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DISTRIBUTION OF NORMALIZED ZERO-SETS OF RANDOM ENTIRE
FUNCTIONS WITH SMALL RANDOM PERTURBATION

Weihong Yao

Abstract. This paper extends our recent result about the distribution of normal-
ized zero-sets of random entire functions[Y–200811] to the context of random
entire functions with small random perturbation.

1. INTRODUCTION

In this paper, we extend our recent result about the distribution of normalized
zero-sets of random entire functions[Y–200811] to the context of random entire
functions with small random perturbation. The small perturbation problem naturally
arose from the proof of the fundamental theorem of algebra as explained below and is
also known as the important moving targets problem in Nevanlinna theory. Recall
that the proof of the fundamental theorem of algebra comes from the following
observation: when we write P (z) = anz

n + Qn−1(z), where n = deg P and
degQn−1 = n− 1. Then |Qn−1(z)| < |anz

n| on |z| = r for r large enough, hence
Rouché’s theorem implies that the the zeros of P is the same as the zeros of anz

n.
In other words, P (z) can be obtained from anz

n through a small perturbation by
Qn−1. Similarly, one can easily prove that, in the Nevanlinna theory, the growth
(characteristic function) of f is the same as f + g, the function obtained by small
perturbation by g. (Here, by small perturbations we mean Tg(r) = o(Tf(r))).
Problems of these types are called small perturbation problems or called problems
of slowly moving targets. In 1983, Steinmetz successfully extended Nevanlinna’s
SMT to slowly moving targets, and in 1990, Ru-Stoll extended H. Cartan’s theorem
to slowly moving hyperlanes.

The theory of zeros distributions of polynomials, especially the fundamental
theorem of algebra, was extended by Nevanlinna to meromorphic functions, now
known as Nevanlinna’s theory. Analogous to the fundamental theorem of algebra,
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the First Main Theorem of Nevanlinna asserts that, Nf(r, a) + O(1)a ≤ Tf(r) for
all a ∈ P

1(C), and equality holds for almost all a. Here the constant O(1)a depends
on a and Nf (r, a) is the generalization of the (logarithmic average of the) number
of zeros of a polynomials to holomorphic maps. The First Main Theorem extends
to meromorphic maps into Pn(C) with respect to hyperplanes a in Pn(C). The First
Main Theorem in this case implies (using the transitivity of the unitary group acting
on Pn(C)) the Crofton formula∫

a∈(Pn(C))∗
Nf (T, a) ωn = Tf(r)

where (Pn(C))∗ is the space of hyperplanes in Pn(C) and ω is the Fubini-Study
metric. The classical theory of Nevanlinna Theory is based on the classical potential
theory (such as electrical charges and also the classical theory of mechanics, see H.
Weyl and J. Weyl).

In our paper [Y–200811], we studied the the distribution of normalized zero-sets
of random entire functions. As noted in that paper, our result can be viewed as the
extension of the First Main Theorem to random polynomials (or random entire func-
tions). To state the result, we introduce the following set up: let f1(z), · · · , f�(z)
be a finite number of fixed entire functions; Let

Gn(z) =
n∑

ν=0

�∑
j1=1

· · ·
�∑

jν=1

aj1,··· ,jνfj1(z) · · ·fjν (z)

be a random polynomial, where each coefficient aj1,··· ,jν is an indeterminate which
satisfies the Gaussian distribution

1
π
e−|z|2

on C; Note that, by the usual notational convention, for ν = 0 the coefficient
aj1,··· ,jν is a single indeterminate with the same Gaussian distribution though we
have no values for j1, · · · , jν; We define the normalized counting divisor Z (r, Gn)
of Gn(z) on the punctured disk 0 < |z| < r by

Z (r, Gn) =
1
n

∑
Gn(z)=0,

|z|<r

δz,

where δz is the Dirac delta on C
� at the point z of C

�. Let E(Z(r, Gn)) be
the expectation of Z(r, Gn) respect to a probability measure (in the sequel this
will be denoted by dµ�,n) on the Euclidean space C

N� of random coefficients(
aj1,...,jν

)
1≤j1,...,jν≤�; 0≤ν≤n

; On the complex Euclidean space Ck we denote by
χE the characteristic function on a Lebesgue measurable subset E ⊂ Ck, and by
Bk ⊂ C

k the unit ball. The main result of our paper [Y–200811] is as follows:



