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ON TOTALIZATION OF THE H1-INTEGRAL

Branko Sarić

Abstract. Based on the total H1-integrability concept, which is established
in this paper, we shall try to show that at any point of a compact interval
(a, b] in R, at which a point function F has no a discontinuity, F is the total
H1-indefinite integral of a function dFex being the limit of ∆Fex (I), where
I ⊆ [a, b], on [a, b], without additional hypotheses on F . A residue function
of F is introduced. The paper ends with a few of examples that illustrate the
theory.

1. INTRODUCTION

Let F : [a, b] �→ R be a differentiable function and let f be its derivative. The
problem of recovering F from f is called problem of primitives. The generalized
Riemann integral, or the Kurzweil-Henstock integral [1, 3], solves this problem in
formulating the fundamental theorem of calculus in R whenever f exists on [a, b].
Notion of the so called H1-integral, as the Moore-Smith limit of Riemann sums,
was introduced by Garces, Lee and Zhao, [2]. This integral has the property that
f is Kurzweil-Henstock integrable on [a, b] if and only if there is an H1-integrable
function g such that f (x) = g (x) almost everywhere on [a, b]. In contrast to the
one-dimensional case, the Kurzweil-Henstock integral in R

n does not integrate all
derivatives (see Pfeffer [9]). In order to remove this flow, Mawhin [7] added a
condition restricting the class of admissible partitions of an n-dimensional interval.
This led to another Riemann type integral named regular partition integral, that
would integrate all derivatives in Rn. Macdonald [6] used the regular partition
integral to overcome the deficiency in Hestenes’ proof of the fundamental theorem
of calculus. Namely, Hestenes gave a heuristic demonstration of the fundamental
theorem, [4]. The demonstration is wonderfully brief and offers great intuitive
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insight, but it is not a rigorous proof. In particular, Hestenes proves his result using
the usual definition of a Riemann integral, as well as the integral definition of f .
However, in the fundamental theorem proof the derivative f is approximated by the
interval function without any conditions on f . Accordingly, in what follows, we
will try to give a rigorous proof of the fundamental theorem in R, for a large-scale
class of F , and in the spirit of Hestenes’ appealing proof. To do this, we must
firstly define a linear differential form dFex of an extension Fex of F . After that it
remains to define a new integral named total H1-integral that would integrate this
differential form without additional hypotheses on F .

2. PRELIMINARIES

The extended set R ∪ {−∞, +∞} of real numbers R is denoted by R. By N

we denote the set of natural numbers. The Lebesgue measure in R is denoted by
µ, however, for E ⊂ R we write |E| instead of µ (E).

Given a compact interval [a, b] in R, let the collection I ([a, b]) be a family of
all compact subintervals I of [a, b]. Any real valued function defined on I ([a, b])
is an interval function. For f : [a, b] �→ R the associated interval function of f is an
interval function f : I ([a, b]) �→ R, again denoted by f , [10]. A partition P [a, b]
of [a, b] is a finite set (collection) of interval-point pairs ([ai, bi] , xi), i = 1, ..., ν,
such that the subintervals [ai, bi] are non-overlapping ((ai, bi) ∩ (aj, bj) = ∅ for
i 	= j, where (ai, bi) is the interior of [ai, bi]), ∪i≤ν [ai, bi] = [a, b] and xi ∈
(ai, bi) if xi is an interior point of [a, b]. The points {xi}i≤ν are the tags of
P [a, b]. If E is a subset of [a, b], then the restriction of P [a, b] to E is a finite
collection of ([ai, bi] , xi) ∈ P [a, b] such that each xi ∈ E . In symbols, P [a, b] |E =
{([ai, bi] , xi) ∈ P [a, b] | xi ∈ E}. It is evident that a given partitionof [a, b] can
be tagged in infinitely many ways by choosing different points as tags. Given
δ : [a, b] �→ R+, named a gauge, a partition P [a, b] is called δ-fine if [ai, bi] ⊂
(xi − δ (xi) , xi + δ (xi)). By Cousin’s lemma the set of δ-fine partitions of [a, b]
is nonempty, [1]. Let P [a, b] be the family of all partitions P [a, b] of [a, b]. Then,
by Pδ [a, b] we denote the family of all δ-fine partitions of [a, b] for some given
δ : [a, b] �→ R+.

