}} \left(\omega_p(f,s)\right)^q ds\right)^{1/q}.$$

(ii) For $\alpha = 1$, we have

$$||f||_{H^p} + \Delta_*^{p,q}(f) \sim ||f||_{H^p} + \left(\int_0^\pi \frac{1}{s^{1+q}} \left(\omega_p^*(f,s)\right)^q ds\right)^{1/q}.$$

Remark 1.3. In [2], Dyakonov characterized the mean Lipschitz spaces in terms of the Garsian type norm (see [3]) that is another kind of the mean oscillation. However, he considered only the case $0 < \alpha < 1$.

2. Proof of Theorem

We need a couple of lemmas.

Lemma 2.1. (Hardy's inequality). Let $p \ge 1, r > 0$ and h be a non-negative function. Then we have

$$\left[\int_0^1 \left(\int_0^x h(y) dy \right)^p x^{-r-1} dx \right]^{1/p} \le \frac{p}{r} \left(\int_0^1 (yh(y))^p y^{-r-1} dy \right)^{1/p}.$$

See [6] for a proof of Hardy's inequality.

Lemma 2.2.

$$M_n(r, f_{\theta}) \leq M_n(r, f_{\theta\theta}).$$

Proof. Note that

(2.1)
$$f_{\theta}(z) = izf'(z)$$
$$f_{\theta\theta}(z) = -z^2 f''(z) - zf'(z).$$

Thus we have

(2.2)
$$f'_{\theta}(z) = izf''(z) + if'(z)$$
$$= \frac{1}{iz} f_{\theta\theta}(z).$$

Since

$$|f_{\theta}(re^{i\theta})| \leq \int_{0}^{r} |f'_{\theta}(\rho e^{i\theta})| d\rho,$$

by Minkowski's inequality, it follows that

$$M_p(r, f_{\theta}) \leq \int_0^r M_p(\rho, f_{\theta}') d\rho \leq r M_p(r, f_{\theta}').$$

By (2.2), we have

$$M_p(r, f'_{\theta}) = \frac{1}{r} M_p(r, f_{\theta\theta}).$$

Therefore

$$M_p(r, f_\theta) \le M_p(r, f_{\theta\theta}).$$

Proof of Theorem 1.2(i): If $f \in \Lambda^{p,q}_{\alpha}$, then, by Minkowski's inequality,

$$\left(\int_{-\pi}^{\pi} \left(\frac{1}{|I_s|} \int_{I_s} |\Delta_t f(e^{i\theta})| \frac{dt}{2\pi}\right)^p \frac{d\theta}{2\pi}\right)^{1/p} \lesssim \frac{1}{|I_s|} \int_{I_s} \|\Delta_t f\|_{L^p} \frac{dt}{2\pi}.$$

Thus, by Hardy's inequality, we have

$$\int_0^{\pi} \frac{1}{s^{1+\alpha q}} (\omega_p(f,s))^q ds \lesssim \int_0^{\pi} \frac{1}{s^{1+\alpha q}} \left(\frac{1}{|I_s|} \int_{I_s} \|\Delta_t f\|_{L^p} \frac{dt}{2\pi} \right)^q ds$$

$$\lesssim \int_0^{\pi} \frac{1}{s^{1+\alpha q+q}} \left(\int_0^s \|\Delta_t f\|_{L^p} \frac{dt}{2\pi} \right)^q ds$$

$$\lesssim \int_0^{\pi} \frac{\|\Delta_t f\|_{L^p}^q}{t^{1+\alpha q}} \frac{dt}{2\pi}$$

$$= (\Delta_{\alpha}^{p,q}(f))^q.$$

For the converse, by Cauchy formula,

$$f'(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{[f(e^{it}) - f(e^{i\theta})]e^{it}}{(e^{it} - re^{i\theta})^2} dt, \quad 0 < r < 1.$$

Thus

$$|f'(re^{i\theta})| \lesssim \int_{-\pi}^{\pi} \frac{|\Delta_t f(e^{i\theta})|}{|e^{i(t+\theta)} - re^{i\theta}|^2} \frac{dt}{2\pi}$$
$$= \int_{-\pi}^{\pi} \frac{|\Delta_t f(e^{i\theta})|}{|e^{it} - r|^2} \frac{dt}{2\pi}.$$