Distribution of Normalized Zero-Sets of Random Entire Functions 1653

Theorem A. Let C be the smooth (possibly non-closed) curve in C consisting

of all points z such that |f(z)| :=
(∑�

j=1 |fj(z)|2
) 1

2 = 1 and such that f ′(z) =
(f ′1(z), ..., f

′
�(z)) �= 0. Then the limit of E (Z (r, Gn)) as a (1, 1)-current is equal

to the sum of
χf−1(C�−B�)

(√−1
π

∂∂̄ log |f(z)|
)

and the measure on C defined by the 1-form
√−1

2

�∑
j=1

(
fj(z)dfj(z) − fj(z)dfj(z)

)
.

This paper, we extend the Theorem A to the context of random entire functions
with small perturbation. The Main Theorem is stated in section 3, where the precise
meaning of “small perturbations” is explained.

2. SOME PROPOSITIONS

In this section, we recall the following key result known as the Complex Version
of Lemma on the Convergence of Integrals as Distributions, which is obtained in
[Y-200811].

Proposition 1. [Y-200811]. (Complex Version of Lemma on the Convergence
of Integrals as Distributions).

lim
n→∞

1
n

(√−1
2π

∂∂̄ log
n∑

k=0

|z|2k

)

= χC�−B�

(√−1
π

∂∂̄ log r
)

+
[
δ

S2�−1

]
∧

√−1
2

�∑
j=1

(zjdz̄j − z̄jdzj) ,

where
[
δ

S2�−1

]
denotes the 1-current on C

� defined by integration over

S2�−1 =


 z ∈ C

�

∣∣∣∣∣∣∣ |z| =


 �∑

j=1

|zj |2



1
2

= 1


 ,

and r = |z|.

From the proof of Proposition 1 we deduce

Proposition 2. [Y-200811]. Let Ω ⊂ C be a domain and f(z) = (f 1(z), f2(z),
· · · , f�(z)) : Ω → C

� be a nonconstant holomorphic vector-valued function on Ω.
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Let C be the smooth (possibly non-closed) curve in Ω consisting of all points z
of Ω such that |f(z)| = 1 and f ′(z) = (f ′1(z), f

′
2(z), · · · , f ′�(z)) �= 0, where

|f(z)| = (|f1(z)|2 + |f2(z)|2 + · · ·+ |f�(z)|2) 1
2 . Then

lim
n→∞

1
n

(√−1
2π

∂∂̄ log

(
n∑

k=0

|f(z)|2k

))
= χf−1(C�−B�)

(√−1
π

∂∂̄ log |f(z)|
)

+
[
δ

S2�−1

]
∧

√−1
2

�∑
j=1

(
fj(z)df̄j(z)− f̄j(z)dfj(z)

)
,

where
[
δ

S2�−1

]
denotes the 1-current on C� defined by integration over

S2�−1 =


 f(z) ∈ C

�

∣∣∣∣∣∣∣ |f(z)| =


 �∑

j=1

|fj(z)|2



1
2

= 1


 .

3. THE MAIN THEOREM AND IT’S PROOF

In this section, we formulate and prove our main result of the paper. To start
with, given a sequence

(
gµ

)∞
ν=0

of holomorphic functions on a plane domain Ω, we
consider random polynomials in fj and gν given by

G∗
n(z) =

n∑
ν=0

∑
1≤j1,...,jν≤�

aj1,...,jν gν(z)fj1(z) · · ·fjν (z)

where each coefficient aj1,...,jν is an indeterminates satisfying the Gaussian distri-
bution exactly as in the context of Main Theorem. We consider the expectation of
the normalized counting divisor Z(G∗

n) of G∗
n(z) and look for conditions on the

sequence
(
gµ

)∞
ν=0

of holomorphic functions such that the limit of the expectations
E(Z(G∗

n)) exists and is equal to that of the expectation E(Z(Gn)) as in Main
Theorem. In order to avoid artificial zeros of G∗

n(z),
(
fj

)�
j=1

and
(
gµ

)∞
ν=0

should
have no common zeros, and for convenience this can be guaranteed by imposing
the condition that g0 is nowhere vanishing on Ω. We introduce