For the infinite set of partitions {Pn [a, b] | Pn [a, b] = {([ain , bin] , xin)},
n ∈ N}, denoted by 〈Pn [a, b]〉, we write 〈Pn [a, b]〉 ∈ (P [a, b] ,≺), if Pn [a, b] ≺
Pn+1 [a, b] for each n ∈ N. The statement Pn [a, b] ≺ Pn+1 [a, b] means that for each
interval-point pair (

[
ain+1 , bin+1

]
, xin+1) ∈ Pn+1 [a, b] there exists a corresponding

interval-point pair ([ain , bin] , xin) ∈ Pn [a, b] such that
[
ain+1 , bin+1

] ⊂ [ain , bin],
and

{xin | ([ain , bin] , xin)∈Pn [a, b]}⊂{
xin+1 | ([ain+1 , bin+1

]
, xin+1)∈Pn+1 [a, b]

}
.

Then, (P [a, b] ,≺) is the family of directed sets, [2]. Clearly, for any x ∈ [a, b]
there exists a directed set 〈Pn [a, b]〉 ∈ (P [a, b] ,≺) so that x is a tag for it.
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If f : [a, b] �→ R is a point function and φ : I [a, b] �→ R is an interval
function, which assign to each interval-point pair ([ain , bin] , xin) of each partition
Pn [a, b] in the partition set 〈Pn [a, b]〉 ∈ (P [a, b] ,≺) the real numbers f (xin)
and φ ([ain , bin]), respectively, we shall call both φ : 〈Pn [a, b]〉 �→ R and fφ :
〈Pn [a, b]〉 �→ R a net of real numbers, [8]. The statement fφ : 〈Pn [a, b]〉 �→ R

means that each interval-point pair ([ain , bin] , xin) of each partition Pn [a, b] in
the partition set 〈Pn [a, b]〉 ∈ (P [a, b] ,≺) is mapped by the so called interval-
point function fφ : [a, b]× I [a, b] �→ R being the product of f : [a, b] �→ R and
φ : I [a, b] �→ R to the real number f (xin) φ ([ain , bin]).

For a real-valued function F , the derivative f could be defined as the limit of an
interval function associated to F . There are a number of different ways to do that.
However, before that we have to define the limit of some interval function on [a, b].
Accordingly, the definition given below comes from Definition of the Moore-Smith
limit in [8].

Definition 1. Let φ : I [a, b] �→ R and E ⊆ [a, b]. Then, a function f :
[a, b] �→ R is the limit of φ on [a, b]\E if there exists a gauge δ on [a, b] such
that for each 〈Pn [a, b]〉 ∈ (Pδ [a, b] ,≺) and for every ε > 0 there exists a partition
Pnε [a, b] ∈ 〈Pn [a, b]〉 such that

(2.1) |φ([ain, bin]) − f (xin)| < ε,

whenever ([ain , bin], xin) ∈ Pn [a, b]
∣∣
[a,b]\E and Pnε [a, b] ≺ Pn [a, b].

In what follows we will use the following notations ∆F (I) = F (v) − F (u),
where u and v are the endpoints of I ∈ I ([a, b]),

∑
i ∆F ([ai, bi]) = ∆F (P [a, b] |E )

and
∑

i f (xi) |[ai, bi]| = δF (P [a, b] |E ) whenever ([ai, bi] , xi) ∈ P [a, b] |E .

Definition 2. Let F : [a, b] �→ R and let f : [a, b] �→ R. Then, F is said to be
differentiable to f on [a, b], if f is the limit of φ on [a, b], and φ is defined by

(2.2) φ(I) =
∆F (I)
∆x (I)

,

where ∆x (I) = |I | and I ∈ I ([a, b]).