For $0 \le r < 1$, let N = N(r) be the positive integer such that

$$(2.3) (1-r)2^N < \pi \le (1-r)2^{N+1}.$$

Then,

$$\int_{-\pi}^{\pi} \frac{|\Delta_t f(e^{i\theta})|}{|e^{it} - r|^2} \frac{dt}{2\pi} = \sum_{k=0}^{N+1} \int_{J_k} \frac{|\Delta_t f(e^{i\theta})|}{|e^{it} - r|^2} \frac{dt}{2\pi}$$

where

$$J_0 = \{t : |t| < 1 - r\},$$

$$J_k = \{t : 2^{k-1}(1 - r) \le |t| < 2^k(1 - r)\} \quad (k = 1, \dots, N)$$

$$J_{N+1} = \{t : 2^N(1 - r) \le |t| \le \pi\}.$$

Note that $|e^{it} - r| > 1 - r$ and for $t \in J_k$

$$|e^{it} - r| \ge |e^{it} - 1| - (1 - r) \sim 2^k (1 - r) - (1 - r) \ge 2^{k-1} (1 - r).$$

Therefore, for k = 0, 1, ..., N + 1 we have

$$\int_{J_k} \frac{|\Delta_t f(e^{i\theta})|}{|e^{it} - r|^2} \frac{dt}{2\pi} \lesssim \frac{1}{2^k (1 - r)} \frac{1}{|J_k|} \int_{J_k} |\Delta_t f(e^{i\theta})| \frac{dt}{2\pi}$$

and

$$(2.4) |f'(re^{i\theta})| \lesssim \sum_{k=0}^{N+1} \frac{1}{2^k (1-r)} F_k(\theta), F_k(\theta) \equiv \frac{1}{|J_k|} \int_{J_k} |\Delta_t f(e^{i\theta})| \frac{dt}{2\pi}.$$

Note that for k = 0, ..., N(r)

$$||F_k||_{L^p} = \left(\int_{-\pi}^{\pi} \left(\frac{1}{|J_k|} \int_{J_k} |\Delta_t f(e^{i\theta})| \frac{dt}{2\pi} \right)^p \frac{d\theta}{2\pi} \right)^{1/p} = \omega_p(f, 2^k (1 - r)),$$

and

$$||F_{N+1}||_{L^p} \lesssim ||f||_{H^p}.$$

Therefore, by (2.4) and (2.3) we have

$$L_{1-\alpha}^{p,q}(f') = \left(\int_{0}^{1} M_{p}(r,f')^{q}(1-r)^{(1-\alpha)q-1}dr\right)^{1/q}$$

$$\leq \left(\int_{0}^{1} \left\|\sum_{k=0}^{N(r)+1} \frac{F_{k}}{2^{k}(1-r)}\right\|_{L^{p}}^{q} (1-r)^{(1-\alpha)q-1}dr\right)^{1/q}$$

$$\leq \left(\int_{0}^{1} \left(\sum_{k=0}^{N(r)+1} \left\|\frac{F_{k}}{2^{k}(1-r)}\right\|_{L^{p}}\right)^{q} (1-r)^{(1-\alpha)q-1}dr\right)^{1/q}$$

$$\lesssim \left(\int_{0}^{1} \left(\|f\|_{H^{p}} + \sum_{k=0}^{N(r)} \left\|\frac{F_{k}}{2^{k}(1-r)}\right\|_{L^{p}}\right)^{q} (1-r)^{(1-\alpha)q-1}dr\right)^{1/q}$$

$$\approx \|f\|_{H^{p}} + \left(\int_{0}^{1} \left(\sum_{k=0}^{N(r)} \frac{1}{2^{k}} \omega_{p}(f, 2^{k}(1-r))\right)^{q} \frac{dr}{(1-r)^{1+\alpha q}}\right)^{1/q}.$$

For notational conveniences we let $\omega_p(f,t)=0$ if $t>\pi$. With this notation, we have

$$\left(\int_{0}^{1} \left(\sum_{k=0}^{N(r)} \frac{1}{2^{k}} \omega_{p}(f, 2^{k}(1-r))\right)^{q} \frac{dr}{(1-r)^{1+\alpha q}}\right)^{1/q} \\
\leq \left(\int_{0}^{1} \left(\sum_{k=0}^{\infty} \frac{1}{2^{k}} \omega_{p}(f, 2^{k}(1-r))\right)^{q} \frac{dr}{(1-r)^{1+\alpha q}}\right)^{1/q} \\
\leq \sum_{k=0}^{\infty} \frac{1}{2^{k}} \left(\int_{0}^{1} \left(\omega_{p}(f, 2^{k}(1-r))\right)^{q} \frac{dr}{(1-r)^{1+\alpha q}}\right)^{1/q} \\
\leq \sum_{k=0}^{\infty} \frac{1}{2^{k}} \left(\int_{0}^{\pi} \left(\omega_{p}(f, s)\right)^{q} \frac{dr}{2^{-\alpha q} s^{1+\alpha q}}\right)^{1/q}$$