Definition 1. (1) Given a sequence of holomorphic functions
(
hµ

)∞
ν=0

on Ω, we
say that

(
hµ

)∞
ν=0

is of slow growth if and only if for two sequences of nonnegative
integers κz,n and λz,n depending on z ∈ Ω and satisfying lim

n→∞
κz0,n

n = 0 and

lim
n→∞

λz0,n

n = 0 and for a positive function Bz the following holds true. For each
0 ≤ ν <∞ and each point z ∈ Ω, we have

(†) ∣∣hν(z)
∣∣ ≤ (Bz)κz,ν

(
1 +

∣∣f(z)
∣∣)λz,ν ,
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If furthermoreBz and κz,ν , λz,ν can be chosen to be uniformly bounded on compact
subsets of Ω we say that

(
hµ

)∞
ν=0

is uniformly of slow growth on compact subsets.
(2) Given a sequence of meromorphic functions

(
hµ

)∞
ν=0

on Ω we say that
(
hµ

)∞
ν=0

is of slow growth with respect to f if and only if at each z ∈ Ω there exists a
nonnegative integer N (z) such that (†) holds true whenever ν ≥ N (z).

Remark 1. The slow growth condition (†) on
(
hν

)∞
ν=0

is formulated in terms
of
(
fj

)�
j=1

since comparison with f is natural in the construction of examples for
the Main Theorem. It should however be noted that the condition (†) is independent
of f . In fact, (†) is satisfied at z ∈ Ω if and only if lim

ν→∞
∣∣hν(z)

∣∣ 1
ν = 1.

Main Theorem. Let Ω⊂C be a domain, 	 be a positive integer and f1(z), . . . ,
f�(z) be holomorphic functions on Ω. Let

(
gν(z)

)
be a sequence of holomorphic

function on Ω such that
(i) g0(z) is nowhere zero on Ω.

(ii)
(
gν(z)

)∞
ν=0

is uniformly of slow growth on compact subsets.
(iii)

(
1

gν(z)

)∞
ν=0

is of slow growth for any z ∈ Ω.

For any positive integer n let

G∗
n(z) =

n∑
ν=0

∑
1≤j1,...,jν≤�

aj1,...,jν gν(z)fj1(z) · · ·fjν (z)

be a random polynomial, where each coefficient a j1,...,jν for 1 ≤ j1, . . . , jν ≤ 	 and
0 ≤ ν ≤ n is an indeterminate which satisfies the Gaussian distribution 1

πe
−|z|2

on C, with the convention that a0 is the single indeterminate a j1,...,jν when ν = 0.
Let Z(G∗

n) be the normalized counting divisor of G ∗
n(z) on Ω (in the sense of

distribution) given by
Z(G∗

n) =
1
n

∑
G∗

n(z)=0,
z∈Ω

δz ,

where δz is the Dirac delta on C at the point z of C. Let E(Z(G ∗
n)) be the

expectation of Z(G∗
n) with respect to the probability measure dµ �,n on the Euclidean

space CN�,n of random coefficients
(
aj1,...,jν

)
1≤j1,...,jν≤�; 0≤ν≤n

. Then E(Z(G∗
n))

agrees with E(Z(Gn)). In other words, E(Z(G∗
n)) is equal to the sum of

χf−1(C�−B�)

(√−1
π

∂∂̄ log |f(z)|
)

and the measure on C defined by the 1-form
√−1

2

�∑
j=1

(
fj(z)dfj(z)− fj(z)dfj(z)

)
.
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Note that in the formulation of the Main Theorem, by (iii) we impose at each
point z ∈ Ω a pointwise condition on lower bounds of |gν(z)|, a condition which
nonetheless allows for the existence of zeros for the holomorphic functions gν .
On the other hand, in the computation of mathematical expectations of normalized
counting divisors, some uniformity on upper bounds of |gν(z)| on compact subsets
is required in order to prove convergence of positive (1, 1)-currents.

For the proof of Main Theorem we will need to formulate a lemma on limits of
certain potential functions. To start with define on the domain Ω ⊂ C the following
subharmonic functions

γn =
1
n

log(1 + |f |2 + · · ·+ |f |2n).

Define ϕ : Ω → R by

ϕ(z) = log |f(z)|2 if |f(z)| ≥ 1

ϕ(z) = 0 if |f(z)| ≤ 1
.