If f : [a, b] �→ R is the limit of a convergent interval function φ on [a, b], then
f is a Baire class one function (see Theorem 5.22 in [3]). On the other hand, if φ
converges to the limit function f almost everywhere on [a, b], that means for every
x ∈ [a, b] except for a set E ⊂ [a, b] of Lebesgue measure zero, then at the points
belonging to E the limit f of φ can take values ±∞ or not be defined at all. Hence,
the domain of f may not be all of [a, b]. If the set E is a countable set, then φ is
said to converge to f nearly everywhere on [a, b]. Unless otherwise stated in what



1694 Branko Sarić

follows, we assume that F is defined and differentiable on [a, b]\E , as well as that
the endpoints of [a, b] do not belong to E .

When working with functions, which have a finite number of discontinuities
on [a, b], it does not really matter how these functions will be defined on the set
of discontinuities. The validity of this statement will be clarified as the theory
unfolds. As this situation will arise frequently, we adopt the convention that, unless
mentioned otherwise, such functions are equal to 0 at all points at which they can
take values ±∞ or not be defined at all. Accordingly, we may define point functions
Fex : [a, b] �→ R and fex : [a, b] �→ R by extending F and its derivative f from
[a, b]\E to E by Fex (x) = 0 and fex (x) = 0 for x ∈ E , so that

(2.3) Fex (x) =

{
F (x) , if x ∈ [a, b]\E

0, if x ∈ E
and

fex (x) =

{
f (x) , if x ∈ [a, b]\E

0, if x ∈ E
.

3. MAIN RESULTS

Let F : [a, b] �→ R. It is an old result that F is continuous on [a, b] if and only
if �F (I), where I ∈ I [a, b], converges to 0 at all points of [a, b], [3]. Accordingly,
we are now in a position to define the notion of the linear differential form on [a, b].

Definition 3. For F : [a, b] �→ R let φ be defined by (2.2) . Then, the limit dF

of the interval function

(3.1) �F (I) = φ(I)�x(I),

where I ∈ I [a, b], on [a, b], is a linear differential form on [a, b].

Clearly, if F is continuous on [a, b] then dF vanishes identically on [a, b]. If in
addition F is differentiable to f : [a, b] �→ R on [a, b], then we can introduce into
the analysis an interval-point function δF : [a, b]×I ([a, b]) �→ R, being the product
of the point function f and the interval function �x : I [a, b] �→ R, as follows

(3.2) δF (I, x) = f (x)�x(I).

As we can see, there is a difference between the interval-point function δF (I, x)
and the interval function �F (I). However, by Definition 1, for the case f is the
limit of φ on [a, b], there exists a gauge δ on [a, b] such that for every ε > 0 there
exists a δ-fine partition Pnε [a, b] such that

(3.3) |δF ([ain , bin], xin)−�F ([ain , bin])| < ε�x(I),
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whenever ([ain, bin], xin) ∈ Pn [a, b], 〈Pn [a, b]〉 ∈ (Pδ [a, b] ,≺) and Pnε [a, b] ≺
Pn [a, b]. So, in this emphasized case, the point function fdx, as the limit of δF ,
is identically equal to dF , as the limit of �F , on [a, b].

The following definition of the H1-integral comes from [2].

Definition 4. A point function f : [a, b] �→ R is H1−integrable to a real point
F on [a, b] if there exists a gauge δ on [a, b] such that for every ε > 0 there exists
a δ-fine partition Pnε [a, b] such that

(3.4) |δF (Pn [a, b]) −F| < ε,

whenever Pn [a, b] ∈ 〈Pn [a, b]〉, 〈Pn [a, b]〉 ∈ (Pδ [a, b] ,≺) and Pnε [a, b] ≺ Pn [a, b].
In symbols, F := H1 −

∫ b
a fdx.

Based on this definition we obtain, in aforementioned case, that

(3.5) H1 −
∫ b

a

fdx = H1 −
∫ b

a

dF = �F ([a, b]) .