Since $0 < \alpha < 1$, we thus have

$$L_{1-\alpha}^{p,q}(f') \lesssim \|f\|_{H^p} + \left(\int_0^1 \left(\sum_{k=0}^{N(r)} \frac{1}{2^k} \omega_p(f, 2^k (1-r))\right)^q \frac{dr}{(1-r)^{1+\alpha q}}\right)^{1/q}$$
$$\lesssim \|f\|_{H^p} + \left(\int_0^\pi \left(\omega_p(f, s)\right)^q \frac{dr}{s^{1+\alpha q}}\right)^{1/q}.$$

Proof of Theorem 1.2(ii): If $f \in \Lambda^{p,q}_*$, then by Minkowski's inequality,

$$\left(\int_{-\pi}^{\pi} \left(\frac{1}{|I_s|}\int_{I_s} |\Delta_t^2 f(e^{i\theta})| \frac{dt}{2\pi}\right)^p \frac{d\theta}{2\pi}\right)^{1/p} \lesssim \frac{1}{|I_s|}\int_{I_s} \|\Delta_t^2 f\|_{L^p} \frac{dt}{2\pi}.$$

Thus, by Hardy's inequality, we have

$$\int_{0}^{\pi} \frac{1}{s^{1+q}} \left(\omega_{p}^{*}(f,s) \right)^{q} ds \lesssim \int_{0}^{\pi} \frac{1}{s^{1+q}} \left(\frac{1}{|I_{s}|} \int_{I_{s}} \|\Delta_{t}^{2} f\|_{L^{p}} \frac{dt}{2\pi} \right)^{q} ds
\lesssim \int_{0}^{\pi} \frac{1}{s^{1+2q}} \left(\int_{0}^{s} \|\Delta_{t}^{2} f\|_{L^{p}} \frac{dt}{2\pi} \right)^{q} ds
\lesssim \int_{0}^{\pi} \frac{\|\Delta_{t}^{2} f\|_{L^{p}}^{q}}{t^{1+q}} dt \lesssim \Delta_{*}^{p,q}(f).$$

For the converse, since $f \in H^1$, it can be represented as a Poisson integral

(2.5)
$$f(re^{i\theta}) = \int_{-\pi}^{\pi} P(r, \theta - t) f(e^{it}) \frac{dt}{2\pi},$$

where $P(r,t) = \text{Re } \{(1+re^{it})/(1-re^{it})\} = (1-r^2)/(1-2r\cos t + r^2)$, and $re^{i\theta} \in \mathbb{D}$. Note that

$$1 - 2r\cos t + r^2 = (1 - r)^2 + 2r(1 - \cos t) \ge ((1 - r) + |t|)^2.$$

Therefore

(2.6)
$$|P_{\theta\theta}(r,t)| \lesssim \frac{1}{|t|(1-r)} P(r,t).$$

The estimate (2.6) appears in [5] (see p.157 of [5]).

Note that $\int_{-\pi}^{\pi} P_{\theta\theta}(r,t)dt = 0$ since the derivative of a constant function is 0, and straightforward calculations show $P_{\theta\theta}(r,t)$ is an even function in t variable. We thus have

$$f_{\theta\theta}(re^{i\theta}) = \int_0^{\pi} P_{\theta\theta}(r,t) [f(e^{i(\theta+t)}) - 2f(e^{i\theta}) + f(e^{i(\theta-t)})] \frac{dt}{2\pi}.$$

Therefore

$$\begin{split} |f_{\theta\theta}(re^{i\theta})| &\lesssim \int_0^{\pi} |P_{\theta\theta}(r,t)| |\Delta_t^2 f(e^{i\theta})| \frac{dt}{2\pi} \\ &\lesssim \sum_{k=0}^{N+1} \int_{J_k} |P_{\theta\theta}(r,t)| |\Delta_t^2 f(e^{i\theta})| \frac{dt}{2\pi} \\ &\lesssim \sum_{k=0}^{N+1} \int_{J_k} \frac{1}{|t|(1-r)} P(r,t) |\Delta_t^2 f(e^{i\theta})| \frac{dt}{2\pi}. \end{split}$$