In other words, ϕ(z) = max(0, log |f |2) = log+ |f |2. Then, we have

Lemma 1. γn(z) converges uniformly to ϕ(z) on Ω. As a consequence,√−1∂∂γn converges to
√−1∂∂ϕ as positive (1, 1)-currents on Ω.

Proof. For each positive integer n define λn : [0,∞) → R by

λn(t) =
1
n

log(1 + t+ · · ·+ tn).

For 0 ≤ t ≤ 1 we have

0 ≤ λn(t) ≤ 1
n

log(n+ 1).

On the other hand, for t ≥ 1 we have

log t =
1
n

log(tn) ≤ λn(t) ≤ 1
n

log
(
(n+ 1)tn

)
=

1
n

log(n+ 1) + log t.

Let λ : [0,∞) → R be the monotonically increasing continuous function defined by

λ(t) = log t for t ≥ 1;

λ(t) = 0 for 0 ≤ t ≤ 1.

Then,
λ(t) ≤ λn(t) ≤ 1

n
log(n+ 1) + λ(t).
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Thus, over [0,∞), λn(t) converges uniformly to λ(t). For the map f : Ω → C,

γn =
1
n

log(1 + |f |2 + · · ·+ |f |2n) = λn(|f |2),

so that γn converges uniformly to λ(|f |2) = ϕ, and it follows that
√−1∂∂γn

converges to
√−1∂∂ϕ as positive (1, 1)-currents on Ω, as desired.

We proceed to give a proof of Main Theorem.

Proof of Main Theorem. In the language of probability theory,

(aj1,··· ,jν )0≤ν≤n,1≤j1≤�,··· ,1≤jν≤�

are independent complex Gaussian random variables of mean 0 and variance 1. Let
N�,n be the number of elements in

(aj1,··· ,jν )0≤ν≤n,1≤j1≤�,··· ,1≤jν≤� ,

which is
N�,n = 1 + 	+ 	2 + · · ·+ 	n.

Let a0 be the single indeterminate aj1,··· ,jν when ν = 0. By Cauchy’s integral
formula (or the Poincaré-Lelong formula)

(∗) 1
n

∑
G∗

n(z)=0,
z∈Ω

δz =
√−1
nπ

∂∂̄ log |G∗
n(z)|

on Ω, where δz is the Dirac delta on C� at the point z of C�. We now consider the
normalized counting divisor Z (G∗

n) of G∗
n(z) on Ω (in the sense of distribution)

which is given by
Z (G∗

n) =
1
n

∑
G∗

n(z)=0,
z∈Ω

δz.

By (∗), the expectation E (Z (G∗
n)) of Z (G∗

n) is equal to∫
(aj1,··· ,jν )∈C

N�,n

(√−1
nπ

∂∂̄ log |G∗
n(z)|

)

×
∏

(aj1,··· ,jν )∈C
N�,n

(
1
π
e−|aj1···jν |2

√−1
2

daj1···jν ∧ daj1···jν

)
.

We introduce two column vectors

�a = [aj1,··· ,jν ]0≤ν≤n,1≤j1≤�,··· ,1≤jν≤�

and
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�v(z) = [gν(z)fj1(z) · · ·fjν (z)]0≤ν≤n,1≤j1≤�,··· ,1≤jν≤�

of N�,n components each. Here we set f0(z) = 1. Then Gn(z) is equal to the inner
product

〈�a, �v(z)〉 =
∑

0≤ν≤n,1≤j1≤�,··· ,1≤jν≤�

aj1,··· ,jν gν(z)fj1(z) · · ·fjν (z)

of the two N�,n-vectors �a and �v(z). The length of the N�,n-vector �v(z) is given by

‖�v(z)‖ =


 ∑

0≤ν≤n,1≤j1≤�,··· ,1≤jν≤�

|gν(z)|2|fj1(z)|2 · · · |fjν (z)|2



1
2

.

Introduce the unit N�,n-vector

�u(z) =
1

‖�v(z)‖ v(z) =
1

 ∑
0≤ν≤n,1≤j1 ,··· ,jν≤�

|gν(z)|2|fj1(z)|2 · · · |fjν (z)|2



1
2

[gν(z)fj1(z) · · ·fjν (z)]0≤ν≤n,1≤j1 ,··· ,jν≤�

in the same direction as �v(z). Then

log |G∗
n(z)| = log |〈�a, �v(z)〉| = log |〈�a, ‖�v(z)‖ �u(z)〉| = log ‖�v(z)‖+log |〈�a, �u(z)〉| .