It remains to consider the case when F has a certain number of discontinuities
within [a, b], at which its derivative f , as the limit of (2.2), can take values ±∞ or
not be defined at all, just as the primitive F . Now, in spite of the fact that the limit dx
of �x(I) vanishes identically on [a, b], the limit dFex of �Fex(I) = φex(I)�x(I)
could be a null function on [a, b] (A function dFex : [a, b] �→ R is said to be a null
function on [a, b] if the set {x ∈ [a, b] | dFex (x) 	= 0} is a set of Lebesgue measure
zero, see 2.4 Definition in [1]). Clearly, {x ∈ [a, b] | dFex (x) 	= 0} ⊆ E , where
E is a set at whose points F and its derivative f can take values ±∞ or not be
defined at all. So, it would be reasonable, in this case, to make use of �Fex instead
of δFex to define an integral of dFex. This is obviously our way of attempting
to totalize the H1-integral. The definition of the total H1-integral which follows is
more general one since it includes one more interval function.

Definition 5. Let γ : I [a, b] �→ R be an arbitrary interval function and for
F : [a, b] �→ R let ∆F : I [a, b] �→ R be an interval function defined by (3.4) that
converge to g (x) and dF (x), respectively, almost everywhere on [a, b]. A point
function g (x) is totally H1−integrable, with respect to the differential form dF (x),
to a real point F on [a, b] if there exists a gauge δ on [a, b] such that for every ε > 0
there exists a δ-fine partition Pnε [a, b] such that

(3.6)

∣∣∣∣∣
∑
in

γ ([ain , bin])�F ([ain , bin]) −F
∣∣∣∣∣ < ε,

whenever ([ain , bin], xin) ∈ Pn [a, b], Pn [a, b] ∈ 〈Pn [a, b]〉, 〈Pn [a, b]〉 ∈ (Pδ [a, b] ,
≺) and Pnε [a, b] ≺ Pn [a, b]. In symbols, F := H1 − vt

∫ b
a gdF .
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The crucial advantage of the integration process established by Definition 5, in
comparison with any other integration process defined up to now, including all the
generalized Riemann approach to integration, lies in the fact that it is not necessary
that g and dF , as the limits of γ and �F , respectively, to be defined at all points
of [a, b]. This fact, upon which our theory is based in what follows, gives us the
possibility to include the calculus of residues in the process of integration of real
valued functions.

Before that, we are prepared to prove the extended version of the fundamental
theorem of calculus. As we will see, the proof becomes trivial if the definition of
the total H1-integral is applied. In fact, in this way, we will attempt to put into
a rigorous form Hestenes’ proof based on the integral definition of the derivative
and on the Riemann integral. A major motivation for the formulation of integration
in this manuscript has been to achieve as simple and general a statement of the
fundamental theorem as possible, just as was Hestenes’ motivation too.

Theorem 1. For a some compact interval [a, b] ∈ R let E ⊂ [a, b] be a set of
Lebesgue measure zero at whose points a point function F defined on [a, b]\E can
take values ±∞ or not be defined at all. For every x̂ ∈ (a, b] that is not a point
of discontinuity of F the linear differential form dF ex is totally H1−integrable to
F (x̂) − F (a) on [a, x̂] .

Proof. As Fex is defined on [a, b] and hence ∆Fex(Pn ([a, x̂])) = ∆F ([a, x̂]),
where x̂ ∈ (a, b] is a point at which F has no discontinuity, for each Pn ([a, x̂]) ∈
P [a, x̂], it follows from Definition 5 that

(3.7) H1 − vt

∫ x̂

a
dFex = ∆F ([a, x̂])

for every x̂ ∈ (a, b] at which F has no discontinuity.

If dFex = fexdx on [a, x̂], it means that dFex, as the limit of φex (I)∆x (I) =
∆Fex (I) on [a, x̂], where I ∈ I ([a, b]), vanishes identically on [a, x̂] ∩ E , then
it follows from (3.7) that H1 − vt

∫ x̂
a fex (x) dx = ∆F ([a, x̂]). In opposite, there

are two cases, one of which is the extreme case when dFex takes values ±∞ at
some points of [a, x̂] ∩E . In the second one, dFex is a null function on [a, x̂] ∩E .
However, in both cases, by (3.7), H1 − vt

∫ x̂
a dFex (x) = ∆F ([a, x̂]). All this refer

us to the following definitions.