Since $P(r,t) \leq \frac{(1-r)}{(2^k(1-r))^2}$ on J_k , we have

$$|f_{\theta\theta}(re^{i\theta})| \lesssim \sum_{k=0}^{N+1} \frac{1}{[2^k(1-r)]^2} G_k(\theta), \qquad G_k(\theta) \equiv \frac{1}{|J_k|} \int_{J_k} |\Delta_t^2 f(e^{i\theta})| \frac{dt}{2\pi}.$$

Therefore, following the argument as the proof of the case (i)with G_k instead of F_k , we have

$$\begin{split} L_1^{p,q}(f_{\theta\theta}) &= \left(\int_0^1 M_p(r,f_{\theta\theta})^q (1-r)^{q-1} dr\right)^{1/q} \\ &\lesssim \left(\int_0^1 \left(\left\|\sum_{k=0}^{N+1} \frac{G_k}{[2^k (1-r)]^2}\right\|_{L^p}\right)^q (1-r)^{q-1} dr\right)^{1/q} \\ &\lesssim \left(\int_0^1 \left(\left\|\sum_{k=0}^{N+1} \frac{G_k}{[2^k (1-r)]^2}\right\|_{L^p}\right)^q (1-r)^{q-1} dr\right)^{1/q} \\ &\lesssim \left\|f\right\|_{H^p} + \left(\int_0^1 \left(\sum_{k=0}^{N(r)} \frac{1}{4^k} \omega_p^*(f, 2^k (1-r))\right)^q \frac{dr}{(1-r)^{1+\alpha q}}\right)^{1/q} . \end{split}$$

Also, following the argument as the proof of the case (i) with ω instead of ω^* , we have

$$\left(\int_0^1 \left(\sum_{k=0}^{N(r)} \frac{1}{4^k} \omega_p^*(f, 2^k (1-r)) \right)^q \frac{dr}{(1-r)^{1+\alpha q}} \right)^{1/q} \lesssim \left(\int_0^\pi \omega_p^*(f, s)^q \frac{ds}{s^{1+q}} \right)^{1/q}.$$

Therefore, we have

(2.7)
$$L_1^{p,q}(f_{\theta\theta}) \lesssim \|f\|_{H^p} + \left(\int_0^1 \frac{1}{s^{1+q}} \omega_p^*(f,s)^q \, ds\right)^{1/q}.$$

By Cauchy estimates we have $\sup_{|z| \le 1/2} |f''(z)| \lesssim \|f\|_{H^p}$, and by (2.1)

$$f''(re^{i\theta}) = \frac{1}{r^2e^{2i\theta}} [if_{\theta}(re^{i\theta}) - f_{\theta\theta}(re^{i\theta})].$$

Therefore, by Lemma 2.2 and (2.7) we have

$$L_1^{p,q}(f'') \lesssim ||f||_{H^p} + L_1^{p,q}(f_\theta) + L_1^{p,q}(f_{\theta\theta}) \lesssim ||f||_{H^p} + L_1^{p,q}(f_{\theta\theta}).$$

REFERENCES

1. P. L. Duren, *Theory of H^p spaces*, Academic Press, New York, 1970.

- 2. K. M. Dyakanov, Besov Spaces and Outer Functions, *Michigan Math. J.*, **45** (1998), 143-157.
- 3. J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 4. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, II, *Math. Z.*, **34** (1932), 403-439.
- 5. Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, 1992.
- 6. E. M. Stein, *Singular integrals and differentiability properties of functions*, Princeton University Press, New Jersey, 1970.
- 7. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

Hong Rae Cho
Department of Mathematics
Pusan National University
Pusan 609-735
Korea
Current address
Department of Mathematics and Statistics
State University of New York at Albany
Albany, NY 12222
U.S.A.
E-mail: chohr@pusan.ac.kr

Hyungwoon Koo Department of Mathematics Korea University Seoul 136-713

Korea

E-mail: koohw@korea.ac.kr

Ern Gun Kwon Department of Mathematics Education Andong National University Andong 760-749 Korea

E-mail: egkwon@andong.ac.kr