Now E (Z (G∗
n)) is equal to∫
(aj1,··· ,jν )∈C

N�,n

(√−1
nπ

∂∂̄ (log ‖�v(z)‖+ log |〈�a, �u(z)〉|)
)

×
∏

(aj1,··· ,jν )∈C
N�,n

(
1
π
e−|aj1···jν |2

√−1
2

daj1···jν ∧ daj1···jν

)
.

Let �e0 be the N�,n-vector

(ej1,··· ,jν )0≤ν≤n,1≤j1≤�,··· ,1≤jν≤�

whose only nonzero component is e0 = 1. By exactly the same argument as in the
proof of the Main Theorem the limit of E (Z (G∗

n)) as n→ ∞ is equal to

lim
n→∞

∫
(aj1,··· ,jν )∈C

N�,n

(√−1
nπ

∂∂̄ log ‖�v(z)‖
)

1
πN�,n

e−‖�a‖2

,

which after integration over

(aj1,··· ,jν )0≤ν≤n,1≤j1≤�,··· ,1≤jν≤�
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is simply equal to

lim
n→∞

√−1
nπ

∂∂̄ log ‖�v(z)‖ = lim
n→∞

1
n



√−1
2π

∂∂̄ log
n∑

k=0

|gk(z)|2

 �∑

j=1

|fj(z)|2



k



From Proposition 1, we have

lim
n→∞

1
n



√−1
2π

∂∂̄ log
n∑

k=0


 �∑

j=1

|fj(z)|2



k



is equal to the pullback by f of

χC�−B�

(√−1
π

∂∂̄ log |w|
)

+
[
δ

S2�−1

]
∧
√−1

2

�∑
j=1

(wjdw̄j − w̄jdwj) ,

where w ∈ C� = (w1, · · · , w�) is variable in the target space of the map f =
(f1, · · · , f�) : Ω → C

�. By computation

lim
n→∞

1
n

√−1
2π

∂∂̄ log


 n∑

k=0

|gk(z)|2

 �∑

j=1

|fj(z)|2



k



− lim
n→∞

1
n

√−1
2π

∂∂̄ log


 n∑

k=0


 �∑

j=1

|fj(z)|2



k



= lim
n→∞

1
n

√−1
2π

∂∂̄


log

n∑
k=0

|gk(z)|2

 �∑

j=1

|fj(z)|2



k

−log
n∑

k=0


 �∑

j=1

|fj(z)|2



k



=
√−1
2π

∂∂̄ lim
n→∞

1
n


log

n∑
k=0

|gk(z)|2

 �∑

j=1

|fj(z)|2



k

−log
n∑

k=0


 �∑

j=1

|fj(z)|2



k



=
√−1
2π

∂∂̄ lim
n→∞

1
n

log




n∑
k=0

|gk(z)|2
(

�∑
j=1

|fj(z)|2
)k

n∑
k=0

(
�∑

j=1
|fj(z)|2

)k


 .

The hypotheses (i)-(iii) on the sequence
(
gν

)∞
ν=0

of holomorphic functions on Ω as
stated in Theorem 1 can be formulated more explicitly as follows. For each z ∈ Ω,
there are four sequences of non-negative integers, 0 ≤ n <∞.
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κz,n, λz,n, ξz,n, ηz,n ,

satisfying

lim
n→∞

κz,n

n
= 0 , lim

n→∞
λz,n

n
= 0 , lim

n→∞
ξz,n

n
= 0 , lim

n→∞
ηz,n

n
= 0 .

and positive numbers Az and Bz such that

(i) g0(z) is nowhere zero on Ω.
(ii) For each 0 ≤ ν <∞ and each point z ∈ Ω∣∣gν(z)

∣∣ ≤ (Bz)κz,ν
(
1 +

∣∣f(z)
∣∣)λz,ν .

Furthermore for each compact subset K ⊂ Ω there exists CK > 0 such that
for each z ∈ K and for each positive integer ν we have

Bz ≤ CK ;
κz,ν

ν
,
λz,ν

ν
≤ CK .