Definition 6. For some compact interval [a, b] ∈ R let F : [a, b] �→ R and E ⊂
[a, b]. The linear differential form dF , as the limit of ∆F (I), where I ∈ I ([a, b]),
on [a, b], is said to be basically summable (BSδ) to a real number � on E if there
exists a gauge δ on [a, b] such that for every ε > 0 there exists a δ-fine partition
Pnε [a, b] such that |∆F (Pn [a, b] |E )− �| < ε, whenever Pn [a, b] ∈ 〈Pn [a, b]〉,
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〈Pn [a, b]〉 ∈ (Pδ [a, b] ,≺) and Pnε [a, b] ≺ Pn [a, b]. If in addition E can be
written as a countable union of sets on each of which the linear differential form
dF is BSδε , then dF is said to be BSGδ on E . In symbols, � :=

∑
x∈E dF (x).

Definition 7. For F : [a, b] �→ R the linear differential form dF is the residue
function R of F on [a, b].

Comparing the two previous definitions with Definition 5 we may conclude that
for any compact interval I ∈ I ([a, b]), whose endpoints are points of continuity
of F , the sum of residues of F on I is the total H1-integral of dFex on the same
interval I , that is,

(3.8) H1 − vt

∫
I
dFex =

∑
x∈I

R (x) .

On the other hand, if there exists a sum of residues � of a primitive F on any set
of points E ⊂ [a, b] of Lebesgue measure zero (according to Definition 6), at which
F and its derivative f can take values ±∞ or not be defined at all, then � is a
sum of discrete values that, under certain conditions, can belong to either an at most
countable or an uncountable set of real numbers and

(3.9) �I =
∑

x∈I∩E

R (x) .

By combining the two previous results with the result (3.7) in the proof of Theorem
1 we obtain that in the aforementioned case

(3.10) ∆F (I) = H1 − vt

∫
I
dFex =

∑
x∈I\E

R (x) +
∑

x∈I∩E

R (x) .

This further implies that

(3.11) ∆F ([a, b]) = H1 − vt

∫ b

a

dFex = H1 −
∫ b

a

fexdx +
∑
x∈E

R (x) ,

since by (2.3)
∑

x∈E fex (x) dx = 0. In what follows we shall formulate the result
(3.11) as a theorem and prove it explicitly.

Theorem 2. For a some compact interval [a, b] ∈ R let E ⊂ [a, b] be a set of
Lebesgue measure zero at whose points a primitive F defined and differentiable on
[a, b]\E and its derivative f can take values ±∞ or not be defined at all. If dF ex

is basically summable (BS δ) on E to the sum �, then fex is H1-integrable on [a, b]
and

(3.12) H1 −
∫ b

a
fexdx + � = ∆F ([a, b]) = H1−vt

∫ b

a
dFex.
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Proof. Let Fex and fex be defined by (2.3). Since dFex is BSδ on E to � it
follows from Definition 6 that there exists a gauge δ on [a, b] such that for every
ε > 0 there exists a δ-fine partition Pnε [a, b] such that |∆Fex(Pn [a, b] |E ) −�| <

ε, whenever Pn [a, b] ∈ 〈Pn [a, b]〉, 〈Pn [a, b]〉 ∈ (Pδ [a, b] ,≺) and Pnε [a, b] ≺
Pn [a, b]. In addition, fex (x) ≡ 0 on E and ∆Fex(Pn [a, b]) = ∆F ([a, b]), when-
ever Pn [a, b] ∈ P [a, b]. Take the result (3.3) into consideration it is readily seen
that

|δFex(Pn [a, b]) − [∆F ([a, b]) −�]|
≤ ∣∣δF (Pn [a, b]

∣∣
[a,b]\E − ∆F (Pn [a, b]

∣∣
[a,b]\E

∣∣
+ |∆Fex(Pn [a, b] |E ) −�| < ε (|[a, b]|+ 1) .

Therefore, fex is H1-integrable on [a, b] and H1−
∫ b
a fexdx = ∆F ([a, b])−�, that

is,

H1−
∫ b

a
fexdx+� = ∆F ([a, b]) = H1−vt

∫ b

a
dFex.