(iii) For each point z ∈ Ω

lim inf
ν→∞ (Az)ξz,ν

(
1 +

∣∣f(z)
∣∣)ηz,ν

∣∣gν(z)
∣∣ > 0 .

Without loss of generality, we may assume that for any z ∈ Ω, Az , Bz ≥ 1. Granted
this, replacing κz,n by max

{
κz,0, . . . , κz,n

}
, etc., without loss of generality we

may assume that the four sequences κz,n, λz,n, ξz,n and ηz,n are non-decreasing
sequences. By (iii) for every z ∈ Ω there exists a positive constant cz and a positive
integer N (z) such that whenever ν ≥ N (z) we have

A
ξz,ν
z

(
1 + |f(z)|)ηz,ν |gν(z)| ≥ cz.

(Here and in what follows to streamline the notations we will write Aξz,ν
z to mean

(Az)ξz,ν , etc.) For every z ∈ Ω we have
n∑

k=0

|gk(z)|2|f(z)|2k ≥ max
(|g0(z)|2, |gn(z)|2|f(z)|2n

)
≥ max

(|g0(z)|2, c2zA−2ξz,n
z

(
1 + |f(z)|)−2ηz,n |f(z)|2n

)
.

On the other hand, when |f(z)| ≤ 1 we have

(†)
n∑

k=0

|gk(z)|2|f(z)|2k ≤ (n+ 1)B2κz,n
z · 4λz,n ;

and, when |f(z)| ≥ 1 we have
n∑

k=0

|gk(z)|2|f(z)|2k ≤ (n+ 1)B2κz,n
z

(
1 + |f(z)|)2λz,n |f(z)|2n ,
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so that
n∑

k=0

|gk(z)|2|f(z)|2k ≤ max
(
(n+ 1)B2κz,n

z · 4λz,n ,

(n+ 1)B2κz,n
z

(
1 + |f(z)|)2λz,n |f(z)|2n

)
.

Similarly for the function
( n∑

k=0

|f(z)|2k
) 1

n we have

max
(
1, |f(z)|2) ≤ ( n∑

k=0

|f(z)|2k
) 1

n ≤ (n+ 1)
1
n max

(
1, |f(z)|2) .

Finally, recalling that

(
hn(z)

) 1
n =




n∑
k=0

|gk(z)|2|f(z)|2k

n∑
k=0

|f(z)|2k




1
n

,

we have, for z ∈ Ω,

max
(|g0(z)|2, c2zA−2ξz,n

z

(
1 + |f(z)|)−2ηz,n

) 1
n

(n+ 1)
1
n max

(
1, |f(z)|2) ≤ (hn(z)

) 1
n

≤ max
(
(n+ 1)B2κz,n

z · 4λz,n , (n+ 1)B2κz,n
z

(
1 + |f(z)|)2λz,n |f(z)|2n

) 1
n

max
(
1, |f(z)|2) .

For the lower bound of
(
h(z)

) 1
n we note that

lim
n→∞ |g0(z)| 2

n = 1 ;

lim
n→∞

(
c2zA

−2ξz,n
z

(
1 + |f(z)|)−2ηz,n

) 1
n
∣∣f(z)

∣∣2n

= lim
n→∞ c

2
n
z A

− 2ξz,n
n

z

(
1 + |f(z)|)− 2ηz,n

n
∣∣f(z)

∣∣2 =
∣∣f(z)

∣∣2
where we have used the assumptions lim

n→∞
ξz,n

n = lim
n→∞

ηz,n

n = 0. For the upper

bound of
(
hn(z)

) 1
n we note that

lim
n→∞

(
(n+ 1)B2κz,n

z · 4λz,n
) 1

n = lim
n→∞(n+ 1)

1
nB

2κz,n
n

z 4
λz,n

n = 1 ;

lim
n→∞

(
(n+ 1)B2κz,n

z

(
1 + |f(z)|)2λz,n

∣∣f(z)
∣∣2n) 1

n

= lim
n→∞(n+ 1)

1
nB

2κz,n
n

z

(
1 + |f(z)|)2λz,n

n
∣∣f(z)

∣∣2 =
∣∣f(z)

∣∣2
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where we have used the assumptions lim
n→∞

κz,n

n = lim
n→∞

λz,n

n = 0. Thus, for any
z ∈ Ω we have

1 =
max

(
1, |f(z)|2)

max
(
1, |f(z)|2) ≤ lim

n→∞
hn(z)

1
n ≤ lim

n→∞ hn(z) ≤ max
(
1, |f(z)|2)

max
(
1, |f(z)|2) = 1 .

so that
lim

n→∞hn(z)
1
n = 1 ; lim

n→∞ log
(
hn(z)

1
n
)

= 0 .