For a primitive F let f be its derivative and let E ⊂ [a, b] be a set at whose
point f can take values ±∞ or not be defined at all.

Definition 8. The set vp [a, b] ⊆ [a, b] of points, at which F is differentiable,
is said to be a regular domain of F in [a, b]. Points belonging to vp [a, b] of F are
said to be regular points of F in [a, b]. The complement of vp [a, b], with respect
to [a, b], is said to be a singular domain vs [a, b] of F in [a, b]. Points belonging
to vs [a, b] of F are said to be singular points of F in [a, b]. If f is bounded on a
singular point neighbourhood, then this singular point of F is said to be a seeming
singular point of F . If f is a bounded function on vs [a, b] of F , then vs [a, b] of
F is said to be a seeming singular domain of F .

Definition 9. For F : [a, b] �→R let R : [a, b] �→ R be a function of residues of F .
The principal value of the H1-integral of dF on [a, b] is the sum

∑
x∈vp[a,b] R (x)

and will be written as H1−vp
∫ b
a dF . The singular value of the H1-integral of dF

on [a, b] is the sum
∑

x∈vs[a,b] R (x) and will be written as H1−vs
∫ b
a dF .

By Definition 9, the result (3.12) of Theorem 2 can be rewritten as

(3.13)
∆F ([a, b]) = H1−vt

∫ b

a
fexdx = H1−vp

∫ b

a
fexdx +

∑
x∈vs[a,b]

R (x)

= H1−vp

∫ b

a
fexdx + H1−vs

∫ b

a
fexdx.

In case f vanishes identically on vp[a, b], it follows from (3.13) that

(3.14) ∆F ([a, b]) =
∑

x∈vs[a,b]

R (x) .
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The obtained result provides an extension of Cauchy’s result from the calculus of
residues in R (compare with results in [5]).

4. EXAMPLES

(1) Let [a, b] ⊂ R be an arbitrary compact interval, such that 0 ∈ (a, b), and
let F be Heaviside’s unit function defined on [a, b] as follows

F (x) :=

{
0, if a ≤ x ≤ 0

1, if 0 < x ≤ b
.

The following result H1−vt
∫ b
a dF = 1 (dF is the limit of �F (I) = φ(I)∆x (I),

where I ∈ I ([a, b]), on [a, b], and φ is defined by (2.2)) is an immediate conse-
quence of Theorem 1. So, in spite of the fact that φ converges to δ (x) : [a, b] �→
R, which is defined on [a, b] as follows

δ (x) =

{
+∞, if x = 0

0, otherwise
,

nearly everywhere on [a, b], more precisely on [a, b]/{0}, the limit of φ(I)∆x (I),
where I ∈ I ([a, b]), at the point of discontinuity of F , goes to 1. Hence, � = 1
and H1−vt

∫ b
a dF = H1−

∫ b
a δexdx + � = 1, since H1−

∫ b
a δexdx = 0.

(2) Let [a, b] be as in the previous example. Then, by Definition 2 the point
function F (x) = ln |x| is differentiable to 1/x at all but the set {0} of (a, b).
Recall that our convection is that Fex is defined on [a, b] and Fex (0) = 0. In this
case, the limit of �Fex([I ]) = φex(I)∆x (I), where I ∈ I ([a, b]), at the point
of discontinuity of F , is not defined. However, the sum H1−vp

∫ b
a fexdx + �

now reduces to the so called indeterminate expression ∞ − ∞ that, according to
Theorem 1, takes the value ln |b/a|, so that H1−vt

∫ b
a dFex = H1−vp

∫ b
a fexdx +

� = ∆F ([a, b]) = ln |b/a|.
(3) Let [a, b] be as before. Then, the point function F (x) = 1/x is differ-

entiable to − (
1/x2

)
at all but the exceptional set {0} (the set where the limit of

φ defined by (2.2) does not exist in this case) of [a, b]. Note again that by our
convection Fex is defined on [a, b] and Fex (0) = 0. Hence, H1−vt

∫ b
a dFex =

H1−vp
∫ b
a fexdx + �, as the so called indeterminate expression of type ∞−∞, is

equal to (a − b) / (ab).
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