Under the assumptions of Main Theorem write

ϕn = log
( n∑

k=0

∣∣gk(z)
∣∣2∣∣f(z)

∣∣2k
) 1

n
.

Then, loghn
1
n = ϕn − γn. Since γn converges to ϕ = log+ |f |2 by Lemma 6

and log hn
1
n converges pointwise to 0, we conclude that ϕn(z) converges to ϕ(z)

for every z ∈ Ω. Clearly ϕn and ϕ are continuous subharmonic functions on Ω.
Moreover from (†) we have for every z ∈ Ω

ϕn(z) ≤ 1
n

log(n+ 1) +
2κz,n

n
logB(z) +

λz,n

n
log 4,

and by assumption on any compact subsetK ⊂ Ω, Bz and the sequence of functions
κz,n

n
and

λz,n

n
are uniformly bounded from above by some constant CK for z ∈

K, and we conclude that the sequence of subharmonic functions
(
ϕn(z)

)∞
n=0

are
uniformly bounded from above on compact subsets. Finally, we make use of Lemma
2 below on the convergence of positive (1, 1) currents. Granting Lemma 2, the Main
Theorem follows readily.

The discussion below involves distributions on a domain in C. Denote by dλ
the Lebesgue measure on C. Any locally integrable function s on Ω defines a

distribution Ts on Ω given by Ts(ρ) =
∫

Ω
sρ dλ for any smooth function ρ on Ω

of compact support, and in what follows we will identify s with the distribution T s

it defines. There is a standard procedure for smoothing distributions, as follows.
Let χ be a nonnegative smooth function on C of support lying on the unit disk ∆
such that χ(eiθz) = χ(z) for any z ∈ C and any θ ∈ R, and for any ε > 0 write
χε(z) = χ

(
z
ε

)
. For a distribution Q defined on some domain in C and for ε > 0

we write Qε := Q ∗χε wherever the convolution is defined. We have the following
elementary lemma on positive currents associated to subharmonic functions.

Lemma 2. Let Ω ⊂ C be a plane domain. Suppose (ϕn)∞n=0 is a sequence of
subharmonic functions on Ω such that ϕ n(z) are uniformly bounded from above on
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each compact subset K of Ω. Assume that ϕn converges pointwise to some contin-
uous (subharmonic) function ϕ. Then, lim

n→∞ϕn = ϕ in L1
loc(Ω). As a consequence,√−1 ∂∂̄ϕn converges to

√−1 ∂∂̄ϕ in the sense of currents.

Proof of Lemma 2. Let D = ∆(a; r) be any disk centered at a ∈ Ω of radius

r > 0 such that D ⊂ Ω. We claim that the Lebesgue integrals
∫

∆(a;r)
|ϕn| dλ are

bounded independent of n. Without loss of generality, we may assume that ϕ ≤ 0
on D. By the sub-mean-value inequality for subharmonic functions we have

ϕn(a) ≤ 1
πr2

∫
∆(a;r)

ϕn(ζ) dξ dη

where ζ = ξ +
√−1η is the Euclidean coordinate of the variable of integration

ζ, showing that the integral of −ϕn over ∆(a; r) are bounded independent of n.
Covering Ω by a countable and locally finite family of relatively compact open disks
D, it follows that on any compact subsetK ⊂ Ω the L1-norms of ϕn|K are bounded
independent of n. As a consequence, given any subsequence ϕσ(n) of ϕn, some
subsequence ψn := ϕσ(τ (n)) of ϕσ(n) must converge to a distribution S on Ω. We
claim that any such a limit must be given by the (continuous) subharmonic function
ϕ. As a consequence, ϕn converges to ϕ in L1

loc(Ω). Since ψn converges to the
distribution S, for any ε > 0, ϕn,ε converges to the smooth function Sε as n tends
to ∞. Since ψn is subharmonic, ψn,ε is monotonically decreasing as ε �→ 0 for each
nonnegative integer n, and it follows readily that Sε is also monotonically decreasing
as ε �→ 0. Hence, S is the limit as a distribution of the smooth functions Sε. Writing
ψ(z) := limε�→0 Sε(z), by the Monotone Convergence Theorem the distribution S
is nothing other than the function ψ, which is in particular locally integrable. Since
ψn converges to S as distributions, we conclude that ϕσ(n) = ψn converges to ψ
in L1

loc(Ω), implying that ψn converges pointwise to ψ almost everywhere on D.
However, by assumption ψn = ϕσ(n) converges pointwise to ϕ, hence ϕ and ψ must
agree almost everywhere on Ω. In particular, ϕn must converge to ϕ in L1

loc(Ω).
The proof of Lemma 2 is complete.

As a consequence of the proof of Main Theorem we deduce

Corollary 1. Let
(
bν
)∞
ν=0

be a sequence of complex numbers such that b 0 �= 1
and lim

ν→∞ bν = 0. For ν ≥ 0 and 1 ≤ j1, . . . , jν ≤ 	 denote by aj1,...,jν the same
random coefficient as in the Main Theorem (with the same convention when ν = 0).
Define

Hn(z) =
n∑

ν=1

∑
1≤j1,...,jν≤�

aj1,...,jν bνfj1(z) · · ·fjν (z) .

Let Z (r, Gn −Hn) be the normalized counting divisor of G n(z) −Hn(z) on the
disk |z| < r, z ∈ C (in the sense of distribution) given by
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Z (r, Gn −Hn) =
1
n

∑
Gn(z)=Hn(z),

|z|<r

δz,

where δz is the Dirac delta on C at the point z of C. Let E (Z (r, G n −Hn)) be the
expectation of Z (r, Gn −Hn) with respect to the probability measure dµ �,n on the
Euclidean space C

N�,n of random coefficients
(
aj1,...,jν

)
1≤j1,...,jν≤�; 0≤ν≤n

. Let C
be the smooth (possibly non-closed) curve in C consisting of all points z such that

|f(z)| =
(∑�

j=1 |fj(z)|2
) 1

2 = 1 and such that f ′(z) = (f ′1(z), ..., f
′
�(z)) �= 0. Then

E (Z (r, Gn −Hn)) agrees with E (Z (r, Gn)) . In other words, E (Z (r, Gn −Hn))
is equal to the sum of

χf−1(C�−B�)

(√−1
π

∂∂̄ log |f(z)|
)

and the measure on C defined by the 1-form
√−1

2

�∑
j=1

(
fj(z)dfj(z) − fj(z)dfj(z)

)
,

In the very special case where (b0 �= 1 and ) bν = 0 for any ν > 0, Corollary
1 gives the expectation of Z(Gn −Hn), where Hn is a randomized constant func-
tion, showing that E

(
Z(Gn −Hn)

)
= E

(
Z(Gn)

)
. As such this very special case

resembles a form of First Main Theorem in classical Nevanlinna Theory.

Proof of Corollary 1. In the notations of the statement of the Main Theorem
and Corollary 1 we have Gn −Hn = G∗

n, where G∗
n is defined as in the statement

of the Main Theorem for the sequence of holomorphic functions (gν(z))
∞
ν=0 where

gν(z) is the constant function 1 − bν for 0 ≤ ν ≤ ∞. It suffices to check that
the hypothesis of the Main Theorem is satisfied for (gν(z))∞ν=0. By the hypothesis
of Corollary 1 we have b0 �= 1, so that g0(z) = 1 − b0 is nowhere zero, hence
condition (i) in the statement of the Main Theorem is satisfied. On the other hand,
by assumption bν tends to 0 as ν tends to ∞, so that gν(z) = 1 − bν tends to 1.
Obviously the pointwise upper bounds and lower bounds imposed on (gν(z))∞ν=0

in conditions (ii) and (iii) are satisfied. Moreover, all the integers κz,ν , λz,ν , ξz,ν

and ηz,ν can be taken to be 0 for z ∈ Ω and for any nonnegative integer ν, and
the function Bz in condition (ii) can be taken to be a constant. In particular, the
hypothesis that Bz , κz,ν and λz,ν be uniformly bounded on compact subsets is
trivially satisfied. Corollary 1 follows.

Finally we conclude the article with a question.

Open Question. Can our Main Theorem be generalized to the case of mero-
morphic functions?
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